
aerospace

Article

Effects of Varied Shear Correction on the Thermal
Vibration of Functionally-Graded Material Shells in
an Unsteady Supersonic Flow

Chih Chiang Hong

Department of Mechanical Engineering, Hsiuping University of Science and Technology, Taichung 412-80,
Taiwan; cchong@mail.hust.edu.tw; Tel.: +886-919-037-599

Academic Editor: Rafic Ajaj
Received: 9 January 2017; Accepted: 21 February 2017; Published: 1 March 2017

Abstract: A model is presented for functionally-graded material (FGM), thick, circular cylindrical
shells under an unsteady supersonic flow, following first-order shear deformation theory (FSDT) with
varied shear correction coefficients. Some interesting vibration results of the dynamics are calculated
by using the generalized differential quadrature (GDQ) method. The varied shear correction
coefficients are usually functions of FGM total thickness, power law index, and environment
temperature. Two parametric effects of the environmental temperature and FGM power law index
on the thermal stress and center deflection are also presented. The novelty of the paper is that the
maximum flutter value of the center deflection amplitude can be predicted and occurs at a high
frequency of applied heat flux for a supersonic air flow.
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1. Introduction

There are some aero-elastic flutter and vibration research articles of beams, shells, and plates.
Samadpour et al. [1] investigated the supersonic flutter of composite beams with shape memory
alloys (SMA) under thermal and aerodynamic loads, the aero-thermal flutter characteristics can be
enhanced by embedding with SMA fibers in the laminated beam. Liu et al. [2] investigated the effects
of supersonic aerodynamic and thermal loads on functionally-graded material (FGM) cylindrical
shells, the results of nonlinear dynamics responses are obtained. Li and Narita [3] presented the
optimal design in flutter analysis of supersonic flow over doubly-curved shallow laminated shells
by using MATLAB code, the optimal fiber orientation angles are obtained. Alijani and Amabili [4]
presented the reviewing 2003–2013 papers of vibration shells included the effects of fluid–structure
interactions and thermal loads, non-linear vibrations of shells are addressed. Amabili et al. [5] used
Donnell’s non-linear geometric shallow shell theory to investigate the dynamics and stability for a very
thin, circular cylindrical shell within internal water flow, a complex dynamical behavior is obtained.
Kiiko [6] studied the vibration of a shallow cylindrical shell in a supersonic gas flow, the well-known
formula of “piston” theory is used as a compressive force. There are some recently published research
of the subject of the effects of shear deformation theory on the displacements of FGM plates and shells.
Yin et al. [7] used higher-order shear deformation theory (HSDT) to investigate the buckling loads
and natural eigenvalues of FGM plates, for considering shear deformation effect without requiring
any shear correction factors. Bui et al. [8] used the third-order shear deformation theory (TSDT)
to investigate the static bending deflections and natural frequencies of FGM plates, also without
requiring any shear correction factors. Sun et al. [9] used Donnell’s shell theory in the deflection and
the lower-order Hamiltonian canonical equations in the fundamental buckling equations to investigate
the critical loads and buckling modes of the FGM shells under thermal environment, the mixtures
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of Si3N4/SUS304 and Al2O3/SUS304 materials are studied. Yin et al. [10] used first-order shear
deformation theory (FSDT) to investigate the static bending, buckling, and the free vibration of FGM
plates, numerical results with the effects of boundary conditions, gradient index, and geometric shape
are presented.

There are some works based on Carrera unified formulation (CUF) for the technical models and
analyses in the non-linear displacement fields. Ramos et al. [11] used a unified new trigonometric
displacement field expansion under CUF to investigate the static problem of laminated plates under
thermal loads, the stress results including the effects of shear deformation are obtained and compared.
Mantari et al. [12] used new non-polynomial displacement fields via CUF to investigate static problem
of FGM plates, the static bending results with the effects of trigonometric, exponential and hyperbolic
displacement fields are presented. There are some technical contents of generalized differential
quadrature (GDQ) computation in the composited shells and plates. Hong [13] used the GDQ method
to compute the time responses of displacements and stresses for composite magnetostrictive shells
under rapid heating without considering the shear deformation effects. Hong [14] also used the GDQ
method to investigate the time responses of displacements and stresses for magnetostrictive FGM
plates under rapid heating with considering the FSDT effects. Ferreira et al. [15] used the Carrera
unified formulation and the GDQ technique to compute the better solutions of static deformations
and free vibration for thick isotropic and cross-ply laminated plates. Hong [16] presented the thermal
vibrations of Terfenol-D FGM plates including the effects of FSDT model and varied values of modified
shear correction factor. Hong [17] studied the thermal vibration of Terfenol-D FGM circular cylindrical
shells under rapid heating without considering the effects of shear deformations. The non-linear
coefficient term of the displacement field, e.g., TSDT, can be used to derive the equations of motion
for thermal vibration of FGM when using a higher-order shell theory. Basically, it is interesting in the
linear FSDT with the varied value effects of shear correction coefficients on air flow over the outer
surface of FGM thick circular cylindrical shells under four simply supported edges, that the thermal
stresses and center deflection of GDQ computational results for supersonic air flow are obtained.
Two parametric effects of environmental temperature and FGM power law index on the thermal stress
and center deflection of supersonic air flow over the outer surface of FGM thick circular cylindrical
shells are also obtained. The advantages and disadvantages of the proposed GDQ approach compared
with other existing methods are highlighted, the use of varied values for shear correction coefficients
seem better than a constant shear correction value; also, the GDQ computation time is less, and some
physical meanings of aero-elastic flutter and vibration research needed to be studied in the future.

