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Abstract: Recent advances in the resolution of multi-model and multi-objective control problems via
non-smooth optimization are exploited to provide a novel methodology in the challenging context
of autoland design. Based on the structured H∞ control framework, this paper focuses on the
demanding flare phase under strong wind conditions and parametric uncertainties. More precisely,
the objective is to control the vertical speed of the aircraft before touchdown while minimizing the
impact of windshear, ground effects, and airspeed variations. The latter is indeed no longer controlled
accurately during flare and strongly affected by wind. In addition, parametric uncertainties are to be
considered when designing the control laws. To this purpose, extending previous results published
by the authors in a conference paper, a specific multi-model strategy taking into account variations of
mass and center-of-gravity location is considered. The methodology is illustrated on a realistic aircraft
benchmark proposed by the authors, which is fully described in this paper and freely available from
the SMAC (Systems Modeling Analysis & Control) toolbox website (http://w3.onera.fr/smac).

Keywords: multi-objective H∞ control; multi-model design; flare control design; aircraft control;
autoland systems

1. Introduction

The steady growth of air traffic in recent years has led to drastic safety standards with the goal of
limiting the number of accidents. Since approach and landing remain the most critical flight phases
(almost 50% of fatal accidents and 75% of non-fatal hull losses between 1997 and 2016 [1]), particular
attention has recently focused on improving autoland systems in adverse conditions. With the help
of CAT III instrument landing systems (ILS), which are now available in a rapidly growing list of
airports, automatic landing control laws have helped to secure these two phases notably in degraded
weather conditions (such as fog and crosswinds). However, despite numerous methodological works
[2–5] over the past two decades, the design, tuning, and validation process of final approach and
flare control systems remains a challenging and time-consuming task. As is observed in [4], where a
complete design framework together with a dedicated software is proposed, the tuning phase requires
rather tricky multi-objective optimization. Note, however, that optimizing the parameters of the flare
control system (such as initial altitude and vertical velocity profile) becomes much easier when the
internal loops are correctly designed and tuned. In our context, a natural choice is to track the vertical
velocity. The main difficulty is to obtain fast and accurate responses despite a significant airspeed
decrease, possible windshear, and ground effects. Recall indeed that the flare segment generally lasts
less than 7 s and that, to ensure good robust performance properties, the desired vertical speed should
be reached at least 1 or 2 s before touchdown. Unlike the approaches detailed in [4,6,7], either using
robust nonlinear dynamic inversion or adaptive control schemes to design the aforementioned inner
loops, linear-oriented techniques are often preferred by a majority of contributions. It can be observed
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indeed that, during approach and landing, airspeed and altitude variations remain rather small so that
the aircraft behavior is almost linear. In the field of flight control design, the most popular methods
are still based today on eigenstructure assignment [8] or LQR (Linear Quadratic Regulator) control
techniques [5]. Both approaches have been successfully used in Airbus and Boeing design offices
and have contributed for nearly 30 years to considerable improvements in the flight control design
process. In the meantime,H∞ control techniques have been progressively developed and evaluated
on various flight control problems—see, for example, [2,3], where the flare phase receives particular
attention. Yet, despite promising results even in flight tests [9], this third approach has not become
as popular as the other two in the industry. Things are, however, likely to change in the near future
with the emergence of new tools based on non-smooth optimization techniques [10,11]. With these
approaches, it becomes possible to impose constraints on the structure and the order of the controller.
Although convexity is unfortunately lost in that case, the aforementioned algorithms converge to
local solutions, which are (in a large majority of standard applications) not so far from the global
(non-structured) optimum. Another interesting feature of these new tools is their capacity to handle
multiple models and multiple separate channels [12]. This last feature offers new ways to defineH∞

design models, which will be used in this paper to solve the flare control problem despite modeling
errors and parametric uncertainties, thus extending the results of [13].

The paper is organized as follows. ILS-based automatic landing issues are briefly reviewed in
Section 2. The flare control problem is then detailed and solved by a multi-model and multi-channelH∞

design approach in Section 3. Specific attention is devoted in this section to robustness. Implementation
issues and nonlinear simulation results are then presented in Section 4. Finally, Section 5 concludes
the paper and details a few perspectives. For the sake of completeness, a thorough description of
the aircraft model used in the nonlinear simulations is presented in Appendix A. This aircraft model
together with a complete description of the design problem is freely available from the SMAC toolbox
(dedicated to Systems Modeling, Analysis and Control) website (http://w3.onera.fr/smac).

