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Abstract: Flow over an aircraft at high angles of attack is characterized by a combination of separated
and vortical flows that interact with each other and with the airframe. As a result, there is a set of
phenomena negatively affecting the aircraft’s performance, stability and control, namely, degradation
of lifting force, nonlinear variation of pitching moment, positive damping, etc. Wind tunnel study of
aerodynamic characteristics of a prospective transonic aircraft, which is in a canard configuration,
is discussed in the paper. A three-stage experimental campaign was undertaken. In the first stage,
a steady aerodynamic experiment was conducted. The influence of a reduced oscillation frequency
and angle of attack on unsteady aerodynamic characteristics was studied in the second stage. In the
third stage, forced large-amplitude oscillation tests were carried out for the detailed investigation of
the unsteady aerodynamics in the extended flight envelope. The experimental results demonstrate
the strongly nonlinear behavior of the aerodynamic characteristics because of canard vortex effects
on the wing. The obtained data are used to design and test mathematical models of unsteady
aerodynamics via different popular approaches, namely the Neural Network (NN) technique and the
phenomenological state space modeling technique. Different NN architectures, namely feed-forward
and recurrent, are considered and compared. Thorough analysis of the performance of the models
revealed that the Recurrent Neural Network (RNN) is a universal approximation tool for modeling
of dynamic processes with high generalization abilities.

Keywords: wind tunnel; neural networks; modeling; unsteady aerodynamic characteristics; high
angles of attack

1. Introduction

Modern transport airplanes use angles of attack close to stall during take-off and landing.
Different trigger factors such as possible pilot mistakes, equipment faults and atmospheric turbulence
and their combinations can cause loss of control, stall and spin. Different statistical surveys reported
(see, for example, [1]) that loss of control in flight (LOC-I) was the major cause of fatal transport aviation
accidents. Thus, many intensive studies are aimed at modeling of aerodynamics in the extended flight
envelope in order to support investigations of aircraft dynamics, control system design [2] and to
provide realistic pilot training using ground-based simulators in upset conditions [3,4].

Flow over an aircraft at high angles of attack is complicated by the dynamics of flow
separation and reattachment, the development and breakdown of vortical flow, and their
interaction with dynamics of the aircraft. This causes significant nonlinearities of unsteady
aerodynamic characteristics—for example, non-uniqueness of stability derivatives and hysteresis of
aerodynamic characteristics.

Growth in computing capacity and the development of numerical techniques has recently led
to significant progress in finding solutions for Navier–Stokes equations coupled with the dynamics

Aerospace 2018, 5, 26; doi:10.3390/aerospace5010026 www.mdpi.com/journal/aerospace

http://www.mdpi.com/journal/aerospace
http://www.mdpi.com
http://dx.doi.org/10.3390/aerospace5010026
http://www.mdpi.com/journal/aerospace


Aerospace 2018, 5, 26 2 of 27

equations governing the aircraft motion, facilitating flight dynamics studies [3,5–10]. However, at
present the problems of fluid mechanics and flight dynamics cannot be solved simultaneously in
certain flight mechanical applications—for example, in semi-realistic simulation of the aircraft flight
using ground-based flight simulators or control system design [3,11]. Solving such flight dynamics
problems demands Reduced-Order Models (ROM) of unsteady aerodynamics describing nonlinear
phenomena observed in extended range of flight parameters. Experimental data obtained from wind
tunnel tests of Computational Fluid Dynamics (CFD) data are commonly used for the development of
such models.

In flight dynamics problems, the aerodynamic forces and moments are usually represented in
the form of look-up tables [12,13]. For example, for small disturbed motion about a trim incidence α0,
the longitudinal coefficients are represented in the following form:

CN = CN(α0) + CNα(α− α0) + CNq qc/2V + CN .
α

.
αc/2V,

Cm = Cm (α0) + Cmα(α− α0) + Cmq qc/2V + Cm .
α

.
αc/2V.

(1)

This representation can be successfully applied only for small angles of attack, namely in the
range where the aerodynamic derivatives exist and are unique, and can be represented as linear
dependences on the kinematic parameters. Application of this technique for high angles of attack can
lead to significant errors.

The general technique for modeling unsteady aerodynamic characteristics is based on a nonlinear
indicial function representation [14]. To develop an aerodynamic model based on the nonlinear indicial
functions, a large amount of unsteady aerodynamics data should be used. Nevertheless, it requires a
set of serious simplifications when applied to a real problem, so that a final mathematical model is
formulated in a simple form of first-order linear differential equations [15,16].

The state-space-based phenomenological approach [17] takes into account delays of flow structure
development. The authors of [17] proposed a first-order delay differential equation for an additional
internal state variable x, which accounts for the unsteady effects associated with separated and vortex
flow. The variable x may, for example, represent the location of flow separation or that of vortex
breakdown. The form of the differential equation governing x is:

τ1
dx
dt

+ x = x0(α− τ2
dα

dt
), (2)

where α is the angle of attack, x0 describes the steady dependency of x on α, and τ1 and τ2 are
characteristic times of the flow structure development. This approach was shown to be effective in
accurate prediction of the unsteady aerodynamic effects, including unsteady flow over an airfoil with
separation [18], a delta wing with vortex breakdown [19], and a maneuvering fighter aircraft [17].
Furthermore, this approach was improved in order to take into account more complicated flow effects.
Following this technique, aerodynamic loads can be divided into linear non-delaying and nonlinear
delaying components [20,21]. Ordinary differential equations are responsible for the internal dynamics
of the nonlinear components of aerodynamic characteristics. The characteristic time constants can be
identified using the dynamic wind tunnel [20,21] or CFD [22] test results. Such an approach enables
us to describe quite precisely the nonlinear behavior of unsteady aerodynamic characteristics at high
angles of attack, namely, the dependence of aerodynamic derivatives on frequency and amplitude
of oscillations and the aerodynamic hysteresis. Nevertheless, application of the state-space-based
phenomenological approach in an arbitrary case is complicated because of non-formalized and
expert-based procedure of the model structure design and identification of the nonlinear components
of unsteady aerodynamic characteristics.