The morphing aircraft (adaptive structures and smart materials) theme is one of recent advances in
smart structures and multifunctional materials that has facilitated many novel aerospace technologies.
Ajaj et al. [18] presented a new design philosophy for morphing aircraft technology to classify the
functionality, operation, and structural layout. Additionally, the performance comparisons between
morphing aircraft and conventional aircraft are provided and the morphing parameters would be
improved in the future work. Hu et al. [19] presented and simulated the aero-elastic responses of
the folding wing during its morphing processes, and the dynamic aero-elastic stabilities were also
investigated in the folding and unfolding rates. Huang and Qiu [20] presented the numerical results
of transient and flutter characteristics in a variable span morphing wing, and found the morphing
technology would be used to enhance flight quality for the flutter control. Barbarino et al. [21] presented
a reviewing for the morphing aircraft and focused on structural, shape-changing morphing concepts
in the active systems. The morphing aircraft also has optimal aerodynamic characteristics and fuel
condition for expanding the entire flight envelope within its safe performance limits. Weisshaar [22]
presented the new shape changes technology in wing surface area and controlled airfoil camber for
morphing aircraft design to provide high performance. Librescu et al. [23] presented and implemented
the combined control law of active aero-elastic control in 2-D wing-flap systems to suppress the
flutter instability. In this paper, the FGM shell might be embedded with magnetostrictive material
to work as the adaptive structures; the maximum flutter value of center deflection amplitude with
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magnetostrictive FGM shell might be predicted and controlled into smaller value in supersonic air
flow. The aero-elastic flutter and thermal vibration researches of magnetostrictive FGM shells might
be the potential areas of application on a morphing aircraft to obtain better performances and good
structures. In future works, the magnetostrictive material might be embedded in the FGM thick circular
cylindrical shells and used in the body of the morphing aircraft to suppress flutter.

2. Formulation

For fluid flow over the outer surface of two-material FGM circular cylindrical shell is shown in
Figure 1 with FGM material 1 thickness h1 and FGM material 2 thickness h2, respectively. The material
properties of the power law function of the FGM circular cylindrical shells are considered with a
dominated Young’s modulus E f gm of the FGM in the standard variation form of the power law index
Rn, and the others are assumed in the simple average form [24]. The properties of the individual
constituent materials of FGMs are functions of the environmental temperature T.
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The time dependency of displacements u, v and w of thick circular cylindrical shells are assumed
in the linear FSDT equations as follows [25]: the formulas are correct only in the case of the symmetric
properties with respect to mid-plane. As one knows, density of FGMs is usually not symmetric
with respect to the middle-surface; thus, the neutral surface has the role of the middle-surface and,
for simplification, the middle-surface is assumed and considered near to the neutral surface of FGMs.

u = u0(x, θ, t) + zφx(x, θ, t) (1)

v = v0(x, θ, t) + zφθ(x, θ, t) (2)

w = w(x, θ, t) (3)

where u0 and v0 are tangential displacements, w is transverse displacement of the middle-surface of
the shells, φx and φθ are middle-surface shear rotations, x and θ are in-surface coordinates of the shell,
z is out of surface coordinates of the shell, t is time.

The in-plane stresses constitute the membrane stresses, bending stresses and thermal stresses
under temperature difference ∆T for the kth layer of plane stresses in the thick FGM circular cylindrical
shell are provided in the equations as follows [26,27]:

σx

σθ

σxθ


(k)

=

 Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66


(k)


εx − αx∆T
εθ − αθ∆T

εxθ − αxθ∆T


(k)

(4)
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The shear stresses are provided as follows:{
σθz
σxz

}
(k)

=

[
Q44 Q45
Q45 Q55

]
(k)

{
εθz
εxz

}
(k)

(5)

where αx and αθ are the coefficients of thermal expansion, αxθ is the coefficient of thermal shear, Qij is
the stiffness of the FGM shell. εx, εθ , and εxθ are in-plane strains, not negligible εθz and εxz are shear
strains. kx, kθ , and kxθ are the curvatures. ∆T is the temperature difference between the FGM shell and
curing area can be provided in the equation as follows:

∆T = T0(x, θ, t) +
z

h∗
T1(x, θ, t) (6)

in which T0 and T1 are temperature parameters in functions of x, θ, and t; h∗ is the total thickness
of shells.

