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Abstract: The paper investigates the theory of operation of a passive millimeter-wave seeker sensor
using a fast electronic sequential-lobing technique and the experimental validation obtained through
laboratory trials. The paper analyzes in detail the theoretical performance of a difference channel
sensor and a pseudo-monopulse sensor deriving agile formulas for the estimation of target angular
tracking accuracy and the subsequent experimental validation.

Keywords: millimeter-wave; radiometer; sequential lobing

1. Introduction

Passive millimetre-wave sensors are widely used nowadays for different purposes. Principal
civil applications of such sensors concern surveillance [1,2] and navigation aid in adverse
weather conditions [3], as well as concealed weapon and explosive detection in airports [4,5].
Military applications span from surveillance through radiometric imaging to precision targeting [6].
While there is a great deal of literature on radars, very little (as far as the authors are concerned) seems
to be available for this class of sensors that, while having similarities to classic radars, have significant
differences in terms of both operating principles and performances. The purpose of this paper is to
examine in detail the target tracking accuracy of a four-beam millimetre-wave seeker sensor operating
in the W-band and its validation through experimental laboratory trials.

2. General Theory

Let a two-channel passive millimetre-wave radiometric seeker sensor be located at the origin of
a Cartesian reference system such that the sensor’s antenna boresight is coincident with the Z-axis
and oriented as the the ordinary

−→
k versor. The antenna can be assumed to be a Cassegrain reflector

with the feed organized as a “diamond” of four independent horns named “Up”, “Down”, “Left”,
and “Right” (“U/D” and “L/R” couples). Each horn generates a pencil beam squinted by a fixed angle
with respect to the antenna boresight. Radiometric receivers are connected to U/D and L/R horns
through dedicated millimetre-wave SPDTs single-pole double throws (SPDTs) driven by a control
signal at audio frequency (several kilohertz). This allows for the reception of the radiation coming to
the four beams: the U/D couple with axes lying in the elevation plane and L/R couple lying in the
azimuthal plane, as shown in Figure 1. Each couple operates independently from the other.

The squint angle between U/D and L/R beams is such that 3 dB beam contours can be assumed
to be as in Figure 2.
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Figure 1. Diamond-shaped Cassegrain feed.

Figure 2. Radiometric seeker sensor 3 dB contours.

A simplified system-level description of the receiver is depicted in Figure 3, where a parallel
two-channel total power radiometric receiver is reported. Each couple of antenna feeds is connected to
a dedicated low-loss millimeter-wave SPDT, whose output port is connected to a low-noise amplifier,
a band-pass filter and a detector. The output signal from the detector is injected into a synchronous
demodulator driven by the same control signal used to control the SPDTs. The output signal is
integrated and the corresponding signal processed in order to extract the information.

Figure 3. Simplified system-level schematic of a fast sequential-lobing radiometric seeker sensor.
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As for a first approximation, it is possible to consider, for each beam, Gaussian power patterns as
follows [7]:

f (ϑ, φ) = Goe−bϑ2
(1)

where b is a constant depending only on the angle ϑ between the ordinary
−→
k versor and the generic

positional versor −→p and is not dependent on φ. For such patterns, the constant b is as follows [7]:

b =
4 log(2)

ϑ2
3dB

(2)

where ϑ3dB is the full 3 dB angle of the beam in radians. Now, we consider a Gaussian beam whose
principal axis is represented by the versor −→axo = [sin(ϑ) cos(φ), sin(ϑ) sin(φ), cos(ϑ)]. The angle ψ

between a generic positional versor −→p and the axial versor −→axo is

ψ = cos−1 [−→axo · −→p
]

(3)

In fact, the angle ϑ inside Equation (1) comes from

ψ = cos−1([sin(ϑ) cos(φ), sin(ϑ) sin(φ), cos(ϑ)] · [0, 0, 1]) = ϑ (4)

More generally, if
−→p = [sin(ϑo) cos(φo), sin(ϑo) sin(φo), cos(ϑo)] (5)

then
ψ = cos−1 [[sin(ϑ) cos(φ), sin(ϑ) sin(φ), cos(ϑ)] · −→p

]
(6)

or
ψ = cos−1 [sin(ϑ) cos(φ) sin(ϑo) cos(φo) + sin(ϑ) sin(φ) sin(ϑo) sin(φo) + cos(ϑ) cos(ϑo)] (7)

Now, if the position versor −→p lies on the YZ plane with the application point at the origin and
oriented as φo = 0, it follows that