Surrogate modeling approaches, which use mathematical approximations of the true responses of
the system, are a cost-effective tool for unsteady aerodynamics. The most popular surrogate modeling
techniques are artificial neural networks [23–27], Radial Basis Function (RBF) interpolation [9,10],
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and kriging [28]. Neural Networks (NN) have been recently shown to be a formal and effective tool for
modeling nonlinear unsteady aerodynamics regardless of the aircraft configurations. The main reason
for such a successful application of NN is the universal approximation properties [29], which enable
the NN to be used for an arbitrary aircraft without significant simplifying assumptions. NN was found
to be capable of reproducing histories of unsteady aerodynamic loads on the suction side of pitching
airfoils in real time [23,24]. Faller et al. [23] utilized experimental data to train a RNN for predicting
the pressure coefficient readings along three spanwise positions on the upper surface of the wing.
They concluded that RNNs could be applied for time-dependent problems. Reisenthel used a RNN to
generate the response function for a nonlinear indicial model in [25].

Several nonlinear models of unsteady aerodynamics are considered in this paper. The mathematical
models are developed and tested using the experimental data, obtained for the pitch moment coefficient
of the generic Transonic CRuiser (TCR), which was a canard configuration. TCR aircraft was studied
in the SimSAC project of 6th European Framework Program. Significant experimental and numerical
investigations aimed at understanding the flow over such complex configuration and aerodynamic loads
acting on the TCR model were carried out previously [5,6,21,26,27,30,31]. In the present paper, results of
the intensive experimental campaign, which was undertaken in order to investigate the main static and
dynamic properties of the pitch moment coefficient for TCR, are considered. The campaign included
steady and dynamic experiments. The behavior of the steady aerodynamic characteristics versus angle
of attack is obtained during the steady tests. The influence of the reduced oscillation frequency and
the angle of attack on the unsteady aerodynamic characteristics was studied using small-amplitude
forced oscillations. Finally, the forced large-amplitude oscillation tests were carried out for detailed
investigation of the unsteady aerodynamics at high-angle-of-attack departures. The details of the
conducted experiments are also given in the paper. The experimental data presented in the current
paper extend the previously published results [27,30].

Present study is also focused on comparison of ROM for unsteady aerodynamics. Two NN
architectures suitable for the reduced-order modeling of unsteady aerodynamic characteristics in the
extended angle-of-attack range are considered, namely, a Feed-Forward Neural Network (FFNN) and
a Recurrent Neural Network. One of the paper contributions is application of the phenomenological
approach used in [17,20,21,27] in order to take into account nonlinear effects due to the complex
canard-wing vortex flow in the nonlinear pitch moment coefficient model. This model is used
as a benchmark model and compared with the results obtained for the NNs. As concerns the
phenomenological state-space model of unsteady aerodynamics, an ordinary differential equation is
utilized to describe the effects associated with delay of the vortical flow formation. The paper also deals
with comparison of two regularization techniques for NN training that improve the NN performance.
Both techniques use the Bayesian rule but one of the techniques implies that the experimental data are
heteroscedastic. The results of the experimental data simulation using both the state-space and NN
models are presented and compared.

2. Experiments

The prospective civil transport aircraft called TransCruiser (TCR) was designed to operate at
transonic speeds. The conceptual design of TCR was implemented by SAAB (Sweden) within the
SimSAC project of The Sixth European Framework Program. The aircraft is a configuration with a
high-sweep wing with leading edge extension (LEX) and a high-sweep canard surface. The canard
is an all moving surface and a close-coupled type. The main geometrical parameters of the tested
TCR model were as follows: reference area S = 0.3056 m2, wing span ba = 1.12 m, mean aerodynamic
chord c = 0.2943 m. The general view of the TCR model is given in Figure 1a, and a scheme is shown in
Figure 1b, where the model conventional center of gravity is marked. The experiments were conducted
in the TsAGI T-103 wind tunnel with the flow velocity V = 40 m/s with corresponding Reynolds
number Re = 0.78× 106.
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The wind tunnel experimental campaign was carried out in three stages. The tests were 
performed with the model installed on the tail sting, with the bank angle being equal to 90° (Figure 
2). At the first stage, the static aerodynamic characteristics in a wide range of angles of attack were 
studied. The incidence angle was varied from −10° to 40° with the step of 2°. The static experiments 
were performed for various configurations of the model, namely, with and without canard. For the 
full configuration the canard deflection angle cϕ  varied from −30° to +10° with a step of 5°. Rotation 
of the wind tunnel turn table provided variation of the angle of attack. In steady experiments for 
each angle of attack data sampling time was 2 s and the sampling rate was 100 Hz. 

Figure 1. TCR aircraft model (a) 3D view of the model mounted on the supporting device; (b) 3 views
of the model: side (up-left), front (up-right) and top (bottom).

The wind tunnel experimental campaign was carried out in three stages. The tests were performed
with the model installed on the tail sting, with the bank angle being equal to 90◦ (Figure 2). At the
first stage, the static aerodynamic characteristics in a wide range of angles of attack were studied.
The incidence angle was varied from −10◦ to 40◦ with the step of 2◦. The static experiments were
performed for various configurations of the model, namely, with and without canard. For the full
configuration the canard deflection angle ϕc varied from −30◦ to +10◦ with a step of 5◦. Rotation of
the wind tunnel turn table provided variation of the angle of attack. In steady experiments for each
angle of attack data sampling time was 2 s and the sampling rate was 100 Hz.

A five-component internal strain gauge balance was used for measurements of forces and moment
acting on the aircraft model (a drag force was not measured). Reference point of the balance coincided
with the model conventional center of gravity.
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In the second stage, the stability derivatives were determined through the small-amplitude
forced oscillations. During this experiment a harmonic motion in pitch with a fixed center of gravity
is implemented:

α = α0 + Aα sin(2π f t + ϑ0),
.
α = q = 2π f Aα cos(2π f t + ϑ0).

(3)

The oscillation amplitude was Aα = 3◦, frequencies f were 0.5, 1.0, and 1.5 Hz (corresponding
reduced frequencies k = 2π f c/2V were 0.012, 0.023, and 0.035) with the mean angles of attack α0

varying from −10◦ to 40◦. For small amplitude forced oscillation experiments the data were sampled
128 times per period of oscillation, each oscillation was repeated 8 times. No special adjustments of
the sampling rates depending on the oscillation frequency were carried. These experiments were
performed on the forced angular oscillations dynamic rig used in the TsAGI T-103 wind tunnel. The rig
is shown in Figure 2. The rig kinematical scheme is shown on the left side, and the TCR model installed
on the rig during the wind tunnel tests is shown on the right side. The mean angle of attack α0 was
specified with rotation of the wind tunnel turn table, and variation of the angle of attack α was obtained
via oscillation of the supporting sting.
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obtain the additional experimental data for the more comprehensive models in the extended flight 
envelope. 

Figure 2. Small-amplitude angular oscillations dynamic rig used in the TsAGI T-103 wind tunnel.
The rig configuration is shown on the left, the TCR model inside the test section of the wind tunnel is
shown on the right.