2. ILS-Based Automatic Landing

As illustrated in Figure 1, automatic landing in the vertical plane can be divided into two main
phases: the final approach during which the aircraft must follow a descent path (glide) and the flare
segment, which is activated when the landing gear height HLG falls below a threshold value HFLA.
The latter is most often fixed around HFLA ≈ 50 ft but might be slightly updated as a function of
ground speed. Similarly, in the horizontal plane, the aircraft trajectory must coincide with the runway
axis (localizer phase) as long as HLG ≥ HDEC = 30 ft. The alignment phase (or decrab mode) is then
activated in order to minimize the lateral efforts on the landing gears at touchdown.

Figure 1. Basic segments of the approach and landing maneuver in a vertical plane.
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Automatic landing control systems are generally designed on simplified models, using decoupling
hypotheses between the longitudinal and the lateral axes. These assumptions, particularly during
the landing phase, are usually satisfied without any severe restriction for a large majority of civil and
military aircraft.

2.1. Final Approach

During the final approach, as already clarified, the trajectory of the aircraft must be kept as
close as possible to the ILS beam. This is achieved by simultaneously minimizing the norm of the
longitudinal and lateral errors ∆z = f (εgld) and ∆y = g(εloc), where εgld is the angular error between
the nominal glide path and that of the aircraft (see Figure 1), and εloc denotes the lateral angular error in
the horizontal plane. In both cases, f (.) and g(.) are elementary altitude-dependent arctangent-based
nonlinear functions that convert angular errors into metric deviations.

Moreover, during this phase, the calibrated airspeed Vc is to be kept constant, and the aerodynamic
sideslip angle β must remain zero. Based on the decoupling assumption and the above constraints,
most autoland systems are usually based on two inner control loops. In this paper, the following
structures are used for the longitudinal and the lateral axis, respectively:[

δthc

δec

]
= KLON

[∫
(vcc − vc)

∫
(vzc − vz) vc vz q nz

]′
(1)

[
δac

δrc

]
= KLAT

[∫
(nyc − ny)

∫
(φc − φ) ny p r φ

]′
(2)

where vz, nz, ny, p, q, r, φ denote the vertical speed, the longitudinal and lateral load factors, the roll,
the pitch and yaw rates, and the bank angle, respectively. δth, δe, δa, δr are the control inputs (thrust
and elevator/aileron/rudder deflections), while the subscript c stands for a commanded value. The
static gains KLON and KLAT are tuned on linearized models by a standard eigenstructure assigment
method. The eigenvectors are constrained so as to ensure decoupling between vc and vz along the
longitudinal axis and between ny and φ along the lateral axis. Note the use of small letters in Equation
(1) to denote the longitudinal and the vertical speeds, which correspond here to variations about their
nominal or initial values. This notation will further be used in the remaining of the paper.

Thus, the outer control loops are easily tuned. Observing that ∆̇z ≈ vz, a fairly standard
proportional controller kpz can be used to ensure a nominal trajectory in the vertical plane, while the
commanded variations vcc = ∆Vcc on the calibrated airspeed are simply set to 0:

vcc = 0 , vzc = kpz ∆z (3)

Next, using a bank-to-turn strategy, the lateral deviation ∆y is controlled via a
proportional-derivative action on the bank angle. Finally, the sideslip angle, which is not directly
measured, is controlled via the lateral load factor:

nyc = 0 , φc = kpy ∆y + kdy ∆̇y (4)

Remark 1. The derivative term ∆̇y is not directly accessible to the control law and a pseudo-derivation of
∆y would introduce a very high noise level since εloc is highly affected by noise as well. Then, the following
approximation can be used:

∆̇y ≈ χ Vgr (5)

where χ and Vgr denote the route angle and the ground speed, respectively.
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2.2. Flare and Align Phases

The nominal slope during approach is generally fixed to γgld = −3 deg, and the airspeed is a
function of mass and mean wind. For the considered aircraft, whose mass belongs to the interval
[120 t , 180 t], the nominal approach airspeed is around 70 ms−1. The vertical speed Vz then remains
above 3.5 ms−1 during this phase but should fall below 1 ms−1 before touchdown. The flare phase,
which starts at approximately 50 ft above ground and generally lasts less than 7 s, is then essential for
reducing the vertical speed as fast as possible from 3.5 to less than 1 ms−1. To achieve this goal, the
simplest strategy is to update vzc in the longitudinal outer control loop (Equation (3)). Unfortunately,
the inner control loop (Equation (1)) is generally much too slow. Moreover, the airspeed can no longer
be controlled accurately during this phase and the throttle must be reduced to idle. A completely new
design, to be further detailed in Section 3, is then required.