ψ0(ϑ, φ, ϑo) = cos−1 [sin(ϑ) cos(φ) sin(ϑo) + cos(ϑ) cos(ϑo)] (8)

and we introduce the angle
βo = ψ0(ϑ, φ, ϑo)2 (9)

such that
fdx(ϑ, φ) = Goe−b·β0 (10)

The same can be done for the antenna power pattern having the axis oriented such that φo = π:

ψπ(ϑ, φ, ϑo) = cos−1 [− sin(ϑ) cos(φ) sin(ϑo) + cos(ϑ) cos(ϑo)] (11)

and with the angle
βπ = ψπ(ϑ, φ, ϑo)2 (12)

one has
fsx(ϑ, φ) = Goe−b·βπ (13)

In Figure 4 we have reported, for clarity, four squinted Gaussian beams with principal axes on the
XZ and YZ planes.
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Figure 4. Squinted Gaussian power patterns.

The generic power pattern is a pencil-beam by hypothesis and the angle β is always small;
therefore one has ψ(ϑ, φ, ϑo) ∼= 1. This condition allows us to find an approximation both for βo and
βπ using the fact that [

cos−1(x)
]2 ∼= 2− 2x (14)

and, given Equation (14), from Equation (10), it follows that

fdx(ϑ, φ) = Goe−b[2−2(cos(ϑ) cos(ϑo)+cos(φ) sin(ϑ) sin(ϑo)).] (15)

The squint angle, ϑo, of the beams with respect to the Z-axis being very small (fractions of a
degree), it is possible to approximate Equation (15) using a Maclaurin series of the second order around
zero in ϑo. This yields

fdx(ϑ, φ, ϑ0) = fdx(ϑ, φ, 0) + f ′dx(ϑ, φ, 0)ϑ0 + 1
2 f ′′dx(ϑ, φ, 0)ϑ2

0 + . . .
= Goe−2b+2b cos(ϑ) [1 + 2b cos(φ) sin(ϑ)ϑo + b(− cos(ϑ) + 2b cos(φ)2 sin(ϑ)2)ϑ2

o + . . .
] (16)

where we have now made explicit the dependence on ϑ0, on which we make the series development.
The same can be done for fsx(ϑ, φ). An antenna pattern requires the following [8]:

∫ 2π

0

∫ π

0
f (ϑ, φ) sin(ϑ)dϑdφ = 4π (17)

Solving Equation (17) using Equation (16) gives

Goπ(1− e−4b)
b

= 4π (18)

which, with the constant b large enough [1], gives

Go ∼= 4b (19)

3. Radiometric Delta Signals Calculation

A basic geometry of the problem is depicted in Figure 5, where only the L/R beams are considered,
for simplicity. The presence of a target with a circular transverse area AT on the Z-axis at a distance R
from the origin (and the antenna system) can be assumed. Such a target is seen under an angle of 2∆ϑT
radians by an observer at the origin.
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Figure 5. Target and left/right (L/R) beams’ geometry.

Each beam covers a different portion of the space and partially dwells the target, as this changes
its angular coordinates. With reference to L/R beams (azimuthal plane), the corresponding antenna
noise temperatures [9] can be put in the following form:

TA f 1 = 1
4π

2π∫
0

∆ϑT∫
0

(Ttgt − Tbtgt) · fdx(ϑ, φ) sin(ϑ)dϑdφ + 1
4π

2π∫
0

π∫
0

T(ϑ, φ) · fdx(ϑ, φ) sin(ϑ)dϑdφ (20)

TA f 2 = 1
4π

2π∫
0

∆ϑT∫
0

(Ttgt − Tbtgt) · fsx(ϑ, φ) sin(ϑ)dϑdφ + 1
4π

2π∫
0

π∫
0

T(ϑ, φ) · fsx(ϑ, φ) sin(ϑ)dϑdφ (21)

TA f 1 (as well TA f 2) is composed by the sum of two integrals performed over different angular
domains. The first integral expressions are performed over the target angular coordinates such
that Ttgt and Tbtgt are the radiometric temperatures of the target and the background hidden by the
target respectively, Tbtgt ≡ T(ϑ, φ) being over the target solid angle. This allows us to define a target
radiometric contrast. Thus, the only contributions come from the range [0, ∆ϑT]. The other integrals are
performed over the whole solid angle T(ϑ, φ), as they give the radiometric temperature of all over the
scenario but the target. This permits us to define a radiometric target contrast and allows the contribution
from the background hidden by the target to cancel, being accounted for with a minus sign in the
first integral and accounted for with a plus sign in the second. As the angles between the axes of the
antenna beams are small and each beam is highly directive, it can be assumed (as an approximation)
that the radiometric temperature of the scenario, Ts, is the same for either beam. Thus