The dynamic equations of motion for a circular cylindrical shell are provided by Jafari et al. [28].
The constitutive relations including thermal loads effect is provided by Lee et al. [26]. The dynamic
equilibrium differential equations of fluid flow over the outer surface of FGM circular cylindrical shells
in terms of displacements and shear rotations can be provided and represented as follows:

A11 0 A66/R2 0 (A12 + A66)/R 0 0 0 0
0 (A12 + A66)/R 0 A66 + Na 0 A22/R 0 0 0
0 0 0 0 0 0 A55 + Na 0 A44/R2

B11 0 B66/R2 0 (B12 + B66)/R 0 0 0 0
0 (B12 + B66)/R 0 B66 0 B22/R2 0 0 0


{

∂2u0

∂x2
∂2u0

∂x∂θ

∂2u0

∂θ2
∂2v0

∂x2
∂2v0

∂x∂θ

∂2v0

∂θ2
∂2w
∂x2

∂2w
∂x∂θ

∂2w
∂θ2

}t

+


2B11 0 2B66/R2 0 2(B12 + B66)/R 0

0 2(B12 + B66)/R 0 2B66 + Ma 0 2B22/R2

0 0 0 0 0 0
2D11 0 2D66/R2 0 2(D12 + D66)/R 0

0 2(D12 + D66)/R 0 2D66 0 2D22/R2


{

∂2φx

∂x2
∂2φx

∂x∂θ

∂2φx

∂θ2
∂2φθ

∂x2
∂2φθ

∂x∂θ

∂2φθ

∂θ2

}t

+



0 0 A12/R 0 0 0 0 0
0 0 0 (A22 + A44)/R2 0 0 0 0

−A55/R −A44/R2 0 0 A55 0 0 A44/R
0 0 B12/R− A55 0 0 0 0 0
0 0 0 B22/R2 − A44/R 0 0 0 0

{
∂u0

∂x
∂v0

∂θ

∂w
∂x

∂w
∂θ

∂φx

∂x
∂φx

∂θ

∂φθ

∂x
∂φθ

∂θ

}t

+


0 0 0 0 0
0 −A44/R2 0 0 A44/R
0 0 0 0 0

−A55/R 0 0 −A55 0
0 −A44/R 0 0 −A44


{

u0 v0 w φx φθ

}t

=



f1

f2

f3

f4

f5


+ ρ


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0





∂2u0

∂t2

∂2v0

∂t2

∂2w
∂t2


+ H


0 0 2 0
0 0 0 2
0 0 0 0
1 0 0 0
0 1 0 0





∂2u0

∂t2

∂2v0

∂t2

∂2φx

∂t2

∂2φθ

∂t2


+ I


0 0
0 0
0 0
2 0
0 2




∂2φx

∂t2

∂2φθ

∂t2

,

(7)
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where R is the middle-surface radius of shells. f1 . . . f5 are in the expressions of thermal loads (N, M)

as follows:

f1 =
∂Nx

∂x
+

1
R

∂Nxθ

∂θ
,

f2 =
∂Nxθ

∂x
+

1
R

∂Nθ

∂θ
,

f3 = q− Nθ

R
,

f4 =
∂Mx

∂x
+

1
R

∂Mxθ

∂θ
,

f5 =
∂Mxθ

∂x
+

1
R

∂Mθ

∂θ
,

(Nx, Mx) =
∫ h∗

2

− h∗
2

(Q11αx + Q12αθ + Q16αxθ)∆T(1, z)dz,

(Nθ , Mθ) =
∫ h∗

2

−h∗
2

(Q12αx + Q22αθ + Q26αxθ)∆T(1, z)dz,

(Nxθ , Mxθ) =
∫ h∗

2

−h∗
2

(Q16αx + Q26αθ + Q66αxθ)∆T(1, z)dz,

(Aij, Bij, Dij) =
∫ h∗

2

−h∗
2

Qij(1, z, z2)dz, (i, j = 1, 2, 6),

Ai∗ j∗ =
∫ h∗

2

−h∗
2

kαQi∗ j∗dz, (i∗, j∗ = 4, 5),

(ρ, H, I) =
∫ h∗

2

−h∗
2

ρ0(1, z, z2)dz,

(Na, Ma) =
∫ h∗

2

− h∗
2

(Q11αx + Q12αθ + Q16αxθ)T0(1, z)dz,

q =
ρ∞U2

∞
M∞

∂w(x, θ, t)
∂x

∣∣∣∣
z=h∗/2

+
ρ∞U∞

M∞

∂w(x, θ, t)
∂t

,

in which kα is the shear correction coefficient. q is the supersonic aerodynamic pressure load, introduced
by Dowell et al. [29] for the unsteady, inviscid fluid flow over the outer surface of FGM shells with
free stream density ρ∞, velocity U∞ and Mach number M∞. ρ0 is the density of ply, Na and Ma are
the pulsating axial load and moment in function of T0. The values of kα are usually functions of h∗,
T and Rn. The simple forms of Qij and Qi∗ j∗ for FGM circular cylindrical shells can be provided by
Sepiani et al. [30].