Initiated 30 ft above ground, the objective of the align phase is to make sure that the longitudinal
axis of the plane coincides with that of the runway at touchdown. This is simply realized by relaxing
the constraint on the aerodynamic sideslip angle. Thus, the outer-loop nyc = 0 is simply replaced by

nyc = kalign∆ψ (6)

where ∆ψ denotes the heading angle error to be reduced to 0. The parameter kalign is generally tuned
empirically until the decrab objectives are met.

2.3. Overview of the Autoland Architecture

The above four elements consisting of glide, localizer, flare, and alignment control subsystems are
now assembled as shown in Figure 2 to define the global autoland system.

Figure 2. Autoland architecture.

These four subsystems are coordinated by two decoupled longitudinal and lateral outer-loops,
which, respectively, deliver the desired signals to be followed on each axis ((vcc, vzc) for the longitudinal
axis and (nyc, φc) for the lateral axis). Note that these signals are adapted as a function of the
landing gear height. Along the longitudinal axis, the desired vertical speed profile vzc is modified
when HLG ≤ HFLA to ensure a soft landing while controlling the impact point. Simultaneously, the
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control loop gains and architecture are modified by switching from the glide to the flare control
system. The same architecture is used along the lateral axis. When HLG ≤ HDEC, the desired lateral
acceleration nyc is adapted to minimize the landing gear sideslip angle at touchdown despite crosswind.
Simultaneously, the localizer tracking system is deactivated in favor of the alignment control device.

3. Flare Control Design

3.1. Overall Controller Structure

As briefly discussed above, the objective of the flare phase is to provide enhanced vertical speed
control capacities so that the aircraft hits the runway about 400 m after threshold with a nominal
vertical speed of 2.5 ft/s. During this short maneuver, rarely exceeding 7 s, the engines are set to
the idle position and the airspeed Vc is no longer accurately controlled (provided, of course that any
stall risk is avoided). Along the longitudinal axis, the only remaining active control input is then the
elevator deflection. As shown in Figure 3, the general structure of the flare system consists of two
nested loops. A reference vertical speed profile is generated by the outer-loop. It depends on both
the initialization altitude (generally close to 50 ft) and the ground speed. Despite perturbations and
uncertainties, the generated profile should then be tracked accurately thanks to an appropriate tuning
of the vertical speed inner-loop controller, whose design is described in the following section.

θV  , q , z

V
zc

cV

cV

Vertical

Controller

Speed

AIRCRAFT

idle

Vz REF

Flare control system

δth

δe

Figure 3. Flare control system.

3.2. Vertical Speed Control via Multi-Channel StructuredH∞ Optimization

The central objectives and constraints of the flare phase are fundamentally different from those
encountered during the final approach. From a control viewpoint, the design problem appears to
be simpler since only one variable (the vertical speed) is being tracked and only one control input
(the elevator deflection) is being managed. However, the fluctuations of the (no longer controlled)
longitudinal airspeed Vc and the engine deceleration generate perturbations, which, in addition to
the ground and wind effects, ultimately aggravate the control problem. It appears that modal control
techniques (which have been successfully used to tune the glide controller) are no longer the best
option to address this specific problem. The latter now falls within the scope ofH∞ design methods.