TA f 1 = 1
4π

2π∫
0

∆ϑT∫
0

(Ttgt − Tbtgt) · fdx(ϑ, φ) sin(ϑ)dϑdφ + Ts = 1
4π

2π∫
0

∆ϑT∫
0

∆TT · fdx(ϑ, φ) sin(ϑ)dϑdφ + Ts (22)

TA f 2 = 1
4π

2π∫
0

∆ϑT∫
0

(Ttgt − Tbtgt) · fsx(ϑ, φ) sin(ϑ)dϑdφ + Ts = 1
4π

2π∫
0

∆ϑT∫
0

∆TT · fsx(ϑ, φ) sin(ϑ)dϑdφ + Ts (23)

where ∆TT = Ttgt − Tbtgt is the radiometric contrast of the target. The difference between the antenna
noise temperatures ∆TA = TA f 1 − TA f 2 is the information for which the contribution due to the scenario
is, ideally, minimized. If the whole antenna is fixed and the angular coordinates of the target change,
this produces effects onto the received signal. A change in the angular position of the target by a
generic (clockwise or counterclockwise) small angle −β in the XZ plane corresponds to a rotation of
the whole antenna by an angle +β around the Y-axis with the target fixed. In fact, after some algebraic
simplifications, we obtain

∆TA(ϑ, φ, β) ∼= −4bGoϑoe2b(−1+cos(ϑ)) [−β cos(ϑ) + cos(φ) sin(ϑ)(−1 + 2b · β cos(φ) sin(ϑ))] (24)
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and the difference between the antenna noise temperatures is

∆TA(β) =
∆TT
4π

2π∫
0

∆ϑT∫
0

∆TA(ϑ, φ, β) sin(ϑ)dϑdφ (25)

Thus
∆TA(β) = Go · b · ϑo · β ·∆TTe2b(−1+cos(∆ϑT)) sin(∆ϑT)2 (26)

Equation (26) indicates that for small values of β (target close to the antenna boresight: tracking
condition), the radiometric difference is a linear function of the angular displacement of the target over
the plane of the beam axes. The maximum sensitivity is reached when the squint angle ϑo is such that

∂

∂ϑo
(

∂

∂ϑ
[ fdx(ϑ, φ)− fsx(ϑ, φ)]|ϑ=0) = 0 (27)

which corresponds to

ϑo ∼=
ϑ3dB√
8 log 2

∼= 0.42 · ϑ3dB (28)

Thus it is possible to consider a squint angle of

ϑo =
ϑ3dB

2
(29)

without introducing significant losses. As Equation (26) comes from approximations of the power
patterns, the calculation of the radiometric delta has also been carried out numerically. The error
introduced by the approximated method has been estimated by deriving a corrective factor, α, that
is, a function of the ratio between the apparent angle of the target ∆ϑT and the full 3 dB angle of the
beams ϑ3dB.

The corrective factor α is reported in Figure 6 and is very well approximated by

α ∼=
1
2

e
0.77

∆ϑ2
T

ϑ2
3dB (30)

Figure 6. Corrective factor to be applied to the approximated formula.

Then, the correct radiometric delta is

∆TA(β) =
1
2

bGoβϑo∆TTe
0.77

∆ϑ2
T

ϑ2
3dB

+2b[−1+cos(∆ϑT)]
sin2(∆ϑT) (31)
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If β = x · ϑ3dB, after some algebraic manipulations and writing the target angular position in
fractions of the 3 dB angle of the beams, one has

∆TA(x) = ∆TT [4 log(2)]2 (
∆ϑ2

T
ϑ2

3dB
)e
−2

∆ϑ2
T

ϑ2
3dB · x with − 1

2
≤ x ≤ 1

2
(32)

A similar expression holds for the radiometric over the elevation plane. In Figure 7 are reported,
for comparison, the radiometric deltas obtained numerically and with the approximated method,
letting ∆TT = 1 (K) for simplicity.

(a) (b)

(c) (d)

Figure 7. Radiometric deltas extracted numerically (blue) and using the closed approximated formula
(yellow) for different values of parameter x.