The value of shear correction coefficient is usually varied in the FGM shells. The modified shear
correction factor kα can be provided based on the total strain energy equivalence principle due to

transverse shears σxz and σθz by Whitney [27], and
∂kx

∂x
=

∂kθ

∂x
=

∂kxθ

∂x
=

∂kx

R∂θ
=

∂kθ

R∂θ
=

∂kxθ

R∂θ
is

assumed, the expression of kα can be obtained and represented in the following equation:

kα =
1
h∗

FGMZSV
FGMZIV

, (8)

where the reasonable meaning of FGMZSV/FGMZIV is the effective thickness in shear correction.
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FGMZSV =
(FGMZS)2

(1− ν f gm
2)2 +

ν f gm
2(FGMZS)2

(1− ν f gm
2)2 +

(FGMZS)2

4(1 + ν f gm)
2

+2
ν f gm

1− ν f gm
2
(FGMZS)2

1− ν f gm
2 +

(FGMZS)2

(1− ν f gm
2)(1 + ν f gm)

+
ν f gm

1− ν f gm
2
(FGMZS)2

1 + ν f gm
+

(FGMZS)2

4(1 + ν f gm)
2 +

ν f gm
2(FGMZS)2

(1− ν f gm
2)2 +

(FGMZS)2

(1− ν f gm
2)2

+
ν f gm

1− ν f gm
2
(FGMZS)2

1 + ν f gm
+

(FGMZS)2

(1 + ν f gm)(1− ν f gm
2)
+2

ν f gm

1− ν f gm
2
(FGMZS)2

1− ν f gm
2 ,

and:

FGMZIV =
FGMZI

(1− ν f gm
2)2 +

ν f gm
2FGMZI

(1− ν f gm
2)2 +

FGMZI

4(1 + ν f gm)
2

+2
ν f gm

1− ν f gm
2

FGMZI
1− ν f gm

2 +
FGMZI

(1− ν f gm
2)(1 + ν f gm)

+
ν f gm

1− ν f gm
2

FGMZI
1 + ν f gm

+
FGMZI

4(1 + ν f gm)
2

+
ν f gm

2FGMZI

(1− ν f gm
2)2 +

FGMZI

(1− ν f gm
2)2 +

ν f gm

1− ν f gm
2

FGMZI
1 + ν f gm

+
FGMZI

(1 + ν f gm)(1− ν f gm
2)

+2
ν f gm

1− ν f gm
2

FGMZI
1− ν f gm

2 + (−E1h∗2

8
)

2

h∗,

in which ν f gm is the Poisson’s ratio of the FGM shells,

FGMZS =
E2 − E1

h∗Rn
[
(

h∗

2
+

h∗

2
)

Rn+3

Rn + 3
−

h∗(
h∗

2
+

h∗

2
)

Rn+2

Rn + 2
+

h∗2(
h∗

2
+

h∗

2
)

Rn+1

4(Rn + 1)
]

+E1[
(

h∗

2
)

3

3
−

(−h∗

2
)

3

3
],

and:

FGMZI = (
E2 − E1

h∗Rn
)

2 (
h∗

2
+

h∗

2
)

2Rn+5

(Rn + 2)2(2Rn + 5)
−h∗

(
h∗

2
+

h∗

2
)

2Rn+4

(Rn + 1)(Rn + 2)(2Rn + 4)

+ h∗2
(

h∗

2
+

h∗

2
)

2Rn+3

4(Rn + 1)2(2Rn + 3)
]+

2(E2 − E1)

h∗Rn
{ E1

2(Rn + 2)
[
(

h∗

2
+

h∗

2
)

Rn+5

Rn + 5

− h∗
(

h∗

2
+

h∗

2
)

Rn+4

Rn + 4
+

h∗2

4

(
h∗

2
+

h∗

2
)

Rn+3

Rn + 3
]− h∗E1

4(Rn + 1)
[
(

h∗

2
+

h∗

2
)

Rn+4

Rn + 4

−h∗
(

h∗

2
+

h∗

2
)

Rn+3

Rn + 3
+

h∗2

4

(
h∗

2
+

h∗

2
)

Rn+2

Rn + 2
]}+ E1

2h∗5

320
+ 2(−E1h∗2

8
)

{E2 − E1

h∗Rn
[
(

h∗

2
+

h∗

2
)

Rn+3

(Rn + 2)(Rn + 3)
− h∗

(
h∗

2
+

h∗

2
)

Rn+2

2(Rn + 1)(Rn + 2)
] +

E1h∗3

24
}.
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Shu and Richards presented the GDQ method in 1990 and re-stated the statements as follows:
the derivative of a smooth function at a discrete point in a domain can be discrete by using an
approximated weighting linear sum of the function values at all of the discrete points in the direction
of axes [16,31,32]. The dynamic GDQ discrete equations in matrix notation can be provided in the
formulation of dynamic equilibrium differential equations by considering four sides, simply supported,
and fluid flow over the outer surface of FGM thick circular cylindrical shells.