The key issue is then to define an appropriateH∞ design model, which begins with the choice of
relevant linear approximations of the aircraft longitudinal dynamics near the ground. Such models
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are easily obtained with trimming and linearization tools (available with the benchmark package as
mentioned in Section A.6) for various points in the flare two-dimensional trajectory (height above
runway and kinematic slope). After standard matrix manipulations of the state-space data, the
following parameterized set of third-order models is considered: v̇z

q̇
θ̇

 = A(H)

 vz

q
θ

+ B1(H)

 vc

δth
wd


︸ ︷︷ ︸

wpert

+B2(H) δe (7)

where θ is the pitch angle, and H = HLG denotes the height of the landing gear above ground (to
alleviate notation, especially in Figure 4). Note that, in this model, vc and δth are no longer viewed as
a state and a control input signal, respectively, but as external perturbations. However, unlike wind
inputs wd, these are measured and can then be used for feedback. This is illustrated in the design
diagram depicted in Figure 4. Note that the controller to be optimized reduces to a static gain K ∈ R7.
The proposed vertical speed control law structure then reads

δec = K
[

vzr vzc

∫
(vzc − vz) vz q θ vc

]′
(8)

where, as shown in the diagram, the signal vzr coincides with the output of a linear reference model
R(s) to be tracked. The main interest of the proposed structure is to remain close to the one used
during the glide segment (see Equation (1)), which will not only simplify the switching strategy but
also contribute to an improved safety level.

Figure 4. Design model.

Let us now focus on the optimization criteria. Beyond the standard closed-loop stability
requirements, the objective is to determine the best controller K̂ such that

• the norm of the error εvz = vzr − vz is minimized,
• the control activity is such that magnitude and rate saturations are avoided, and
• the perturbations wpert have a negligible effect on the vertical speed variations.
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In theH∞ framework [14], the first two objectives are realized through the norm minimization of
the following transfer function (using the notation of Figure 4):

Tw1→[z11, z12]′(s) = Fl(P1(s, H), K) (9)

where P1(s, H) denotes the parameterized (height-dependent) weighted standard interconnection from
w1 to [z11 z12]

′, and Fl(., .) stands for the lower linear fractional transformation (LFT). The weighting
functions Wε(s) and Wu(s) are chosen following standard rules to be further discussed in Section 3.4.
The third objective is then achieved by theH∞ norm minimization of an independent transfer from w2

(with wpert = Wpert(s)w2) to z2 = Wvz(s)vz:

Tw2→z2(s) = Fl(P2(s, H), K) (10)

where the three-dimensional filter Wpert(s) is used to shape the input perturbations. However, as this
transfer is considered independently of Equation (9), it is not restrictive to consider a static weighting
function Wpert(s) = diag(wpvc , wpδth , wpwind), where each static gain is used to scale the relative weights
of each input perturbation. The three transfers then (Equation (10)) are weighted by a single scalar
dynamic filter Wvz(s). In order to remove any static error (mostly induced by the speed variations) on
vz, which could be critical near ground, a high-gain low-pass filter must be used.

Summarizing the above discussion, the controller optimization may now be stated as the following
multi-model & multi-channel structuredH∞ control design problem:

K̂ = arg min
K

max
H≤HFLA

i=1,2

{∥∥Fl(Pi(s, H), K)
∥∥

∞

}
(11)

3.3. Robustness Against Parametric Uncertainties and Modeling Errors

By simultaneously considering several design models for different values of the height of the
landing gear above ground, interesting robustness properties against ground effects modeling errors
are enforced in the proposed design process. This is, however, not sufficient in practice, where
parametric robustness against mass and center-of-gravity location is also required. To this end, the
above multi-objectiveH∞ design framework is easily generalized to take these additional parametric
uncertainties explicitly into account. Thus, the design problem (11) becomes

K̂ = arg min
K

max
H≤HFLA

i=1,2
j=1...N

{∥∥Fl(Pi,j(s, H), K)
∥∥

∞

}
(12)

where the new integer j ∈ {1, . . . , N} indexes a selection of different models in the (mass × centering)
hypercube. A common choice is to consider the vertices of the hypercube. Such a design may then be
followed by an analysis phase in order to detect any potential worst-case that could appear inside the
hypercube. An iterative design process described in [15] can therefore be considered by incorporating
the worst-case scenarios into the initial selection of design models.