4. Angular Accuracy Estimation

The L/R channel is connected to a radiometer that measures the antenna noise temperatures:

TA∗f 1 = TA f 1 ± σo [K]
TA∗f 2 = TA f 2 ± σo

(33)

with uncertainty [10] σo =
√

2T0(F−1)√
BRFτ

, To being the standard noise temperature, F being the receiver
noise figure, and BRF and τ being the receiver bandwidth and integration time, respectively. The
uncertainty σo is equal to the root-mean-square (RMS) value of the radiometric sensitivity of the
receiver operating in time-sharing. As the useful signal is the difference between the noise temperatures
reported in Equation (26), the uncertitude of the difference is

∆T∗A = ∆TA± σ∆ (34)

with
σ∆ =

√
2σo =

2T0(F− 1)√
BRFτ

(35)
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When

M = ∆TT(
∆ϑ2

T
ϑ2

3dB
)e
−2

∆ϑ2
T

ϑ2
3dB (36)

one obtains
∆T∗A(β) = M [4 log(2)]2

β

ϑ3dB
± σ∆ (37)

Therefore, the estimated angle is

β∗ =
ϑ3dB

[4 log(2)]2 M
∆T∗A(β)± ϑ3dB

[4 log(2)]2 M
σ∆ (38)

and defining the radiometric SNR (Signal to Noise Ratio) as

SNR =
∆TT( ∆ϑ2

T
ϑ2

3dB
)e
−2

∆ϑ2
T

ϑ2
3dB

σ∆
(39)

the angular error is given by

σβ =
1

[4 log(2)]2
ϑ3dB
SNR

∼=
ϑ3dB
7.68

1
SNR

(40)

where
∆ϑ2

T
∼=

AT

πR2 (41)

We have considered the atmospheric attenuation to be negligible, and thus, Equation (39) can be
rewritten as

SNR(R) = ∆TT
AT

σ∆πR2ϑ2
3dB

e
(− 2AT

πR2ϑ2
3dB

)
. (42)

The following being the error on the β angle:

σβ =
ϑ3dB
7.68

πR2ϑ2
3dBe

2AT
πR2ϑ2

3dB

∆TT AT
(43)

the radiometric delta signal (Equation (32)) can be normalized with respect to the “sum” signal in order
to minimize the contribution due to the variation of the target radiometric contrast on the angular
estimation, as described later.

5. Estimated Results

For a sensor operating at 94 GHz using state-of-the-art millimeter-wave components, it is
reasonable to assume that [11] ϑ3dB = 1 (◦) and σ∆

∼= 150 (mK). Moreover, it is reasonable to consider a
target with AT = 30 (m2), with a radiometric contrast ∆TT ∼= 100 (K). A SNR of ≥8 (dB) (Pd = 0.9 and
P f a = 10−6 respectively the detection probability and false alarm probability) ensures an angular error of
∼0.45 mrad (∼ 2/100 of degree) at a distance R ∼ 2 Km, as reported in Figures 8 and 9.
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Figure 8. SNR as a function of the distance from the target.

Figure 9. Angular error as a function of the distance from the target.

The target is seen by the sensor as a point, and this condition is implicit in Equation (32). It can

be demonstrated that the SNR has a maximum when ∆ϑ2
T

ϑ2
3dB

= 1
2 . It is easily perceivable that, when

the target distance is small enough to make TA f 1
∼= TA f 2, the SNR falls rapidly to zero while the

angular error diverges. This condition, however, corresponds to the final impact instants considering
the high negative rate of variation of R. Looking at the behaviour of the normalized SNR expression of
Equation (39) as a function of the ratio γ = ∆ϑT

ϑ3dB
, as depicted in Figure 10, it is possible to find out a

range of γ values for which, for the same target radiometric contrast, the SNR is high enough to allow
target tracking with an acceptable angular error. A SNR of ≥8 (dB) requires√

−W(−2 · 10
4
5 σ

∆TT
)

2
≤ γ ≤

√
−W(−1,−2 · 10

4
5 σ

∆TT
)

2
(44)
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where W(x) is the Lambert function, σ is the radiometric sensitivity and ∆TT is the target radiometric
contrast. With the parameters equal to those used previously, it follows that γ ∼= 0.098 and γ ∼= 1.69,
which corresponds to

105 ≤ R ≤ 1800 (m) (45)

Figure 10. Behaviour of the normalized SNR as a function of γ (Equation (39)).