In the third stage, nonlinear unsteady aerodynamic coefficients at high angles of attack were
investigated through the large-amplitude forced oscillations in pitch. A view of the TCR model inside
the wind tunnel during this stage is shown in Figure 3. These experiments were intended to obtain the
additional experimental data for the more comprehensive models in the extended flight envelope.
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2.1. Static Aerodynamics Characteristics 

The influence of the canard and canard deflection angle cϕ  on the coefficients of normal force 
and pitching moment in steady conditions is shown in Figure 5. The analysis of the experiments 
shows that influence of the canard on the normal force coefficient CN is not so significant up to angle 
of attack α = 10°. At the angles of attack α > 10° the normal force is higher for the canard 
configurations. The detailed analysis in [23] reveals that, at small angles of attack, the wing in the 
presence of the canard has less slightly lift than a wing-only configurations; this is mainly due to 
canard downwash effects on the wing. However, the total lift remains the same because of the 
additional lift generated on the canard. At higher angles of attack, the wing behind the canard 
produces more lift than a wing-only geometry [23]. 

Figure 3. TCR model at the large amplitude oscillation rig at wind tunnel test section.

The scheme of the rig is demonstrated in Figure 4. Kinematics is also given with the Equation (3).
One can see from the figure that during these experiments the model bank angle was 0◦. The mean
angle of attack (3) was specified with an inclination of the sting support, and variation of the
angle of attack was provided with oscillation of the sting with respect to its mean position.
Oscillation amplitudes were 10◦ and 20◦, frequencies were 0.5, 1, and 1.5 Hz (corresponding reduced
frequencies k = 0.012, 0.023, and 0.035), and the mean angles of attack were 8◦ and 18◦.
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Figure 4. Large-amplitude angular oscillations dynamic rig used in the TsAGI T-103 wind tunnel.

Data sampling rate was similar to the small-amplitude test rate, namely, 128 times per period,
which is sufficient enough to capture abrupt variations of the measured aerodynamic characteristics
during both types of the experiments. Each oscillation was repeated 16 times.

2.1. Static Aerodynamics Characteristics

The influence of the canard and canard deflection angle ϕc on the coefficients of normal force and
pitching moment in steady conditions is shown in Figure 5. The analysis of the experiments shows
that influence of the canard on the normal force coefficient CN is not so significant up to angle of
attack α = 10◦. At the angles of attack α > 10◦ the normal force is higher for the canard configurations.
The detailed analysis in [23] reveals that, at small angles of attack, the wing in the presence of the
canard has less slightly lift than a wing-only configurations; this is mainly due to canard downwash
effects on the wing. However, the total lift remains the same because of the additional lift generated on
the canard. At higher angles of attack, the wing behind the canard produces more lift than a wing-only
geometry [23].
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Figure 5. Influence of the canard and canard deflection angle ϕc on the TCR
aerodynamic characteristics.

The canard significantly contributes to the total pitching moment coefficient of the TCR model
bringing a destabilizing effect. For the case of zero canard deflection, the pitching moment evolution
with the angle of attack presents a negative slope (nose down when α increases) up to α = 6◦, then a
first break, after which the slope sign changes, due to the continuously increasing lift of the canard,
upstream the reference point (nose up). Then a second break takes place, with a loss of efficiency at
about α = 20◦. The locations of these two breaks depend on the canard deflection angle.

Ghoreyshi et al. [23] reported some flow features of TCR at different angles of attack and at low
subsonic speeds. Both the LEX, wing, and canard have rounded leading edges and are swept back at
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and more than 50◦, that causes a complex vortex formation over these surfaces at moderate to high
angles of attack. At about α = 12◦ a canard vortex and an inboard (LEX) and outboard wing vortex are
present. The wing in the presence of the canard shows smaller inboard vortices than the canardless
configuration; this is due to canard downwash effects that reduce the local angle of attack behind the
canard span. On the other hand, the wing outboard vortex is slightly bigger in the presence of the
canard. The canard vortex becomes larger with increasing angle of attack. At about α = 18◦ the wing
vortices merge. At about α = 20◦, the inboard and outboard vortices interact and merge. At α = 24◦

angle of attack, the canard vortex lifts up from the surface as well. At higher angles, the canard in the
TCR aircraft has favorable effects on the wing aerodynamic performance.

2.2. Small-Amplitude Forced Oscillation Characteristics

The small amplitude oscillations are dedicated to determine the aerodynamic derivatives in
Equation (1). The experimentally measured aerodynamic derivatives CNq + CN .

α
and Cmq + Cm .

α
are

shown in Figure 6.

Aerospace 2018, 5, x FOR PEER REVIEW  8 of 27 

 

canardless configuration; this is due to canard downwash effects that reduce the local angle of attack 
behind the canard span. On the other hand, the wing outboard vortex is slightly bigger in the 
presence of the canard. The canard vortex becomes larger with increasing angle of attack. At about α 
= 18° the wing vortices merge. At about α = 20°, the inboard and outboard vortices interact and 
merge. At α = 24° angle of attack, the canard vortex lifts up from the surface as well. At higher 
angles, the canard in the TCR aircraft has favorable effects on the wing aerodynamic performance. 

2.2. Small-Amplitude Forced Oscillation Characteristics 

The small amplitude oscillations are dedicated to determine the aerodynamic derivatives in 

Equation (1). The experimentally measured aerodynamic derivatives qN NC C
α

+
  and qm mC C

α
+

  are 

shown in Figure 6. 

 

Figure 6. Influence of the oscillation frequency on the unsteady derivatives qN NC C
α

+
  and 

qm mC C
α

+
 . 

These dependencies were obtained at various frequencies of the aircraft model oscillations 
inside the wind tunnel. It is seen that the influence of the oscillation frequency on the aerodynamic 
derivatives is small, excluding the incidence region in the vicinity of α = 20°. In this region, a 
dependency of dynamic derivatives values versus the frequency of oscillations is observed. A 
comparison of the unsteady derivatives obtained for the canard and canardless configurations is 
given in Figure 7. The influence of the canard on the normal force derivative is significant for angles 
of attack larger than α = 32°; for pitch damping derivative it is also relatively small, except for the 
region of incidences near α = 20° (Figure 7), where a positive damping for the TCR model is 
observed. 

−20 −10 0 10 20 30 40 50
0

20

40

60

C
N

q
+

C
N

α̇

 

 

−20 −10 0 10 20 30 40 50
−30

−20

−10

0

10

20

C
m

q
+

C
m

α̇

α (deg)

 

 

f=0.5 Hz
f=1.0 Hz
f=1.5 Hz

Figure 6. Influence of the oscillation frequency on the unsteady derivatives CNq + CN .
α

and Cmq + Cm .
α
.