3.4. Weight Selection & Resolution Aspects

The above problems (Equations (11) and (12)) are strongly non-convex and cannot be solved with
the standardH∞ control optimization tools, which provide unstructured full-order controllers and are
unable to optimize separate channels on multiple models. However, using specialized non-smooth
optimization techniques, some efficient algorithms have been proposed in [10] and then improved
when they were implemented in the HINFSTRUCT and SYSTUNE routines of the MATLAB R©Robust Control
Toolbox [16].
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In this application, the HINFSTRUCT routine was used on an augmented design model with a
block-diagonal structure including 16 (2× 4× 2) models associated with

• two values of the landing gear height: HLG ∈ {15 m, 5 m},
• four models (indexed by j) at the vertices of the (mass × centering) hypercube, and
• two separate optimization channels (indexed by i).

Despite potential numerical difficulties, for a given set of weighting functions, a solution is
obtained in less than 2 min on a standard computer thanks to the efficiency of the specialized
non-smooth optimization algorithm implemented in the HINFSTRUCT routine. Such a limited
computational time allows for different trials in the selection of the weighting filters, which are
detailed in the next section.

3.4.1. Reference Model on the Vertical Speed

To ensure good time response while remaining compatible with the aircraft dynamics, the
reference model is chosen to be

R(s) =
ω2

(1 + τs)(s2 + 2ξωs + ω2)
(13)

where τ = 0.4 s, ω = 1 rad/s, and ξ = 0.75.

3.4.2. Performance & Robustness Oriented Weighting Filters

A low-pass filter (enforcing a high performance tracking of slowly varying inputs) is selected
for Wε(s) while a high-pass filter (here approximated by a constant) is used for Wu(s). After a short
trial-and-error process, the weights are tuned as follows:

Wε(s) =
200

1 + 10s
, Wu(s) = 20 (14)

Note that a constant weighting function is sufficient in our context since the optimized controller
is a static gain K. This may not be the case with dynamic controllers, for which roll-off properties
generally have to be enforced via high-pass dynamic weighting functions.

Finally, as is already clarified in Section 3.2, static input weighting functions and a high gain
low-pass output filter are tuned for the second channel, whose objective is to minimize the effects of
perturbations (induced by airspeed, thrust, and wind variations) on the vertical speed:

wpvc = wpδth = wpwind = 1 , Wvz(s) =
100

1 + 20s
(15)

3.4.3. Optimization Results

With the above filters, a worst-case H∞ norm is obtained around 1, and the following gains
are computed:

K = [K1 K2 . . . K7 ] = [−0.4 − 0.07 − 0.3 0.8 15 19 0.3 ] (16)

In the following, two flare control laws (denoted Law I and Law II) are compared. In the first case
(Law I), the airspeed feedback (Vc) is not used (K7 = 0), while in the second case (Law II), the gains are
rigorously implemented as they appear in Equations (8) and (16).

4. Nonlinear Implementation & Simulation Results

The structured flare control law resulting from the above optimization process was implemented
in a nonlinear closed-loop simulation diagram, as shown in Figure 5. The flare system, highlighted
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in green, is activated as soon as the height HLG of the landing gear is lower than a prescribed value
HFLA, which has been classically set here to 50 ft. To illustrate the benefits of using the longitudinal
speed variations during the flare phase, two different controllers are compared with deterministic
windsteps first and then with turbulences and ILS noises. Next, specific simulations also illustrate the
robustness of the proposed controller by comparing the results of different values of the mass and the
center-of-gravity location.

Figure 5. Nonlinear closed-loop simulation model.

4.1. On the Interest of Using the Airspeed During Flare: Comparison of Laws I & II

In a nominal mass and centering configuration (mass = 150 t and xcg = 21%), the last 15 s of
simulation before touchdown (thus focusing on the flare trajectory) are displayed in Figures 6 and 7.
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Figure 6. Flare trajectory with Control Law I (without speed feedback).
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Figure 7. Flare trajectory with Control Law II (with speed feedback).

A comparison of the upper-right plots clearly shows that the second controller (using airspeed)
outperforms the first one. The second controller is thus used for the remainder of the simulations.
In this last case indeed, the vertical speed profile is very close to the reference represented by the
dash-dotted red line.

4.2. Wind & Turbulence Effects

Deterministic windsteps and turbulence effects are then analyzed in the following simulations
displayed in Figures 8–10. In the first two figures, the global trajectory (final approach and flare)
is visualized.
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Figure 8. Final approach and flare trajectory with deterministic windsteps.
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Figure 9. Final approach and flare trajectory with deterministic windsteps and turbulences.