6. Extension to a Pseudo-Monopulse Architecture

The exclusive use of the “difference” signal makes the sensor dependent on the variations of the
radiometric target contrast. For this purpose, it is possible to think to a pseudo-monopulse architecture,
for which the difference signal is normalized to the sum signal. The corresponding analysis requires
better approximations of the antenna noise temperatures. The use of normalized forms with respect the
3 dB angle of ∆ϑT , ϑo and ϑt allows for the identification of suitable approximate expressions for L/R
beams’ antenna noise temperatures through numerical integration and parameter fitting. For target
angular positions within half of ϑ3dB (in module), the noise temperatures have Gaussian shapes with
centers coincident and with ϑo but with standard deviations dependent on the ratio ϑt

ϑ3dB
. Suitable

expressions for the antenna noise temperatures of L/R beams are the following:

TA ≈ ∆TT(1− e
−4 log(2)

∆ϑ2
T

ϑ2
3dB )e

−2 log(4)e
− log(4)

∆ϑ2
T

ϑ2
3dB ( ϑt

ϑ3dB
− ϑo

ϑ3dB
)2

+ Ts (46)

TB ≈ ∆TT(1− e
−4 log(2)

∆ϑ2
T

ϑ2
3dB )e

−2 log(4)e
− log(4)

∆ϑ2
T

ϑ2
3dB ( ϑt

ϑ3dB
+ ϑo

ϑ3dB
)2

+ Ts (47)

If the contribution due to Ts is small enough, it is possible to evaluate the ratio

∆

Σ
=

TA − TB
TA + TB

(48)

If the target angular coordinate is close to the antenna axis, it is possible to write

∆

Σ
∼= 2

2
−2

∆ϑ2
T

ϑ2
3dB

ϑ3dB
log(4)ϑt (49)
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The ratio is independent from the radiometric contrast of the target ∆TT . The sensor works by
determining separately and independently the random variables

X1 = T∗A − T∗B (50)

and
Y1 = T∗A + T∗B (51)

The estimation of the angular coordinate of the target is done using a new random variable:

Z =
X1

Y1

For the physics of the device, the following can be demonstrated [10]:

1. X1 is a Gaussian random variable with expected value µ1 = TA − TB and variance σ2 = σ2
A + σ2

B.
2. Y1 is a Gaussian random variable with expected value µ2 = TA + TB and variance σ2 = σ2

A + σ2
B.

Thus, T∗A and T∗B can be assumed to be uncorrelated and with the same variance σ2. The standard
deviation of Z is as follows [12]:

σZ ∼=
∣∣∣∣µ1

µ2

∣∣∣∣ σ

√
(

1
µ2

1
+

1
µ2

2
) (52)

However µ1 � µ2, and thus

σZ ∼=
∣∣∣∣ 1
µ2

∣∣∣∣ σ (53)

Evaluating the sum signal around the origin:

σZ ∼=
∣∣∣∣ 1
µ2

∣∣∣∣ σ ∼=
2
−1+2

∆ϑ2
T

ϑ2
3dB

∆TT(1− e
−4 log(2)

∆ϑ2
T

ϑ2
3dB )

σ (54)

and defining the sum channel SNR as

SNRΣ =
1
σ

∆TT(1− e
−4 log(2)

∆ϑ2
T

ϑ2
3dB )

2
−1+2

∆ϑ2
T

ϑ2
3dB

(55)

then
σZ ∼=

1
SNRΣ

(56)

The angular position of the target is tied with the ratio ∆
Σ :

ϑt =
ϑ3dB

2
1−2

∆ϑ2
T

ϑ2
3dB log(4)

∆

Σ
(57)

Thus, the RMS angular error is

σϑt =
1

2 log(4)
1

SNRΣ
e

2
∆ϑ2

T
ϑ2

3dB ϑ3dB (58)
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Defining the slope of the difference channel normalized to the maximum value as

Km = 2
−2

∆ϑ2
T

ϑ2
3dB (59)

then the angular error is

σϑt
∼=

ϑ3dB
2.77Km

1
SNRΣ

(60)

The parameter

α =
∆ϑt

ϑ3dB
(61)

allows us to easily represent the SNR ratios on the sum and difference channels, as well as the angular
error. Assuming, as done previously, a radiometric contrast of 100 (K) and a sensor sensitivity of
150 (mK), the theoretical angular error is reported in Figure 11.

Figure 11. Angular error as a function of the ratio α.