These dependencies were obtained at various frequencies of the aircraft model oscillations inside
the wind tunnel. It is seen that the influence of the oscillation frequency on the aerodynamic derivatives
is small, excluding the incidence region in the vicinity of α = 20◦. In this region, a dependency of
dynamic derivatives values versus the frequency of oscillations is observed. A comparison of the
unsteady derivatives obtained for the canard and canardless configurations is given in Figure 7.
The influence of the canard on the normal force derivative is significant for angles of attack larger than
α = 32◦; for pitch damping derivative it is also relatively small, except for the region of incidences near
α = 20◦ (Figure 7), where a positive damping for the TCR model is observed.
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The influence of the canard deflection angle ϕc was also investigated: the positive canard
deflection moved the positive damping region to lower incidences, with the amplification of the
phenomenon as compared to the case of ϕc = 0◦ (Figure 8). The negative canard deflection moved this
region to higher angles of attack, with the positive damping being weakened. For the canard deflection
angle ϕc = −30◦, the positive damping moved to α ≈ −5◦. For the normal force derivative, such a
considerable effect is not observed.
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2.3. Large Amplitude Oscillations Characteristics

In order to investigate the vortex dynamics effect on unsteady aerodynamic characteristics at high
angles of attack under high oscillation rates the large amplitude oscillations were carried out. As far as
pitch oscillations were concerned, the canard-off TCR configuration revealed the classical linear dynamic
effects without any strong nonlinearities. The addition of the canard leaded to severe unsteady effects,
not only for angles of attack in the region of α = 20◦ but also for lower angles of attack (Figure 9).
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Figure 9. Pitching moment and normal force coefficients evolutions for two sets of large amplitude
pitch oscillations—TCR with canard, ϕc = 0◦, k = 0.035.

3. Models of Unsteady Aerodynamic Characteristics

3.1. Aerodynamic Derivative Modeling

In order to quantify whether the linear model based on the look-up tables of aerodynamic
derivatives is applicable the large amplitude oscillations results are simulated. Since the linear
mathematical model in Form of Equation (1) is not valid for the large deviations from the trim
incidence α0 the mathematical model is written in the following form:

CN(t) = Cst
N(α(t)) + (CNq + CN .

α
)

.
α(t)c/2V

Cm(t) = Cst
m(α(t)) + (Cmq + Cm .

α
)

.
α(t)c/2V

, (4)

where Cst
N(α(t)), Cst

m(α(t)), CNq + CN .
α

and Cmq + Cm .
α

are derived from the look-up tables of
characteristics through the linear approximation. While modeling large-amplitude oscillations,
the complexes CNq + CN .

α
and Cmq + Cm .

α
determined for the same oscillation frequency are used.

The results of simulation large amplitude pitch oscillations are shown in Figure 10. One can see that
the large amplitude oscillation results for the normal force coefficient can be described with a good
precision using the look-up table approach. However, while the simulation of the pitching moment
coefficient evolutions fits sufficiently well with the experimental data practically in the overall range
of angle-of-attack range, there is a region of the incidences in the vicinity of α = 20◦, for which this
approach is failed to predict the experimental results. These modeling results are in good agreement
with the small-amplitude test data given in Figure 6. Particularly, one can see that canard introduce
the nonlinear behavior mostly for the pitching moment derivative Cmq + Cm .

α
, while it effect on the

normal force derivative CNq + CN .
α

is not so vivid. The canard influence is observed in the vicinity of
α = 20◦, where the nonlinear dependency of the pitch moment derivatives on pitch rate is observed in
the experiment (Figure 6), and the linear model failed to describe the experimental results.
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Figure 10. Linear simulations based on the measured aerodynamic derivatives compared to large
amplitude oscillation measurements.

Thus, nonlinear approaches should be applied in order to design comprehensive models of the
pitch moment coefficient. Below, the NN approach will be used for modeling of unsteady aerodynamics
under such conditions. In order to evaluate performance of the NN models they are compared with
the state-space modeling approach [17].

3.2. State-Space Model

The state-space model of the pitch moment coefficient was developed through an analysis of the
obtained experimental data. The pitch moment coefficient of the TCR model Cm(α) is considered as a
sum of the pitching moment of the canardless configuration Cm0(α) and the corresponding contribution
from the canard ∆Cm(α) as

Cm(α) = Cm0(α) + ∆Cm(α). (5)

The canard contribution under the static condition is divided into a term ∆Cm1, which is linear in
angle of attack, and a nonlinear term ∆Cm2 which is caused by the canard influence as follows:

∆Cm(α) = ∆Cm1(α) + ∆Cm2(α) = ∆Cmα α + ∆Cnonlin
m (α). (6)

This representation of the pitch moment coefficient is demonstrated in Figure 11. In the present
study an unknown constant of the mathematical model ∆Cmα and nonlinear function ∆Cnonlin

m (α) were
determined using the static test results.

In order to describe the internal dynamics due to the vortex structure development the following
dynamic equation is applied:

τ1
d∆Cdyn

m
dt

+ ∆Cdyn
m = ∆Cnonlin

m (α− τ2q
c

2V
), (7)

where ∆Cdyn
m is the dynamic value of the canard influence due to development of vortex structure,

and Cnonlin
m is its steady-state value.

This equation is a first-order filter with the time constant τ1, which is in the left side of this equation.
Additionally, incidence delay τ2q c

2V is introduced in the function argument in the right-hand side of

the equation. For small values of time delays it follows from Equation (7) that ∆Cdyn
m (t) = ∆Cnonlin

m (α),
which enables the steady dependences to be satisfied identically.
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The resulting pitch moment coefficient model is the following:

Cm = Cm0(α) +
(

Cmq + Cm .
α

)
0
· q c

2V
+ ∆Cmα α + ∆Cdyn

m . (8)

The equation combines the linear terms derived from the look-up tables for the canardless and
canard TCR configurations (the first, the second and the third terms) and the nonlinear term responsible
for the canard influence (the forth terms). Thus, the complete model for the pitch moment coefficient
contains Equations (7) and (8) with unknown constants τ1 and τ2. The constants Cm0, ∆Cmα and the
nonlinear function ∆Cnonlin

m were determined by means of steady tests of the canardless and the canard
configurations. The damping derivative (Cmq + Cm .

α
)

0
is a function of the angle of attack and can be

determined using the experimental results of the small-amplitude forced oscillations of the canardless
TCR configuration.