In the first case, a windstep is applied at 30 s (see the upper-right subplot of Figure 8). In the
second case (Figure 9), strong turbulence conditions are added. In both situations, the proposed
guidance and control system behaves well. The impact point is slightly 400 m after the hreshold meets
the requirements.

Moreover, as is displayed in Figure 10, a zoom on the flare trajectory reveals that the vertical
speed remains close to the reference trajectory (upper-right subplot). It is also noted that, during the
flare maneuver, the pitch angle is barely decreasing. This property is of high interest to make the
autoland system compatible with standard pilots habits.
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Figure 10. Zoom on the flare trajectory with deterministic windsteps and turbulences.
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4.3. Illustration of Robustness

To conclude this section, the robustness of the proposed autoland control system is now evaluated
through various simulations corresponding to the four extreme configurations of the mass (varying
between 120 t and 180 t) and the center-of-gravity location (xcg ∈ [15%, 40%]). The results (showing
the two most critical variables in the longitudinal axis, namely, the height of the landing gear and the
vertical speed) are presented in Figure 11. A reasonable dispersion of the impact point (lying in the
interval [400 m , 600 m]) is observed. It can also be pointed out that the vertical speed is well tracked
whatever the flight condition.
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Figure 11. Robustness to mass and center-of-gravity variations.

5. Conclusions

A new multi-modelH∞-based design approach has been proposed and evaluated in this paper to
improve and shorten the tuning process of flare control systems. Exploiting new capabilities ofH∞

optimization tools, the proposed methodology allows to design a fast and accurate vertical controller
despite measured (longitudinal speed variations) and external (wind) perturbations. Thanks to this
new controller, the flare outer-loop design becomes much easier and the safety of the whole maneuver
is improved. Moreover, thanks to a flexible framework enabled by a multi-model strategy, robustness
characteristics against parametric uncertainties and modeling errors are easily taken into account. This
is achieved here to enforce robustness against inaccurate modeling of the ground effects and significant
variations of the mass and the center-of-gravity location.
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Appendix A. The Aircraft Model

Appendix A.1. General Equations

Following a standard approach, the aircraft model is obtained from the dynamics and kinematics
equations. Let us denote Ω = [p q r]′ and V = [Vx Vy Vz]′, the angular and translation velocity vectors
both expressed in a body axis frame with respect to the center of gravity of the aircraft. One obtains

Ω̇ = I−1(M−Ω× I.Ω) (A1)

and
V̇ =

F
m
−Ω×V (A2)

where m denotes the mass of the aircraft and I is the inertia matrix. The two vectors M and F stand for
the moments and forces vectors to be detailed next. However, the differential equations first should
be finalized first. To this end, let us introduce Φ = [φ θ ψ]′ and X = [x y z]′. The first vector contains
the Euler angles (bank, pitch, and heading, respectively). The second one contains the position of
the center of gravity G of the aircraft. They are both expressed in an earth-linked vertical frame. The
x-axis is oriented forward, the y-axis is oriented rightward, and the z axis is oriented downward. The
kinematics and navigation equations yield, respectively,

Φ̇ = T(Φ). Ω (A3)

and
Ẋ = R(Φ). V (A4)

where the transformation and rotation matrices T(Φ) and R(Φ) are defined in Equations (A5) and
(A6) below, respectively:

R(Φ) =

 cos θ cos ψ sin φ sin θ cos ψ− cos φ sin ψ cos φ sin θ cos ψ + sin φ sin ψ

cos θ sin ψ sin φ sin θ sin ψ + cos φ cos ψ cos φ sin θ sin ψ− sin φ cos ψ

− sin θ sin φ cos θ cos φ cos θ

 (A5)

T(Φ) =

 1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ / cos θ cos φ / cos θ

 (A6)

The 12th order aircraft model can thus be summarized as follows:
V̇ =

1
m

F−Ω×V

Ω̇ = I−1(M−Ω× I.Ω)

Ẋ = R(Φ). V
Φ̇ = T(Φ). Ω

(A7)

Appendix A.2. Forces and Moments

The forces applied to the aircraft can be decomposed into three terms (engines thrust, gravity, and
aerodynamic forces):

F = Feng + Fg + Fa (A8)
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To comply with Equation (A1), these must also be expressed in the body-axis frame. Assuming
that the thrust is aligned with the longitudinal axis, one obtains