3. Numerical Results and Discussion

There are some real applications of considered structures in Figure 1, e.g., fluid flow over the
outer surface of missiles, rockets, and airplanes. To study the GDQ results of varied shear correction
coefficient calculations with shell layers in the stacking sequence (0

◦
/0
◦
), for the four sides simply

supported boundary condition, no pulsating axial load and moment (Na = Ma = 0), and under the
external aerodynamic pressure load (q) of supersonic air flow over the outer surface of FGM shells
with ρ∞ = 0.00000678 lb/in3, at altitude 50,000 ft, respectively for M∞ = 2 (U∞ = 23, 304 in/s),
for M∞ = 4 (U∞ = 46, 608 in/s) and for M∞ = 10 (U∞ = 116, 520 in/s), the coordinates xi and θj for
the grid points of FGM thick circular cylindrical shells are used as follows:

xi = 0.5[1− cos(
i− 1
N − 1

π)]L, i = 1, 2, · · · , N, (9)

θj = 0.5[1− cos(
j− 1

M− 1
π)]2π, j = 1, 2, · · · , M. (10)

Sinusoidal displacement and temperature of the thermal vibrations are provided as follows:

u = [u0(x, θ) + zφx(x, θ)]sin(ωmnt), (11)

v = [v0(x, θ) + zφθ(x, θ)]sin(ωmnt), (12)

w = w(x, θ)sin(ωmnt), (13)

φx = φx(x, θ)sin(ωmnt), (14)

φθ = φθ(x, θ)sin(ωmnt), (15)

∆T = [T0(x, θ) +
z

h∗
T1(x, θ)]sin(γt). (16)

and with the simple vibration of temperature parameter:

T0(x, θ) = 0, (Na = Ma = 0), (17)

T1(x, θ) = T1sin(πx/L) sin(πθ), (18)

in which ωmn is the natural frequency of the shells, γ is the frequency of applied heat flux, and T1 is
the amplitude of temperature.

Two constituent materials of FGMs are provided. FGM material 1 is SUS304 (stainless steel),
FGM material 2 is Si3N4 (silicon nitride), used for the numerical GDQ computations. The dimensional
quantities are used for each example cases, units in mm are used in the deflection amplitude and
thickness, and GPa used for stress. Firstly, the dynamic convergence study of center deflection
amplitude w(L/2, 2π/2) (unit mm) versus N = M in a supersonic air flow M∞ = 2, 4, and 10,
respectively, over the outer surface of circular cylindrical FGM shells are obtained in Figure 2
by considering the varied effects of shear correction coefficients and with L/R = 2, L/h∗ = 5,
h∗ = 1.2 mm, h1 = h2 = 0.6 mm, m = n = 1, Rn = 1, kα = 0.101452, T = 653 K, T1 = 1 K,
and t = 0.1 s. The N ×M = 19× 19 grid points can be treated in the convergence status and used in
the following GDQ computations of time responses for deflection and stress in a supersonic air flow
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over the outer surface of circular cylindrical FGM shells. In the circular cylindrical FGM shell (Bij 6= 0),
varied values of kα are usually functions of h∗, Rn and T. For h∗ = 1.2 mm, h1 = h2, calculated values
of kα versus Rn and T are shown in Table 1, used for the GDQ and shear calculations. For h∗ = 1.2 mm,
values of kα (from 0.06616 to 0.201838 under T = 653 K, from 0.0877684 to 0.229368 under T = 100 K,
from 0.059168 to 0.167052 under T = 1000 K) are increasing with Rn (from 0.1 to 10).

Aerospace 2017, 4, 12 9 of 16 

 

and stress in a supersonic air flow over the outer surface of circular cylindrical FGM shells. In the 
circular cylindrical FGM shell ( 0≠ijB ), varied values of αk  are usually functions of *h , nR  

and T . For 2.1* =h mm, 21 hh = , calculated values of αk  versus nR  and T  are shown in 

Table 1, used for the GDQ and shear calculations. For 2.1* =h mm, values of αk  (from 0.06616 to 
0.201838 under 653 KT = , from 0.0877684 to 0.229368 under 100 KT = , from 0.059168 to 

0.167052 under 1000 KT = ) are increasing with nR  (from 0.1 to 10).  

 
Figure 2. Convergence of )2/2,2/( πLw  (mm) versus MN =  for 5/ * =hL  and 2/ =RL . 

Table 1. Varied shear correction coefficient αk  versus nR  and T  for 2.1* =h mm. 

T  (K) 
kα  

0.1nR =  0.2nR =  0.5nR =  1nR =  2nR =  5nR =  10nR =  

100 0.0877684 0.0914646 0.104760 0.129271 0.171357 0.223472 0.229368 
653 0.0661600 0.0693373 0.0805978 0.101452 0.138729 0.190785 0.201838 
1000 0.0591680 0.0606934 0.0676897 0.0831104 0.113958 0.160412 0.167052 

The compared results of frequencies ( *10 f  and Ω ) versus n  are re-plotted in Figure 3, 
provided and represented with the varied correction factor value 0.101452 calculated by Hong [33] 
and with the constant correction factor value 5/6 = 0.833333 by Sepiani et al. [30]. The results can be 
treated as the similar tendency between the two curves of different frequency parameters ( *10 f  

and Ω ) versus n , where 11
* /4 AIRf mnπω=  with )

1
(

)
2

(1

21

221

*

11 +
+

+
−

=
n

n

R

EERh
A νν , in 

which 1E  and 2E  are the Young’s modulus, 1ν  and 2ν  are the Poisson’s ratios of the FGM 

constituent material 1 and 2, respectively. Ω effmn AIR 111 /4πω= , where dzQA
h

heff 
−

= 2

2

1111

*

* , 


−

= 2

2

1

*

* )(
h

h
dzzzI ρ , 211 1 eff

effEQ
ν−

=  with )(zρ , effE , and effν  are effective mass density, 

effective elastic modulus and effective Poisson’s ratio of FGM, respectively, for a simply supported 
silicon nitride–nickel FGM cylindrical shell with FSDT under axial extensional loading and no 
external pressure ( 0=q ). 