7. Experimental Results

To validate the theory, a near-zero emissivity chamber was dedicated to the test of a custom
W-band sensor. The laboratory walls were completely covered by a 30 skin-depths-thick aluminium
sheet in order to obtain a “cold” room or a low emissivity environment, as visible in Figure 12.

Figure 12. “Cold” laboratory chamber.

In Figure 13, a simplified layout of the area with crooked walls in order to minimize successive
reflections inside the volume is reported. The sensor is located on the left, and two passive targets
(Eccosorb panels), “Target 1” and “Target 2”, with dimensions of 30× 30 cm and 15× 15 cm respectively
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are on the right. The space between targets and the “Target 2” dimensions were selected in order to
operate at the Rayleigh limit at a distance of ≈4 (m) from the seeker’s antenna.

Figure 13. Laboratory layout.

Experimental trials were conducted using a custom W-band sensor mounted over a Pan-Tilt
Unit-D100-EX screwed over a tripod, as depicted in Figure 14, in order to control the orientation of
the sensor in near real-time with high accuracy, instead of moving the targets. Laboratory tests were
conducted only on the horizontal plane to minimize time and costs, while mechanical alignments and
range measurements were carried out using a laser range finder.

Figure 14. W-band sensor mounted on pan and tilt unit.

A custom synchronous demodulator was designed (Figure 15) and realized (Figure 16) in order to
integrate and conveniently amplify the signal acquired by a National Instruments DAQ 6356.
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Figure 15. Synchronous demodulator scheme.

Figure 16. Actual synchronous demodulator.

A preliminary test was performed in order to estimate the available SNR inside the cold room
and to obtain a rough target position angular accuracy. For this purpose, a human target with a known
emissivity ε ≈ of 0.8 was located between “Target 1” and “Target 2”, temporarily covered by a metal
sheet, and the system was programmed to explore a 90◦ wide angular sector 25 times. The target was
always detected as reported in Figure 17, allowing a rough position estimation of θ ≈ −4.2± 0.2◦ with
a SNR of about 10 dB, as reported in Figure 18.
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Figure 17. Human target radiometric pulses during repeated search phase (superimposed traces).

Figure 18. Estimated available SNR.

Then the human target was removed and the passive targets uncovered. Thus, a 90◦ wide angular
sector was scanned with an angular speed of 45◦/s in order to search and identify the targets reported
in Figure 19, obtaining two distinct radiometric pulses in considerable agreement with an integral
model developed in Matlab and reported in Figure 20 in a normalized form.
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Figure 19. Passive “Target 1” and “Target 2”.

Figure 20. Radiometric pulses after search of two passive targets.

Once the potential targets were acquired, the computer selected the largest (“Target 1” hit by the
laser spot in Figure 19), commanding the positioner to move to the corresponding position. A small
angular sector scan was performed around this position, in order to extract the “S” function reported in
Figure 21. The authors did their best to minimize systematic errors using an antenna system that was
characterized in an anechoic chamber in order to be confident that the principal main requirements
were respected by the manufacturer. Moreover, the differential nature of the synchronous demodulator
allowed us to minimize residual DC offset, while the use of a laser rangefinder allowed us to minimize
range calculation errors or residual angular displacement errors. The main error source was indeed the
positioner, as the device was used either to command or also to read the true sensor angular position
using an internal resolver. Considering, as stated previously, the only main random sources of errors
being independent and Gaussian in nature, the true angular accuracy was estimated as a RMS value.
The difference between the estimated theoretical angular accuracy σθ ≈ 0.015 (◦) and the experimental,
σθ ≈ 0.025 (◦), appeared to be very good.
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Figure 21. “S” function derived experimentally.

8. Conclusions

Closed formulas for evaluating the angular tracking error of a four-quadrant, double-channel
millimetre-wave radiometric seeker sensor using a fast electronic sequential-lobing technique
have been derived. Suitable closed formulas have been derived for a difference channel architecture
and for a more accurate pseudo-monopulse architecture. The theory has been validated through
experimental trials performed in a dedicated low-emissivity room using a custom W-band sensor.
It has been demonstrated that a passive millimeter-wave sensor can provide guidance information
(like a passive infrared sensor), and the results indicate that the angular error is proportional to SNR−1

and not to SNR−
1
2 , as for classical radars [13–15]. Moreover, the pseudo-monopulse architecture needs

only two independent receivers, but these are not required to be matched. During the homing phase,
when the distance to the target is relatively small, the technique can provide very accurate target
tracking data.
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