Feng =

 Fx

0
0

 (A9)

The gravity forces in the body-axis frame are given by

Fg = R(Φ)′

 0
0

mg

 = mg

 − sin θ

cos θ sin φ

cos θ cos φ

 (A10)

Finally, the aerodynamic forces, initially expressed in a stability-axis frame, are obtained as

Fa = qdS

 cos α 0 − sin α

0 1 0
sin α 0 cos α


︸ ︷︷ ︸

Rs→b(α)

 CX
CY
CZ

 (A11)

where α, qd, and S denote the angle-of-attack, the dynamic pressure (see Equation (A15)), and the
reference surface, respectively. The drag (CX = −CD), lateral (CY), and lift (CZ = −CL) coefficients are
detailed in Section A.4.

The moment M about the center of gravity G of the aircraft results from the engines thrust and
aerodynamic actions:

M = Meng + Ma (A12)

Assuming that both engines deliver the same thrust, its location can be reduced to a single point
E whose coordinate along the y-axis is zero. The moment resulting from the thrust is

Meng = GE× Feng =

 0
zengFx

0

 (A13)

Note that the engines are located below the center of gravity, such that zeng > 0 and one observes
a pitching moment. The aerodynamic moment exhibits two terms:

Ma = qdSL

 Cl
Cm

Cn

+ GA× Fa (A14)

The first one contains the main contribution and is directly proportional to the moment coefficients
Cl , Cm, and Cn (about roll, pitch, and yaw axes, respectively) and to the aerodynamic mean chord
L. The second term is linked to the fact that the point of application A of the aerodynamic forces Fa

possibly differs from the center of gravity G (which may change during flight with fuel consumption).

Appendix A.3. Wind and Atmosphere Effects

Aerodynamic moments and forces strongly depend on the airspeed Va = ‖Va‖, but also on the
air density ρ, via the dynamic pressure:

qd =
1
2

ρVa
2 (A15)
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The airspeed is clearly affected by wind. The latter denoted W is generally expressed in an
earth-linked vertical frame. The airspeed vector Va =

[
Vax Vay Vaz

]′ in body-axis coordinates is thus
obtained as

Va = V− R(Φ)′W (A16)

Aerodynamic coefficients also depend on the aerodynamic angle-of-attack α and sideslip angle β

which are respectively obtained as

α = arctan
(

Vaz

Vax

)
, β = arcsin

(
Vay

Va

)
(A17)

Let us now detail the expression of ρ, which depends on altitude and temperature. During
the landing phase, from approximately 1000 ft above the runway until touchdown, the altitude and
temperature variations are negligible. The air density ρ can then be viewed as a fixed parameter
depending on the runway altitude and temperature. Let us denote Hrwy (expressed in m), the runway
altitude, and T0 (expressed in K), the temperature at sea-level. Since the maximum value for Hrwy is
about 3000 m, the temperature at runway level Trwy is well approximated by

Trwy = T0 − 0.0065Hrwy (A18)

and

ρ =
353
Trwy

(
Trwy

T0

)5.25
(A19)

At low altitudes and speeds, the calibrated airspeed Vc describing the dynamic pressure acting on
aircraft surfaces regardless of air density is quite close to the equivalent airspeed and is then obtained
from the true airspeed Va as follows:

Vc =

√
ρ

ρ0
Va (A20)

where ρ0 = 1.2257 kg/m3 stands for the air density at sea-level for a nominal temperature T0 = 288 K.
Finally, the Mach number, which impacts the engine efficiency, is defined as the ratio between airspeed
and sound-speed Vs at the runway level:

Mach =
Va

Vs
(A21)

with
Vs = 20

√
Trwy (A22)

Appendix A.4. Aerodynamic Coefficients

Let us define the ailerons, elevators, and rudders deflections δa, δe, and δr. The lift, lateral and
drag coefficients are, respectively, given by

CL = CL0 + CLα α + CLq

q
Va

+ CLδe
δe + CLH e−λL HLG︸ ︷︷ ︸

ground effect

(A23)

CY = CYβ
β + CYr δr (A24)