Figure 2. Convergence of w(L/2, 2π/2) (mm) versus N = M for L/h∗ = 5 and L/R = 2.

Table 1. Varied shear correction coefficient kα versus Rn and T for h∗ = 1.2 mm.

T (K)
kα

Rn = 0.1 Rn = 0.2 Rn = 0.5 Rn = 1 Rn = 2 Rn = 5 Rn = 10

100 0.0877684 0.0914646 0.104760 0.129271 0.171357 0.223472 0.229368
653 0.0661600 0.0693373 0.0805978 0.101452 0.138729 0.190785 0.201838

1000 0.0591680 0.0606934 0.0676897 0.0831104 0.113958 0.160412 0.167052

The compared results of frequencies (10 f ∗ and Ω) versus n are re-plotted in Figure 3, provided and
represented with the varied correction factor value 0.101452 calculated by Hong [33] and with the
constant correction factor value 5/6 = 0.833333 by Sepiani et al. [30]. The results can be treated as
the similar tendency between the two curves of different frequency parameters (10 f ∗ and Ω) versus

n, where f ∗ = 4πωmnR
√

I/A11 with A11 =
h∗

1− (
ν1 + ν2

2
)

2 (
RnE1 + E2

Rn + 1
), in which E1 and E2 are the

Young’s modulus, ν1 and ν2 are the Poisson’s ratios of the FGM constituent material 1 and 2, respectively.

Ω = 4πωmnR
√

I1/A11e f f , where A11e f f =
∫ h∗

2

− h∗
2

Q11dz, I1 =
∫ h∗

2

− h∗
2

zρ(z)dz, Q11 =
Ee f f

1− ν2
e f f

with ρ(z),

Ee f f , and νe f f are effective mass density, effective elastic modulus and effective Poisson’s ratio of FGM,
respectively, for a simply supported silicon nitride–nickel FGM cylindrical shell with FSDT under axial
extensional loading and no external pressure (q = 0).
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The amplitude of center deflection w(L/2, 2π/2) (unit mm) for the air flow over the outer surface
of FGM circular cylindrical shells is calculated. The response values of amplitude w(L/2, 2π/2)
(unit mm) versus time t (unit s) are shown in Figure 4 for a supersonic air flow M∞ = 2, 4, and 10,
respectively, over the outer surface of the FGM circular cylindrical shells for thick L/h∗ = 5, L/R = 2,
h∗ = 1.2, h1 = h2 = 0.6, Rn = 1, kα = 0.101452, T = 653 K, T1 = 1 K, flutter starting time t = 0.001 s
(γ = 296, 881/s) , and response time t = 0.1 to 3.0 s with a time step of 0.1 s. The maximum value of
amplitude w(L/2, 2π/2) (unit mm) is, respectively, value 10,053 mm occurs at t = 0.001 s for M∞ = 2,
value –3753 mm occurs at t = 1.0 s (γ = 1.5708/s) for M∞ = 2, value 17,842 mm occurs at t = 0.001 s
for M∞ = 4, value −4457 mm occurs at t = 1.0 s for M∞ = 4, value 12,368 mm occurs at t = 0.001 s
for M∞ = 10, value −4189 mm occurs at t = 1.0 s for M∞ = 10. Flutter occurs at t = 0.001 s due to
high frequency of applied heat flux value γ = 296, 881/s for a supersonic air flow M∞ = 2, 4, and 10.
There exists a “jumping” around t = 1.0 s, the nature of such phenomenon might be considered
as, and related to, a transonic dip. The abrupt change in time responses of displacement is shock
wave vibration occurred at t = 1.0 s in the unsteady air flow shown in Figure 4a–c, corresponding
to the position in a steady air flow M∞ = 2 and without air flow ( q = 0) are shown in Figure 4d–e,
respectively. The transient value of 11,133 mm in steady air flow occurs at t = 0.001 s is greater than
10,053 mm in unsteady air flow, but the value −3753 mm in steady air flow occurs at t = 1.0 s is in
the same value as in unsteady air flow. With the effects of thermal load vibrations and environment
temperature only (without air flow), the transient value 6.8 mm occurs at t = 0.001 s, and the value
0.008 mm occurs at t = 1.0 s are found in smaller values. Thus, the “jumping” of amplitudes around
t = 1.0 s is due to the effect of air flow pressure and comes from the effect of shockwave vibrations.