For identification of the unknown parameters τ1 and τ2 the experimental results of
small-amplitude pitch oscillations of the canard configuration of TCR model at various frequencies
were used. The solution of Equation (7) for the small-amplitude harmonic oscillations in pitch
α(t) = α0 + Aα sin kt can be linearized. After the substitution of the results into relationship (8) it leads
to the following expressions for the aerodynamic derivatives:

Cmα = Cm0α + ∆Cmα +
d∆Cnonlin

m
dα

1−τ1τ2k2

1+τ2
1 k2

Cmq + Cm .
α
= (Cmq + Cm .

α
)

0
− d∆Cnonlin

m
dα

τ1+τ2
1+τ2

1 k2 .
(9)

It is seen that the aerodynamic derivatives depend on the oscillation frequency in the range of

the angles of attack where the nonzero derivative dCnonlin
m
dα exists. The dependencies of aerodynamic

derivatives Cmα and Cmq + Cm .
α

versus oscillation frequency are determined by the characteristic times
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τ1 and τ2. These values are supposed to be functions of the angle of attack and determined as the
smooth cubic spline interpolations in the range of α = 10÷ 30◦ with the spline maximum in the center
of the range (see Figure 9). It is considered that τ2 (α) = 0 beyond this range. The same assumption
for τ1 leads to the degeneracy of differential Equation (4); therefore, ∆τ1 = 2 is added to the spline
function τ1. This small addition does not influence significantly the filter characteristics in the left side
of Equation (4), but enables the coefficient in front of derivative to be positive. For identification of
these constants the following penalty function is introduced:

Φ(τ1, τ2) =
n

∑
i=1

m

∑
j=1

[Cmα test(αi, ω j)− Cmα sim(αi, k j)]
2 +

n

∑
i=1

m

∑
j=1

[C∗mq test(αi, k j)− C∗mq sim(αi, k j)]
2. (10)

This function represents the sum of squared differences between the simulation results and
the experimental results for the dynamic derivatives, determined in the entire investigated range of
angles of attack αi for three values of the reduced oscillation frequency k j. For short, the designation
C∗mq = Cmq + Cm .

α
is introduced in the expression. To determine the values of τ1 and τ2 the function

Φ(τ1, τ2) should be minimized. It is seen in Figure 12 that this function has a flat minimum, which can
be found using the conventional minimization techniques. The resulting functions τ1(α) (τ1max ≈ 32.7)
and τ2(α) (τ2max ≈ 3.9) are shown in Figure 12.
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Figure 12. The results of identification of τ1(α) and τ2(α). Penalty function Φ(τ1, τ2) is shown in the
upper left part of the figure.

The aerodynamic derivatives Cmα and Cmq + Cm .
α

versus angles of attack, simulated with the
proposed mathematical model, are shown in Figure 13 with lines. The simulation results for various
oscillation frequencies are demonstrated by lines of different types. The corresponding experimental
results are shown with different markers. The developed state-space model describes adequately the
results observed in the dynamic experiment in the entire ranges of the angles of attack and oscillation
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frequencies. It is important that the model describes the positive damping zone within the range of the
angles of attack of α = 15–25◦ and the dependencies of the derivatives versus oscillation frequency,
which are observed in the experiment.
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Figure 13. Aerodynamic derivatives obtained for different oscillation frequencies: experiments
(markers) and state-space model simulation (lines).

The state-space model (Equations (7) and (8)) developed only with the data from the forced
small-amplitude oscillation tests was also applied to simulate the forced large-amplitude oscillations.
The results obtained for three test cases are shown in Figure 14. The results of simulation (solid lines)
and the unsteady experiment data (markers) for the dynamic values of Cm(t) are compared in the
upper plots. The measured static values of Cm(α) are shown with dashed lines. The evaluations of
dynamic components caused by the canard vortex flow formation ∆Cnonlin

m (t) (solid lines) are shown
in the bottom plots. The static components of the vortex flow influence ∆Cnonlin

m (α) are shown with
dashed lines in the same plots. The bottom graphs demonstrate the contribution of the differential
equation with delay (Equation (7)) to the general mathematical model (Equation (8)).

The modeling results of the dynamic effects at the mean angle of attack α0 = 18◦ of the pitch
oscillations with large amplitude Aα = 10◦ and small reduced frequency k = 0.012 are shown in
Figure 14a. The positive damping in the sense of the linear mathematical model (1) is observed at
angles of attack in the vicinity of α0 = 18◦. The additional kink in the dynamic loop demonstrates this
fact. While the oscillation amplitude increasing, the positive damping practically vanishes in both
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the experiment and the simulation (see Figure 14b). Further oscillation frequency growth leads to a
significant expansion of the hysteresis loop. This effect in the experimental and simulation results is
shown in Figure 14c.
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The NN techniques described and applied below are compared with the state-space approach.

4. Neural Network Modeling

FFNN and RNN are considered in the paper. The NN model of unsteady pitch moment coefficient
of TCR using RNN was developed in this paper and compared with the model obtained using
FFNN [19].

4.1. NN Architectures

The FFNN, which scheme is given in Figure 15a, can be considered as a directed graph with
neurons placed in it nodes. The neurons of the first layer do not implement nonlinear mapping but
distribute input signals between neurons of the first hidden layer. Neuron of the hidden layer is an
elementary calculating unit. A set of signals Sj, j = 1 . . . n from the input layer are fed into the neuron
of the hidden layer. Coefficients wik correspond to the signal transmit connections and are the weight
factor while summing the input signals. Neuron bias bk is added to the weighted sum of the input
signals, and the resulting sum is mapped through nonlinear activation function fk. Mapped signal φk
goes forward to the next-layer neurons, which implement the same operations and transmit the signal
further. The signal from the last layer is output from the NN.

RNN can be represented as FFNN with feedback connections. NARX (Nonlinear AutoRegressive
model with eXogenous variables) architecture [32], which is given in Figure 15b, is used in the
present study. For modeling variable y at time t, the state vector x(t) and a series of its former values
x(t− 1), x(t− 2) . . . x(t− Din) are fed into the NN. The values of the modeling variable y(t− 1), y(t−
2) . . . y(t− Dout) calculated by the NN earlier are also added to input signal. The resulting NN model
can be presented in the following form:

y(t) = M(x(t), x(t− 1), . . . , x(t− Din), y(t− 1), . . . , y(t− Dout)), (11)

where M is the function of NN mapping.
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4.2. Regularization Techniques during NN Training

The problem considered in the present study is to develop a NN model using a restricted set
of experimental data and to apply the model for flight dynamics applications, implying arbitrarily
aircraft maneuvers; thus, generalization ability of the model is crucial. Regularization is one of the
popular techniques preventing overfitting of a regression model and improving its generalization
ability [33]. A short introduction to regularization techniques is given below.

