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Abstract: Continuation methods are presented that are capable of treating frequency domain flutter
equations, including multiple nonlinearities represented by describing functions. A small problem
demonstrates how a series of continuation processes can find all limit-cycle oscillations within
a specified region with a reasonable degree of confidence. Curves of the limit-cycle amplitude variation
with velocity, indicating regions of stability and instability with colors, give a compact view of the
nonlinear behavior throughout the flight regime. A continuation technique for reducing limit-cycle
amplitudes by adjusting various system parameters is presented. These processes are economical
enough to be a routine part of aircraft design and certification.

Keywords: aeroelasticity; multiple nonlinearity flutter; continuation methods; describing functions;
bifurcation; continuation optimization; controlling LCO amplitudes

1. Introduction

In the commercial airplane industry certification that an aircraft is free from flutter instabilities
is a major aspect of design and modification, requiring numerous analyses to cover the entire range
of flight conditions and design parameters. Because it is impossible to analyze all flight conditions,
such as altitude, speed, fuel loading and payload, limited sets of conditions are analyzed, often relying
on engineering judgment to pick the important conditions. To do the many analyses required, techniques
are typically limited to linear, frequency domain methods, using finite-element models reduced with
low-frequency free-vibration modes and linear unsteady aerodynamics from the doublet-lattice method.

Linear flutter equations assume infinitesimally small displacements; nonlinear flutter equations
are far more realistic, allowing for limit-cycle oscillation (LCO), self-excited, constant amplitude
oscillations that may be harmful or merely ride-quality problems depending on the amplitude.
The additional information provided by nonlinear analyses is important to the design of commercial
aircraft and should become a routine part of industrial flutter analyses.

Continuation methods, a class of methods for solving parameterized nonlinear equations [1],
when applied to linear flutter equations have proven advantageous for covering the range of flight
conditions by allowing for continuous variations in parameters, thereby reducing the number of
discrete conditions necessary [2]. For example, interpolating mass matrices at several fuel loadings
allows tracing the variation of flutter points with fuel loading in a continuous fashion. The success of
continuation methods in treating linear flutter equations is due to the fact that in spite of the term linear
flutter, the equations are nonlinear in several parameters, but linear in the generalized coordinates
(g.c.). Thus, it is a small step to extend continuation methods to treat nonlinear flutter equations,
identifying LCOs and tracing the variation of amplitude with parameters, such as velocity.

Single nonlinearities, for example free play or bilinear stiffness in one discrete degree-of-freedom,
have been studied for many years [3,4]. A single nonlinearity modeled with a describing function is
readily treated with linear flutter techniques, since the generalized coordinates can be normalized to
satisfy the amplitude of the single generalized coordinate. Multiple nonlinearities present a conceptually

Aerospace 2016, 3, 44; doi:10.3390/aerospace3040044 www.mdpi.com/journal/aerospace

http://www.mdpi.com/journal/aerospace
http://www.mdpi.com
http://www.mdpi.com/journal/aerospace


Aerospace 2016, 3, 44 2 of 20

more difficult task because of the need to simultaneously adjust the generalized coordinates so that
they and the resulting nonlinearities satisfy the flutter equations. Various schemes have been proposed
to address this problem [5,6]. Here, it is shown how a continuation method designed for linear flutter
analysis can also be used with multiple nonlinearities with minor modifications. The result is a method
that is straightforward, efficient and familiar to flutter engineers.

Following a brief summary of the continuation method presented in [2] and its application to
nonlinear flutter equations, a small problem is used to illustrate the search for limit cycle oscillations.
With a series of continuation processes, the region of interest is covered with a grid of curves that find
almost all LCOs in the region. Because of the sparsity of the grid, an LCO is missed, but is discovered
using a continuation method that traces an optimal path toward a limit cycle. Starting from the limit
cycles encountered, curves of LCO amplitude versus velocity are traced with continuation. From one
of these curves at a specified velocity, the optimal-path continuation method is used to reduce the LCO
amplitude by adjusting gains and phases in a simple control system.