In-plane stress σθ (unit GPa) and shear stress σθz (unit GPa) are three-dimensional components
and usually in functions of x, θ, and z. Typically, their values vary through the shell thickness for the air
flow over the outer surface of FGM circular cylindrical shells. The in-plane stress σθ (unit GPa) versus
z/h∗ for M∞ = 2 is shown in Figure 5a. The shear stress σθz (unit GPa) versus z/h∗ for M∞ = 2 at
center position (x = L/2, θ = 2π/2) of shells is shown in Figure 5b, respectively at t = 1.0 s, a/h∗ = 5
and L/R = 2. The absolute value (0.0081 GPa) of σθz at z = 0.5h∗ is found in the much greater value
than the value (0.00681 GPa) of σθ for z = 0.0h∗; thus, the σθz can be treated as the dominated stress
for the air flow over the outer surface of FGM circular cylindrical shells. The time responses of the
dominated shear stresses σθz (unit GPa) are shown in Figure 5c–e at the center position of the outer
surface z = 0.5h∗ as the analyses of the deflection cases in Figure 4 for L/h∗ = 5, L/R = 2, air flow
M∞ = 2, 4, and 10, respectively. The maximum absolute value of σθz is 0.0137 GPa occurs at t = 1.0 s
for M∞ = 4.
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Figure 4. w(L/2, 2π/2) (mm) versus t (s) for M∞ = 2, 4 and 10: (a) w(L/2, 2π/2) (mm) versus t (s)
for M∞ = 2; (b) w(L/2, 2π/2) (mm) versus t (s) for M∞ = 4; (c) w(L/2, 2π/2) (mm) versus t (s) for
M∞ = 10; (d) for M∞ = 2 in steady flow; and (e) without air flow.
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10) are shown in Figure 6 for air flow 2=∞M , 4, and 10, respectively, over the outer surface of 
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Figure 5. Stresses versus z/h∗ and t for M∞ = 2, 4 and 10: (a) σθ (GPa) versus z/h∗ for M∞ = 2 at
t = 1.0 s; (b) σθz (GPa) versus z/h∗ for M∞ = 2 at t = 1.0 s; (c) σθz (GPa) versus t (s) for M∞ = 2; (d) σθz

(GPa) versus t (s) for M∞ = 4; (e) σθz (GPa) versus t (s) for M∞ = 10.

The amplitudes w(L/2, 2π/2) (unit mm) versus T (unit K) and Rn values (from 0.1 to 10) are
shown in Figure 6 for air flow M∞ = 2, 4, and 10, respectively, over the outer surface of FGM
circular cylindrical shells calculated and varied values of kα, for L/h∗ = 5, L/R = 2, h∗ = 1.2,
h1 = h2 = 0.6, T1 = 1 K, at t = 3 s (γ = 0.523603/s). The maximum value of amplitude w(L/2, 2π/2)
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is 1.91346 mm occurs at T = 100 K and Rn = 0.2 for M∞ = 2 is shown in Figure 6a. The amplitude
w(L/2, 2π/2) values are all decreasing versus T for values Rn = 0.2 and 2, and they can withstand
higher environmental temperature (T = 1000 K). The amplitude w(L/2, 2π/2) value is decreasing
(from −1.91346 mm to 0.0000066 mm) versus T for the dominated value Rn = 0.2, and it can withstand
higher environmental temperature (T = 1000 K). The maximum value of amplitude w(L/2, 2π/2) is
1.03639 mm, occurring at T = 100 K and Rn = 2 for M∞ = 4, is shown in Figure 6b. The amplitude
w(L/2, 2π/2) values are all decreasing versus T for values Rn = 0.2 and 2, they can withstand
higher environmental temperature (T = 1000 K). The amplitude w(L/2, 2π/2) value is decreasing
(from 1.03639 mm to 0.0000273 mm) versus T for the dominated value Rn = 2, and it can withstand
higher environmental temperature (T = 1000 K) . The maximum value of amplitude w(L/2, 2π/2) is
2.65509 mm, occurring at T = 100 K and Rn = 2 for M∞ = 10, is shown in Figure 6c. The amplitude
w(L/2, 2π/2) values are all decreasing versus T for values Rn = 0.2 and 2, and they can withstand
higher environmental temperature (T = 1000 K). The amplitude w(L/2, 2π/2) value is decreasing
(from 2.65509 to 0.0000271 mm) versus T for the dominated value Rn = 2, and it can withstand for
higher environmental temperature (T = 1000 K).

Aerospace 2017, 4, 12 13 of 16 

 

2.1* =h , 6.021 == hh , 1 1 KT = , at 3=t s ( 0.523603=γ /s). The maximum value of 

amplitude )2/2,2/( πLw  is 1.91346 mm occurs at 100 KT = and 2.0=nR  for 2=∞M  is 
shown in Figure 6a. The amplitude )2/2,2/( πLw values are all decreasing versus T  for values 

2.0=nR  and 2, and they can withstand higher environmental temperature ( 1000 KT = ). The 
amplitude )2/2,2/( πLw  value is decreasing (from −1.91346 mm to 0.0000066 mm) versus T  for 
the dominated value 2.0=nR , and it can withstand higher environmental temperature (