Connection weights wik and biases bk are adjusted during NN training when the examples of
training set are presented through minimization of the difference between NN operation results yi and
target value ai for each example (i = 1 . . . N) from the training set

ED =
1
2

N

∑
i=1

(yi − ai)
2. (12)

One of the important problems of NN training is called overfitting. The error in the training
set is driven to a very small value, but when new data are presented to the network the error is
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large. The network has memorized the training examples, but it has not learned to generalize to new
situations. A part of the whole initial data can be used for model testing. The test set error should be
made as small as possible and must not be significantly higher than the training set error. When this
condition is valid, the NN is considered to have good generalization performance.

Regularization is one of the techniques for improving generalization. According to this technique,
a term penalizing the NN for weight increase is added in the objective function besides the error
measure ED (12). The sum of squares of the weights can be used for this purpose:

EW =
1
2

K

∑
j=1

w2
j , (13)

where K is a number of neural network weights; the objective function takes the form

F = ηED + ρEW , (14)

where η and ρ are objective function parameters. To develop the mathematical model with high
generalization ability, Bayes’ rule was proposed to define the objective function parameters [34].
Algorithm of Gauss–Newton approximation to Bayesian regularization (GNBR) for training NN was
further implemented in [33].

GNBR algorithm is the effective tool to improve NN generalization, but it supposes the model
error to be the same on different subsets of initial data. The unsteady aerodynamic models for flight
dynamics problems are developed using different dynamic experiments, in the various ranges of
kinematic parameters, and with different accuracies. To obtain more precise models the data could
be considered as heteroscedastic. The GNBR algorithm was modified for the case of heteroscedastic
data and Bayesian Regularization to NN training on Heteroscedastic Data (BRHD) was proposed [35].
Below the proposed algorithm is briefly discussed.

4.3. Bayesian Regularization to NN Training on Heteroscedastic Data (BRHD)

Let us suppose that experimental data to be approximated are obtained in n types of different
experiments (x1,a1),(x2,a2),. . . ,(xn,an), where xi =

(
xi1 . . . xiNi

)
is the vector of values of the controlled

phenomenon parameter, obtained in i-th type of experiment, ai =
(

ai1 . . . aiNi

)
is the vector of values

of the observed variable obtained in i-th type of experiment, Di =
{

ximi
aimi

}
, mi = 1 . . . Ni is the

dataset obtained at the same type of experiment.
The problem is to identify the NN function y that describes the obtained experimental data

Di =
{

ximi
aimi

}
, mi = 1 . . . Ni:

a1m1
= y

(
x1m1

)
+ ν1m1

, m1 = 1 . . . N1,

a2m2
= y

(
x2m2

)
+ ν2m2

, m2 = 1 . . . N2,

. . .

anmn−1
= y

(
xnmn−1

)
+ νnmn−1

, mn−1 = 1 . . . Nn−1

anmn = y
(

xnmn

)
+ νnmn , mn = 1 . . . Nn

. (15)

The errors in each experiment νimi
, mi = 1 . . . Ni are supposed to be independent and normal with

zero statistical expectation but with different standard deviations σi. Using Bayes’ rule, the following
objective function can be obtained:

F =
1
2

ηwTw+
1
2

eTRe, (16)
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where w = (w1 w2 . . . wK)
T is the vector of weights, e = (e1 . . . eN)

T is the vector of errors,
ej = y(xj)− aj is the error of approximation of j-th data pair, R is the matrix N × N; the objective
function parameters ρi are placed on the main diagonal of matrix R, the other elements of this matrix
are equal to zero:

R =



ρ1 0 . . . 0
0 ρ1 0 . . . 0

. . .
0 . . . 0 ρi 0 . . . 0
0 . . . 0 ρi 0 . . . 0

. . .
0 0 ρn 0
0 0 ρn


. (17)

Note that the objective function in form (16), which is used instead of (14), contains the weighted
sum of errors on each subset eTRe, with weights ρi, corresponding to each subset. Following Bayes’
rule, the expressions for the objective function parameter η (16) is obtained [35]:

η ≈ K− η Sp(H−1)

wTw
, (18)

where K is the total number of parameters in the network, H = ∇2F is the Hessian matrix of the
objective function, and Sp is the matrix trace.

The following expressions can be obtained for ρi:

ρi =
Ni

eT dR
dρi

e + Sp
(

dH
dρi

H−1
) , (19)

where Ni is the number of patterns of the i-th training subset.
Within this approach, the parameters of the objective function corresponding to the data subset

are adjusted subject to their approximation errors.
The algorithm for implementation of the described training technique was developed [35].

To obtain values of the objective function parameters it is required to calculate Hessian matrix
in the minimum point of objective function F. The Gauss–Newton method is applied to approximate
Hessian matrix with modified Levenberg–Marquardt optimization algorithm used to locate the
minimum point:

wi=wi−1 −
(

JTRJ+(α + µ)E
)−1(

JTRe+αwi−1

)
. (20)

Let us consider the Levenberg–Marquardt algorithm in more detail. When the scalar µ is zero,
this is just Newton’s method, using the approximate Hessian matrix. When µ is large, this becomes
gradient descent with a small step size. Newton’s method is faster and more accurate near an error
minimum, so the aim is to shift toward Newton’s method as quickly as possible. Thus, µ is decreased
after each successful step (reduction in performance function) and is increased only when a tentative
step would increase the performance function. In this way, the performance function is always reduced
at each iteration of the algorithm [36].

The modification proposed in the present paper improves the Levenberg–Marquardt algorithm
convergence in the case of heteroscedastic data in the vicinity of the minimum point.

4.4. Modeling

The RNN model of unsteady pitch moment coefficient, which has a NARX configuration, is
compared with the FFNN model presented in [26]. The RNN has one hidden layer. RNN containing
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from five to 20 neurons in the hidden layer were tested and 12 neurons were selected because this
number provides better generalization. Hidden layer neurons have a sigmoid activation function:

fk(x) =
1

1 + e−x . (21)

Experimental data, which are used to train the NN, consisted of the oscillation cases corresponding
to different amplitudes and frequencies of oscillation. Evolutions of the pitch moment coefficient
and kinematic parameters during each oscillating case are discretized in time into 128 steps both for
small- and large-amplitude tests. Small-amplitude oscillation cases total 78; large-amplitude oscillation
cases total 12. The training patterns are composed of the target data, which are the records of pitch
moment coefficient Cm(i), Cm(i− 1) at steps i, i − 1, together with the input vector. In the present
study the input vector included the angle of attack α(i) and pitch rate q(i) at the i-th step, and the
motion parameters α(i− 1), α(i− 2), q(i− 1), q(i− 2) at previous steps i − 1, i − 2. Usage of angle
of attack and pitch rate as the main input parameters is motivated by the statement of the problem.
Namely, the developed NN model should be used for flight dynamics problems, and, hence, we should
use only parameters available during a real flight. Influence of the Mach and Reynolds numbers are
not considered in the present experimental study and, hence, are not included in the NN model as the
input parameters.