2. Continuation Method

Continuation methods solve systems of nonlinear equations that are functions of more variables
than equations, at discrete points over a range of the variables while maintaining continuity in the
nonlinear functions. Continuity in flutter equations is important because there are always multiple
solutions, known as aeroelastic modes, which occasionally become close and difficult to distinguish.

The problem to solve is:
f (x) = 0 ∈ Rm, x ∈ Rn, n > m (1)

starting from a known solution x0 and varying the independent variables through the desired range.
n−m is the dimensionality of the solution: curves (1); surfaces (2); volumes (3), etc. The focus here is
on curves: n = m + 1.

The continuation method chosen to solve this is known as a pseudo-arc length method [1] with
a minimum-norm corrector. At step j, the next point is predicted using the tangent to the curve and
the known solution xj:

x0
j+1 = xj + αt j (2)

where the stepsize α is an approximate distance along the curve, hence the name pseudo-arc length.
Starting with the prediction x0

j+1, the corrector iterates to find the solution xj+1 using a Newton-like

method, computing corrections hi satisfying:

J(xi)hi = − f (xi) (3)

and setting:
xi+1 = xi + hi, (4)

where:

J(x) = f ′(x) =

[
∂ fi
∂xj

]
∈ Rm×n (5)

is the Jacobian matrix of derivatives of f with respect to x. The tangent vector (t) is characterized by:

Jt = 0, ‖t‖2 =
√

tTt = 1, t =
∂x
∂τ

(6)

where τ is the arc length along the curve.



Aerospace 2016, 3, 44 3 of 20

Equation (3) is an underdetermined linear system that has an infinity of solutions; the smallest
such solution can be computed by factoring the transposed Jacobian into an (n, n) orthogonal matrix
Q times an (n, m) upper-triangular matrix R:

JT = QR = [Q1 Q2]

[
R1

0

]
, (7)

known as a QR factorization. Substituting Equation (7) into Equation (3) yields the minimum-norm
solution [7] (p. 300):

hi = −Q1R−T
1 f (xi) (8)

Corrector iterations continue using Equations (3)–(8) until suitable convergence criteria are met,
for example for some absolute tolerance εa and relative tolerance εr:

‖ f (xi+1)‖2 < εa and ‖hi‖2 < εa + εr‖xi+1‖2 (9)

In preparation for the next predictor step, the tangent is computed from the (n, n−m) matrix Q2
in Equation (7), a by-product of the QR factorization. Q2 is an orthogonal matrix spanning the null
space of the Jacobian,

JQ2 = 0 ∈ Rm×n−m

QT
2 Q2 = I ∈ Rn−m×n−m (10)

An arbitrary vector w is projected onto the null space with:

t̄ = Q2QT
2 w = Q

[
0 0
0 I2

]
QTw ∈ Rn (11)

where I2 is the (n−m, n−m) identity and t = t̄/‖t̄‖2 to satisfy Equation (6). If n = m + 1, Q2 consists
of one column, the projection only determines the sign of the tangent, and a logical choice for the
vector to project is the tangent at the previous continuation step to keep the curve tracking in the right
direction. In this case, it is not absolutely necessary to do the projection, but it avoids forming Q2
(see Section 8) and is necessary for the optimal-path technique (Sections 5.6, 5.8 and 6).

3. Flutter Equations

Treating the flutter equation in the frequency domain has computational advantages over the
time domain: the characteristic equation is a system of nonlinear algebraic equations instead of
a system of differential equations, which must be integrated at each flight condition. By contrast,
the algebraic equations can be solved over a continuous range of flight conditions. The disadvantage is
that nonlinearities must be approximated to conform to the harmonic motion assumption, Equation (12).

3.1. Assumed Motion

Linear, frequency domain flutter analyses are based on the assumption that the actual motion of
the structure (z) as a function of time is related to a set of complex generalized coordinates (q̂) by:

z(t) = Φ<(q̂est) (12)

where Φ is typically a matrix of vibration modes, t is time, s = σ + iω is the Laplace variable, ω is the
frequency and oscillations are growing, neutral or decaying if the growth factor σ is positive, zero or
negative, respectively.

The actual motion in a nonlinear frequency domain flutter analysis does not in general
follow this assumption; retaining this assumption results in an a quasi-linear approximation [8].
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Describing functions and harmonic balance methods are examples of quasi-linear approximations.
Any approximation conforming to these assumptions should work with the methods presented here.