CD = CD0 + CDα α + CDα2
α2 (A25)
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Note that the last term in the lift coefficient describes the ground effect. The lift increases as the
aircraft becomes closer to the ground. The variable HLG in this term denotes the height of the main
landing gear above runway. Similarly, the moment coefficients about x, y, and z axes are given by

Cl = Clβ
β +

L
Va

(
Clp p + (Clr0

+ Clrα
α)r
)
+ Clδa

δa + Clδr
δr (A26)

Cm = Cm0 + Cmα α +
L

Va
Cmq q + Cmδe

δe + (CmH0
+ CmHα

α)e−λm HLG︸ ︷︷ ︸
ground effect

(A27)

Cn = (Cnβ0
+ Cnβα

)β +
L

Va

(
Cnr r + (Cnp0

+ Cnpα
α)p
)
+ Cnδa

δa + Cnδr
δr (A28)

Here again, the last term on the pitching moment in Equation (A27) corresponds to the ground
effect (nose down).

Appendix A.5. Engines and Actuators

During the final approach and landing phases, the aircraft is controlled by means of

• twin engines that both provide the same thrust in the fuselage direction (x-axis),
• a pair of ailerons whose asymmetric deflection generates moments about the x-axis (roll),
• an elevator whose deflection controls the y-axis (pitch), and
• a rudder whose deflection controls the z-axis (yaw).

The dynamics of the engines and actuators are approximated by magnitude and rate limited
first-order filters in the following generic format:

δ̇u = satRu

(
satMu(δuc)− δu

τu

)
(A29)

where δuc is the commanded value of δu, and τu is the time constant. All numerical values are
summarized in Table A1.

Table A1. Engines & actuators characteristics.

Control Input (δu) Time Constant (τu) Lower Bound (Mu
−) Upper Bound (Mu

+) Rate Limit (Ru)

Engines (δth) 2 s 0.95 1.6 0.1
Ailerons (δa) 0.06 s −55 deg 55 deg 60 deg/s
Elevators (δe) 0.07 s −25 deg 25 deg 20 deg/s
Rudder (δr) 0.2 s −30 deg 30 deg 30 deg/s

Remark A1. The effective thrust Fx at a given altitude, which appears in Equation (A9), is approximated by an
affine function of the exhaust pressure ratio (EPR also denoted by the symbol δth):

Fx = Ax(T/T0)δth + Bx(T/T0) (A30)

whose coefficients depend on the temperature ratio T/T0. In this application, since the temperature ratio during
landing exhibits small variations, mean constant values can be considered. The following expression will then
be used:

Fx = 876 δth − 852 (kN) (A31)

where δth ∈ [0.95 , 1.6].



Aerospace 2018, 5, 18 17 of 18

Remark A2. Along the longitudinal axis, the aircraft is trimmed by the horizontal stabilizers whose dynamics
are much slower than those of the elevators. It is assumed that the stabilizers are not used during the final
approach, so they are not represented here.

Appendix A.6. SIMULINK R© Implementation

The above equations are implemented in an open-access SIMULINK R©diagram ACS.slx (Figure A1)
whose main block “FALSIM” (for Final Approach & Landing SImulation Model) exhibits 9 inputs
(4 control inputs, 3 wind inputs, and 2 ILS noises inputs) and 40 outputs. The first 16 ones correspond
to the state vector (including actuators dynamics). The next 5 correspond to simulation oriented signals.
These are not available for feedback. Finally, the last 19 outputs are measured signals. Note that the
last two (∆y and ∆z) correspond, respectively, to the lateral and vertical deviations from the nominal
trajectory. These are delivered by the ILS device.

For control and simulation purposes, the model is delivered with a MATLAB R©routine ACStrim.m to
enable fast trimming and linearization of the nonlinear model. Various linear representations can thus
be easily obtained according to the selected approach speed, initial slope, runway altitude, temperature,
mass, and center-of-gravity location.

Figure A1. A general SIMULINK R©view of the aircraft simulation model.

This model and the associated tools can be downloaded from the benchmark section of the SMAC
project (http://w3.onera.fr/smac), where a technical note co-signed by Onera and Airbus is also
available [17]. The latter includes a brief description of the aircraft model but is mainly focused on
autoland design guidelines and requirements. It was written to offer control researchers a realistic and
challenging autoland design problem and to promote competition in this field. It is quite interesting to
note that a number of high-quality contributions have already been reported [18,19].
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