1000 KT = ). The maximum value of amplitude )2/2,2/( πLw  is 1.03639 mm, occurring at 

100 KT = and 2=nR  for 4=∞M , is shown in Figure 6b. The amplitude )2/2,2/( πLw  

values are all decreasing versus T  for values 2.0=nR  and 2, they can withstand higher 
environmental temperature ( 1000 KT = ). The amplitude )2/2,2/( πLw  value is decreasing 
(from 1.03639 mm to 0.0000273 mm) versus T  for the dominated value 2=nR , and it can 
withstand higher environmental temperature ( 1000KT = ) . The maximum value of amplitude 

)2/2,2/( πLw  is 2.65509 mm, occurring at 100 KT = and 2=nR  for 10=∞M , is shown in 
Figure 6c. The amplitude )2/2,2/( πLw  values are all decreasing versus T  for values 

2.0=nR  and 2, and they can withstand higher environmental temperature ( 1000 KT = ). The 
amplitude )2/2,2/( πLw value is decreasing (from 2.65509 to 0.0000271 mm) versus T  for the 
dominated value 2=nR , and it can withstand for higher environmental temperature ( 1000KT = ). 

 

(a) (b)

(c)

Figure 6. )2/2,2/( πLw  (mm) versus T  ( K ) and nR  for 2=∞M , 4, and 10: (a) 

)2/2,2/( πLw  (mm) versus T  ( K ) and nR  for 2=∞M ; (b) )2/2,2/( πLw  (mm) 
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The shear stress zθσ  (unit GPa) at center position of outer surface *5.0 hz =  versus T  (unit 

K ) and nR  are shown in Figure 7 for air flow 2=∞M , 4, and 10, respectively, over the outer 
surface of the FGM circular cylindrical shells as the analyses of deflection case in Figure 6. The 
maximum value of zθσ  is 0.000281 GPa, occurring at 100 KT =  and 2=nR  for 2=∞M , is 

Figure 6. w(L/2, 2π/2) (mm) versus T (K) and Rn for M∞ = 2, 4, and 10: (a) w(L/2, 2π/2) (mm)
versus T (K) and Rn for M∞ = 2; (b) w(L/2, 2π/2) (mm) versus T (K) and Rn for M∞ = 4;
and (c) w(L/2, 2π/2) (mm) versus T (K) and Rn for M∞ = 10.

The shear stress σθz (unit GPa) at center position of outer surface z = 0.5h∗ versus T (unit K)
and Rn are shown in Figure 7 for air flow M∞ = 2, 4, and 10, respectively, over the outer surface
of the FGM circular cylindrical shells as the analyses of deflection case in Figure 6. The maximum
value of σθz is 0.000281 GPa, occurring at T = 100 K and Rn = 2 for M∞ = 2, is shown in Figure 7a.
The absolute values of σθz are all decreasing versus T for Rn = 0.2 and 2, they can withstand higher
environmental temperature (T = 1000 K). The maximum value of σθz is 0.000247 GPa, occurring at
T = 100 K and Rn = 2 for M∞ = 4 is shown in Figure 7b. The absolute values of σθz are all decreasing
versus T for Rn = 0.2 and 2, they can withstand for higher temperature (T = 1000 K) of environment.
The maximum value of σθz is 0.000267 GPa occurs at T = 100 K and Rn = 2 for M∞ = 10 is shown
in Figure 7c. The absolute values of σθz are decreasing versus T for Rn = 2, and they can withstand
higher environmental temperature (T = 1000 K).
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4. Conclusions 

The GDQ solutions are provided for the deflections and stresses in the thermal vibration for 
supersonic air flow with Mach numbers 2, 4, and 10 over the outer surface of FGM thick circular 
cylindrical shells by considering the varied values effects of shear correction coefficient. In the GDQ 
results, shear correction coefficient values are usually functions of total thickness, power law index, 
and environment temperature. The maximum flutter value of center deflection amplitude can be 
predicted and occurs at high frequency of applied heat flux for supersonic air flow. The maximum 
value of the center deflection amplitude can be found and occurs at highly supersonic air flow. The 
center deflection amplitude values are all decreasing versus T  for values 2.0=nR and 2, and 
they also can withstand higher environmental temperature. Some physical meanings of aero-elastic 
flutter and vibration research are needed to be studied in the future. 
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Figure 7. σθz (GPa) versus T (K) and Rn for M∞ = 2, 4, and 10: (a) σθz (GPa) versus T (K) and Rn for
M∞ = 2; (b) σθz (GPa) versus T (K) and Rn for M∞ = 4; and (c) σθz (GPa) versus T (K) and Rn for
M∞ = 10.

4. Conclusions

The GDQ solutions are provided for the deflections and stresses in the thermal vibration for
supersonic air flow with Mach numbers 2, 4, and 10 over the outer surface of FGM thick circular
cylindrical shells by considering the varied values effects of shear correction coefficient. In the GDQ
results, shear correction coefficient values are usually functions of total thickness, power law index,
and environment temperature. The maximum flutter value of center deflection amplitude can be
predicted and occurs at high frequency of applied heat flux for supersonic air flow. The maximum value
of the center deflection amplitude can be found and occurs at highly supersonic air flow. The center
deflection amplitude values are all decreasing versus T for values Rn = 0.2 and 2, and they also can
withstand higher environmental temperature. Some physical meanings of aero-elastic flutter and
vibration research are needed to be studied in the future.
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