3.2. Equations

Various formulations of the flutter equations have been proposed [9–13]; any of them can be
used with the continuation method presented above. A general form of the frequency domain flutter
characteristic equations is:[

s2M + sG + sV + (1 + id)K − qA(p, M) + T
]

q̂ = D̂q̂ = 0, (13)

where M, K, G, V , A and T are the (ns, ns) mass, stiffness, gyroscopic, viscous damping, unsteady
aerodynamic and control-system matrices, respectively, d is the structural damping coefficient,
q = ρV2/2 is the dynamic pressure, p = s/V is the complex reduced frequency, V is the free-stream
velocity, M = V/a is the free-stream Mach number, a is the sonic velocity and D̂ is the complex
dynamic matrix.

The related equation:

D̂(s)ŷ = 0, ‖ŷ‖2 =
√

ŷ∗ŷ = 1, =(ŷk) = 0 (14)

is a nonlinear eigenvalue problem with ns solution eigenpair (si, yi), i = 1, . . . ns, normalized with the
2-norm of ŷ 1.0 and the k-th component real. Contrast this with the generalized-coordinate vector q̂,
which is a factor, η times ŷ:

q̂ = ηŷ, ‖q̂‖2 = η (15)

This distinction is important when the dynamic matrix is a function of generalized-coordinate
amplitudes, particularly when η is small or zero.

3.3. Conversion to Real

The continuation method presented is for real equations and variables; the flutter equations are
converted from a set of ns complex equations to 2ns real equations by setting:

D =

[
<(D̂ij) −=(D̂ij)

=(D̂ij) <(D̂ij)

]
y =

{
<(ŷi)

=(ŷi)

}
q = ηy, (16)

so that:
Dy = Dq = 0 ∈ R2ns (17)

and the 2-norms of the eigenvectors and generalized-coordinate vectors are unchanged:

‖ŷ‖2 =
√

ŷ∗ŷ = ‖y‖2 =
√

yTy = 1

‖q̂‖2 =
√

q̂∗q̂ = ‖q‖2 =
√

qTq = η (18)

where ˆ( )
∗

is the conjugate transpose.

3.4. Matrix Parameterizations

The matrices in Equation (13) are, in general, not constant; rather, they are assumed to be
functions of problem-dependent parameters using various matrix parameterizations. For example,
aircraft mass matrices are often parameterized by payload and fuel loading by interpolating matrices
at several parameter values. More important for this study, the matrices might be parameterized by
generalized-coordinate amplitudes in various ways depending on the matrix and type of nonlinearity.
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The dynamic matrix is therefore a function of the generalized coordinates and a vector p of parameters,
such as V, σ, and ω: D = D(p, q). Common examples of nonlinearities include structural free play,
nonlinear stiffnesses and control systems.

Nonlinear structural elements, such as free play and nonlinear stiffness, can be approximated
using describing functions, which conform to the harmonic motion assumption, Equation (12).
These stiffness elements are usually modeled with a single degree-of-freedom with no stiffness coupling
between it and other degrees-of-freedom [4]. A describing function for bilinear stiffness k jj associated
with generalized coordinate j, with stiffness k0 when the displacement amplitude |q̂j| is below δ and k1

when it is above, is:

k jj(γ, r) = c(γ, r)k0

c(γ, r) =

r + 2
π (1− r)

[
sin−1(γ) + γ

√
1− γ2

]
if γ ≤ 1

1 otherwise

r =
k1

k0
, γ =

δ

|q̂j|
(19)

Nonlinear controls equations can be treated by describing functions [8]; one of the first
multiple- nonlinearity flutter solutions was with structural nonlinearities in the control system [6].

3.5. Normalization

To make solutions unique, a phase normalization on the generalized coordinates is necessary,
for example by constraining the k-th component of q̂ to be real:

f2ns+1 = =(q̂k) = q2k = 0 (20)

If in addition η is to be held to a constant value η0, another equation is added:

f2ns+2 = qTq− η2
0 = 0 (21)

Therefore, to trace curves 2ns + 2, independent variables must be used if η is allowed to vary,
or 2ns + 3 if it is held constant.