To compare only the NN configurations, the regularization technique (GNBR) is selected to be the
same as for FFNN in [26].

To train the RNN, a special configuration can be used. Because the true output is available during
the training of the network, it is possible to create a feed-forward architecture, in which the true output
is used instead of feeding back the estimated output. This has two advantages. The first is that the input
to the feed-forward network is more accurate. The second is that the resulting network has a purely
feed-forward architecture, and static back propagation can be used for training [32]. The stopping
criterion for training was exceeding a threshold value (1020) by the Levenberg–Marquardt algorithm
parameter µ, which corresponded to reaching a minimum of the objective function (16).

Thirty-six out of 78 small amplitude test cases and eight out of 12 large amplitude test cases were
randomly selected for training; the rest of the data were used for testing.

At the modeling stage, predicting the pitch moment coefficient Cm(i) RNN uses results computed
at the previous time step Cm(i− 1), along with the current and two previous steps of input signal.
Hereby, the model is a nonlinear regression on seven parameters. As is shown in [26], a six-dimensional
state vector is enough to specify the harmonic oscillation process.

In the first step, we simulated the aerodynamic derivatives of pitch moment coefficient (1).
They were obtained with RNN as follows. First, the forced small-amplitude oscillations of the aircraft
model were simulated. Then, the coefficients of the model (1) Cmα, Cmq + Cm

.
α were identified from the

simulated data using the linear regression method. RNN simulation of the pitch moment derivatives,
compared with the small-amplitude experiment, is given in Figure 16. It can be seen from the figure
that the RNN model captures the dependency of the derivatives on oscillation frequency, which is
observed in the angle-of-attack range 16◦ < α < 24◦ and corresponds to the development of the
vortical flow above the wing surface. Here the results from both the training and testing subsets
are demonstrated together in order to illustrate that the developed model describes all available
small-amplitude test results and can be used for prediction of the unsteady aerodynamics phenomena
in the overall studied angle-of-attack range. Nevertheless, a detailed study of the model performance
on both training and test subsets is given in Section 4.
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Figure 16. Unsteady aerodynamic derivatives of the pitch moment coefficient, simulated with RNN
(lines) and obtained in the experiment (markers).

Hysteresises of the pitch moment coefficient obtained by the RNN simulation of the forced
large-amplitude oscillations are given in Figure 17. The experimental results are also plotted in the
same figure. These cases are from the testing subset. One can see that there is a good correlation
between the experiment and the simulation, and a good generalization is exhibited by RNN.
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It can be concluded from Figures 16 and 17 that RNN describes the nonlinear behavior of the pitch
moment coefficient in the extended range of the angles of attack, which are observed in the experiments.

FFNN, developed in [26], had two hidden layers, with 12 neurons in the first layer and seven in the
second. The neuron activation function of the both layers was also chosen sigmoid function. Patterns
for the training of the FFNN were composed of the records of pitch moment coefficient Cm, together
with the state input x = (α(t), q(t), t, α0, Aα, k) determined for the oscillation case. Each oscillating
case was discretized in time into 128 steps (similar to the experiment data) and readings from a
strain-gauge balance were used for each step. Two thirds of the experimental data were used to train
the neural network, and one third of the experimental data were used to test the generalization ability.
To simulate the pitch moment coefficient at the time t of an experiment case the whole input vector at
this time step should be fed in the NN.

Backpropagation was used to train the NN. Levenberg–Marcquardt algorithm, combined with
Bayesian regularization (GNBR), was utilized to minimize the error [26]. The following section gives a
comparison of the performance of the discussed NN models.

5. Comparison of the Models

First, let us compare the NN models. The performances of the NN models were tested
quantitatively by calculating the errors obtained for the models of pitch moment coefficient Cm

and the complex of aerodynamic derivatives Cm q + Cm
.
α

separately for the train and test subsets.
The error measure is the mean square error divided by the entire range ∆y of the measured value ytest:

erri =

√
1

Ni−1

Ni
∑

j=1
(ytest

j − ysim
j )

2

∆y
. (22)

The results are given in Table 1.

Table 1. Errors of unsteady aerodynamics models.

Model Regularization Variable
erri

Training Subset, % Test Subset, %

FFNN GNBR
Cm q + Cm

.
α

(small amplitudes) 3.88 3.96
Cm (large amplitudes) 15.25 27.42

RNN GNBR
Cm q + Cm

.
α

(small amplitudes) 7.09 8.58
Cm (large amplitudes) 5.59 8.3

RNN BRHD
Cm q + Cm

.
α

(small amplitudes) 5.65 5.77
Cm (large amplitudes) 4.53 6.34

State-space model - Cm q + Cm
.
α

(small amplitudes) 9.11
Cm (large amplitudes) 6.87

Considering the table, one can conclude that the FFNN error for the small amplitude test is
approximately the same as for the training and testing subsets. The error for the large amplitude
test is very high, approximately four times higher for the training subset and seven times higher
for the test subset as compared with the small-amplitude results. Thus, the FFNN provides worse
performance for the large amplitude subset. The reason is that the small-amplitude training examples
are dominant in the overall training set, namely, 36 out of 44 cases. The FFNN trained better to model
the small-amplitude behavior shows poor performance for the large-amplitude subset. This is not
satisfactory from the point of view of flight dynamics because a model should guarantee an equal level
of model precision in the overall simulation domain.
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On the contrary, errors of the RNN determined for small- and large-amplitude subsets are not as
high as the FFNN large-amplitude errors and are very close to each other, especially for the testing
subsets. This indicates that the RNN is trained to model both small- and large-amplitude results almost
equivalently and the shortcomings of the FFNN have been overcome.