3.6. Continuation Formulations

The independent variables (x) comprise the 2ns variables y or q, plus enough additional
parameters to give an underdetermined system. There are two cases to consider: constant η with
2ns + 3 variables and variable η with 2ns + 2 variables.

In what follows, various combinations of velocity, frequency, σ and η are used to demonstrate the
solution technique; other parameters are possible, but these three serve to illustrate typical analyses.
Each combination of parameters will be named according to which three of these parameters vary;
the fourth is implicitly constant. For example, a V-σ-ω analysis traces the variation in σ and ω with
velocity, holding η constant, as in a traditional linear flutter analysis, and a V-ω-η analysis traces LCO
boundaries, the goal of this study.

3.6.1. Constant η

Solving the flutter equations with the generalized-coordinate norm held to a constant value η0

presents a problem when η0 = 0 and possibly numerical difficulties when η0 is small. The vector
q = 0 is known as the trivial solution because even though it is technically a solution, it provides
no real information about the behavior of the structure. Yet solutions at q = 0 are important for
determining the stability of the trivial solution, the basis of linear flutter solutions. For this reason,
when η is held constant, eigenvectors are used as variables instead of the generalized coordinates.
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The eigenvector is constrained to unit 2-norm with the addition of an equation like (21): yTy− 1 = 0,
so there are m = 2ns + 2 equations, and three more parameters are necessary for n = m + 1 = 2ns + 3
independent variables.

For the demonstration parameters, the equations are:

f (x) =


Dy
y2k

yTy− 1

 ∈ Rm

x =


V
σ

ω

y

 ∈ Rm+1

q = η0y

J =


∂D
∂V y ∂D

∂σ y ∂D
∂ω y η0

∂D
∂q y + D

0 0 0 I2k:
0 0 0 2yT

 ∈ Rm×m+1 (22)

where I2k: is row 2k of the order 2ns identity matrix.

3.6.2. Variable η

If η is allowed to vary, the additional normalization Equation (21) is not used, so there are
m = 2ns + 1 equations: Equation (17) plus the phase normalization (Equation (20)),

f (x) =

{
Dq
q2k

}
∈ Rm (23)

and two of the three parameters (V, σ, ω) are needed.
Two combinations of the three parameters will be of interest, σ-ω-η at constant velocity (used to

search for σ = 0) with:

x =


σ

ω

q

 ∈ Rm+1 J =

[
∂D
∂σ q ∂D

∂ω q ∂D
∂q q + D

0 0 I2k:

]
∈ Rm×m+1 (23a)

and V-ω-η at constant σ (used to trace LCO boundaries):

x =


V
ω

q

 ∈ Rm+1 J =

[
∂D
∂V q ∂D

∂ω q ∂D
∂q q + D

0 0 I2k:

]
∈ Rm×m+1 (23b)

If the first step in either of these processes starts from a known solution at η = 0 with:

x0 =


σ0

ω0

0

 or x0 =


V0

ω0

0

 (24)

a modification in the tangent calculation is necessary, because the Jacobian and its null space vectors
are then:

J =

[
0 0 D
0 0 I2k:

]
, Q2 =

 1 0 0
0 1 0
0 0 y

 (25)
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The third column of Q2 gives the desired greatest increase in η, so the first predicted solution for
the σ-ω-η process is:

x0
1 = x0 + αt0 =


σ0

ω0

0

+ α


0
0
y

 =


σ0

ω0

αy

 (26)

In addition, an equation should be added to prevent converging to the trivial solution (q = 0),

f2ns+2 = qTq− η0 = 0 (27)

where η0 is the 2-norm of the predicted q. For the first step, η0 = α.

4. Demonstration Problem

A small, well-known problem illustrates the use of these continuation processes. The model is
Example 9-1 in [14], implemented as Example HA145B in finite-element program MSC-NASTRAN [13],
with a generalized-coordinate basis of ns = 10 free-vibration modes and doublet-lattice aerodynamics.
Bilinear nonlinearities are applied to the first four diagonals of the (diagonal) stiffness matrix using the
describing function of Equation (19) with δ = 0.05, r = 2 (hardening) for diagonals 1 and 2, r = 0.5
(softening) for diagonal 3 and r = 0.3 (softening) for diagonal 4. Figure 1 shows the model wing
planform and unsteady aerodynamic grid.

V

elastic axis

Figure 1. HA145B planform, elastic axis (dashed line), and doublet-lattice grid.

5. Searching for Limit Cycle Oscillations

Limit cycle oscillation is a condition where the structure is oscillating with an amplitude that is
neither growing nor decaying; it is in dynamic equilibrium and σ = 0. On the other hand, q = 0 is
a static equilibrium with stability determined by the sign of σ. The goal then is to find all points within
the region of interest where σ = 0.

The strategy is to find several points where σ = 0 using the formulations of Sections 3.6.1 and 3.6.2,
then use these points to start V-ω-η processes to trace the variation of LCO amplitude with velocity.

An example of the results of an LCO analysis is shown in Figure 2 where η is plotted against
velocity normalized with respect to the maximum velocity of interest, v = V/Vmax. Ordinarily, η

would not be the plot variable of choice; instead, one or more of the nonlinear generalized-coordinate
amplitudes would be plotted against velocity, but this choice is problem dependent, so η is used for
generality. Of the two curves in Figure 2, only the bottom one extends to η = 0, so it is the only one
that would be detected in a linear flutter analysis. Detecting the upper curve is why the processes of
Sections 3.6.1 and 3.6.2 are necessary.
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Normalized velocity (v)

(η
)

Figure 2. Typical limit-cycle oscillation (LCO) plot from a V-ω-η analysis.

A systematic method for this search is to cover the range with a grid of V-σ-ω and σ-ω-η processes,
any of which might encounter σ = 0 points. Figure 3 shows a minimal grid of six lines where horizontal
lines are V-σ-ω processes (numbered 1, 3 and 4), and vertical lines are σ-ω-η processes (numbered 2, 5
and 6). Arrows indicate the direction of the continuation processes. Each of these lines represents one
or more modes chosen to cover the frequency range of interest.

4

3

1

2 5 6

0

G
.c

. 
n
o
rm

Normalized velocity

(η
)

(v)

Figure 3. Grid (blue) for finding limit cycles. Green means stable, red means unstable.

This set of processes is started from a free-vibration solution, at the origin of Figure 3 (Point 0),
with v = η = 0. Two processes are started from this free-vibration solution: Process 1, a V-σ-ω process
along the v axis, and Process 2, a σ-ω-η process along the η axis. The remaining vertical and horizontal
grid lines are started from these two by interpolating to the desired points.

5.1. Point 0: Free-Vibration

At V = 0, the aerodynamic term drops out, and with η = 0, q is zero for the purposes of evaluating
the dynamic matrix D. The problem to be solved then is in general the complex nonlinear eigenvalue
problem, Equation (14). Under certain conditions, Equation (14) reduces to a polynomial eigenvalue
problem [15], or to a generalized eigenvalue problem [16]. For example, in the absence of controls
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equations, viscous and structural damping and gyroscopics, the eigenvalue problem reduces to the
real, generalized eigenvalue problem:

[
−ω2M + K

]
ŷ = 0, y =

{
ŷi
0

}
(28)

Otherwise, it is usually necessary to resort to nonlinear eigenvalue solution techniques [15].
Using the results of this eigensolution, representing the origin in Figure 2, the LCO search is

begun with two continuation processes corresponding to the two axes of Figure 2: a V-σ-ω analysis at
η = 0 (the horizontal or V axis) and a σ-ω-η analysis at V = 0 (the vertical or η axis).

5.2. Process 1: V-σ-ω with η0 = 0

A continuation process along the horizontal axis of Figure 2 is a V-σ-ω process at η0 = 0, solving
Equation (22), starting with select eigenvalues and eigenvectors from the free-vibration solution. This is
equivalent to a linear flutter solution. Figure 4 shows results for the first four lowest frequency modes
with green indicating a stable equilibrium and red unstable.