Another important remark should be given while comparing the FFNN and RNN architectures.
In addition to the aforementioned advantage of RNN, there is another one. It is possible to simulate
any consequence of time-dependent states using the RNN thanks to the feedback connection. On the
contrary, while using FFNN one should input all parameters of the oscillation cycle, including
amplitude and frequency of oscillation, which is not suitable for flight dynamics applications.
This comparison reveals that the recurrent configuration is a favorable technique for the simulations
of time-dependent unsteady aerodynamic characteristics in flight dynamics problems.

Unsteady aerodynamic characteristics obtained in different types of the experiments are obtained
with different errors. Performances of the mathematical models are improved using the BRHD
technique that considers the model developed using the experiment data from different types of
experiments as heteroskedastic [27].

While comparing the regularization techniques, the recurrent architecture was used because in
the previous section this NN configuration was shown to be better for the problem of modeling of
aerodynamics in flight dynamics than the feed-forward architecture. The NN was trained using both
the GNBR and the BRHD algorithms on the same data. For the BRHD, 8 neurons in the hidden layer
were selected, i.e., it is less than for GNBR (12 neurons). The model performances were compared
in several ways. First, the testing was done graphically by coplotting Cm values measured in the
experiment and predicted by the models. The results of large-amplitude modeling are shown in
Figure 17, where it can be concluded that the NN model, trained with the BRHD algorithm, has better
coincidence with the experiments.

More thorough analysis of the obtained results was implemented to determine whether the BRHD
algorithm helped to improve accuracy of models derived from the different-type experiment data.
For this purpose, the NN models of TCR pitch moment coefficient, obtained using the BRHD and
GNBR training algorithms were compared. A quantitative comparison of the training techniques was
done in the same way as for the configuration comparison through the error calculation (22). The results
are also given in Table 1. The comparison reveals the accuracy improvement of the model developed
with BRHD. The errors for Cm decreased by 23% and 31% for the train and test subsets, respectively.
The errors for Cm q + Cm

.
α

decreased by 25% and 49% for the train and test subsets, respectively.
In addition, the scatterograms plotted for the test subsets of Cm q + Cm

.
α

and Cm are shown in
Figure 18a,b. The BRHD technique yields less scattering.

The analysis presented above shows that the regularization technique (BRHD) improves the
model accuracy if two or more subsets obtained in different experiments are used to train the NN.

The error of the state-space model, which is calculated according to Equation (22) in order to
evaluate the performance of the NN modeling approach, is given in Table 1. The RNN trained with
the conventional GNBR algorithm shows better accuracy as compared to the state-space model for
small amplitudes, and for the large-amplitude tests the performance of the RNN (GNBR) is better in
the training test and worse in the testing subset. The RNN (BRHD) has better precision for both small-
and large-amplitude oscillation data.
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6. Conclusions

An experimental investigation of the aerodynamic characteristics of the prospective civil transport
aircraft TCR has been carried out in the TsAGI T-103 wind tunnel. The aircraft was a configuration with
a high-sweep wing with LEX and the high-sweep canard surface. A three-stage experimental campaign
was undertaken. In the first stage, the steady aerodynamic characteristics were under consideration.
The influence of the reduced oscillation frequency and the angle of attack on unsteady aerodynamic
derivatives was studied in the second stage. In the third stage, forced large-amplitude oscillation tests
were carried out for the detailed investigation of the unsteady aerodynamics at high-angle-of-attack
departures. The analysis of the experiments revealed that canard had a great impact on the overall



Aerospace 2018, 5, 26 24 of 27

aircraft performance. Static experimental results showed that the influence of the canard on the normal
force coefficient CN was not so significant up to the angle of attack α = 10◦. At angles of attack α > 10◦

the normal force was higher for the canard configurations. Such behavior at high angles of attack was
due to the fact that the wing behind the canard produced more lift than a wing-only geometry because
of the canard–wing vortex interaction.

The canard also significantly contributed to the total pitching moment coefficient of the TCR
model, making it less stable. In addition, canard-wing vortex interaction phenomena caused the
positive damping peak in the stability derivative Cm q + Cm

.
α

obtained in a small-amplitude forced
oscillation experiment, which was not observed for the wing-only configuration. Changing the canard
deflection angle ϕc, one could change the position and amplification of the positive damping peak.

Concerning large-amplitude forced oscillations, the wing-only configuration revealed the classical
linear dynamic effects without strong nonlinearities. The addition of the canard led to severe
unsteadiness in the form of hysteresises. The delay of complex vortical flow development caused the
dependence of the aerodynamic derivatives on the oscillation frequency and the complicated hysteresis
loops of the total pitch moment coefficient, observed in the large-amplitude oscillation.

While modeling large-amplitude oscillation results using the look-up tables approach, the large
amplitude oscillation results for the normal force coefficient were described with good precision.
However, for the pitch moment coefficient the technique failed and several more sophisticated
mathematical models obtained via different popular approaches, namely, neural network and the
phenomenological state-space modeling technique, were developed.

We compared several approaches for reduced-order modeling that are capable of capturing the
observed nonlinear phenomena. In particular, NN of the feed-forward and recurrent architectures
were compared with each other and with the state-space model. RNN trained with the BRHD
algorithm showed better results in terms of prediction ability. Comparison of the NN models
revealed that the recurrent architectures were favorable for modeling of unsteady aerodynamic
characteristics in flight dynamics problems. The advantage of the RNN was the feedback connection,
which provided prehistory of motion and brought the information required for modeling dynamic
processes. In addition, RNN demonstrated better generalization ability, which was an important
advantage because the ROM of aerodynamics were designed with a restricted set of kinematic
parameters, which could be obtained in the wind tunnel or CFD tests. However, solving of flight
dynamic problems, including ground-based simulator studies, supposes simulation of arbitrary
aircraft maneuvers.
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Nomenclature

Aα amplitude of oscillation
yi neural network operation results
ai target value
ba wing span
bk neuron bias
Sm pitch moment coefficient
c mean aerodynamic chord
ED sum of squared neural network errors
EW sum of squared neural network weights
ej neural network error
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erri error measure
F objective function
fk neuron activation function
H Hessian matrix
J Jacoby matrix
k reduced oscillation frequency
M function of neural network operations
Sj input signals fed into neuron
t time
V airspeed
wik weights of the neural network connections
α angle of attack
α0 mean angle of attack at the oscillations
η, ρi objective function parameters
ϕc canard deflection angle
τ1, τ2 characteristic times
φk signal mapped by the neuron
Subscripts
dyn dynamic
sep separated
sim simulation
st static
test testing
T transpose
Aerodynamic derivatives
Ciα

∂Ci
∂α

Ciq
∂Ci

∂(qc/2V)

Ci
.
α

∂Ci
∂(

.
αc/2V)

, where i = N, m.
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