From these curves σ-ω-η Processes 5 and 6 in Figure 3 are started at the desired velocities by
interpolating among solution points. Additionally, a V-ω-η processes could be started from the point
where a curve crosses the σ = 0 axis, tracing the bottom curve in Figure 2.

1

0

−1.5
0 1

G
ro

w
th

Normalized velocity

(σ
)

(v)

Figure 4. Process 1: V-σ-ω analysis with η0 = 0 (Green means stable, red means unstable).

5.3. Process 2: σ-ω-η at V = 0

In a σ-ω-η process η is allowed to vary; velocity is held constant; and the Equations are (23)
and (23a). With V = 0, this process corresponds to the vertical axis of Figure 2. Start points for this
process are again select eigenvalues and eigenvectors from the free-vibration solution. At zero velocity,
the aerodynamic term drops out, and without viscous or structural damping, σ = 0 for each vibration
mode. Only the frequency changes with increasing η, as shown in Figure 5.
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(ω)
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Figure 5. Process 2: σ-ω-η analysis with V = 0.

5.4. Processes 3 and 4: V-σ-ω

Horizontal lines 3 and 4 in Figure 3 are V-σ-ω processes starting from Process 2 interpolated
to the desired values of η. Figure 6 shows the result of these processes; as before, green indicates
stability (negative σ), and red indicates instability. Three levels of η are highlighted for the only
mode that crosses σ = 0. These crossings will be used in the V-ω-η processes of Section 3.6.2 to trace
LCO boundaries.

1.0

0.5

0

12

−1

1

G
ro

w
th

F
re

q
u

en
cy

0 1
Normalized velocity

(σ
)

(ω
)

(v)

η = 0

Figure 6. Processes 1, 3 and 4: V-σ-ω at three η (Green means stable, red means unstable).

5.5. Processes 5 and 6: σ-ω-η

σ-ω-η Processes 5 and 6 are started by interpolating the curves for each mode traced in Process 1
to the desired velocity. Figure 7 shows σ versus η at three velocities; for clarity, only one of the four
modes traced in Process 1 is shown, the only one that encounters LCO.
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v = 0

Figure 7. Processes 2, 5 and 6: σ-ω-η at 3 normalized velocities (Green means stable, red
means unstable).

5.6. Stability of Equilibria

At an LCO, if a small perturbation in the generalized coordinates decreases η and η continues
to decrease with time, or if the perturbation increases η and η continues to increase with time,
the equilibrium is unstable. On the other hand, if after the perturbation, the generalized coordinates
return to the LCO amplitudes, the equilibrium is said to be stable. Mathematically, this means that
stability is determined by the sign of the derivative of σ with respect to η: positive indicates instability,
and negative indicates stability. This derivative can be computed from the components of the tangent
vector corresponding to σ and q, recalling Equation (6),

∂σ

∂η
=

∂σ

∂τ

∂τ

∂η
=

tσ

tη
, tη =

∂η

∂τ
=

1
η

2ns

∑
i=1

qi
∂qi
∂τ

=
1
η

2ns

∑
i=1

qitqi (29)

where τ again is the arc length along the curve. These tangent components are available at every step
of a σ-ω-η process, but this information is only relevant at σ = 0. More important is the stability of
each point of LCO boundaries, created with V-ω-η processes and Equation (23b). That Jacobian then
must be converted to the Jacobian of Equation (23a) by replacing the first column with ∂ f /∂σ,

J̄ = J + vuT (30)

where:

u =


1
0
...

 ∈ Rn v =

{
∂ f
∂σ

}
− J :1 ∈ Rm (31)

It is not necessary to actually make this replacement and re-factorize the Jacobian; only the vectors
u and v are of interest because with them, the QR factorization of the transposed Jacobian can be
updated [7] (p. 334):

J̄T = JT + uvT = QR + uvT = Q̄R̄ =
[
Q̄1 Q̄2

] [ R̄1

0

]
(32)
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Updating the factorization requires a small fraction of the work required to factorize the Jacobian.
From the updated Jacobian, the tangent used in Equation (29) is computed by projecting u onto the
updated null space with Equation (11):

t = Q̄2Q̄T
2 u = Q̄

[
0 0
0 I2

]
Q̄Tu ∈ Rn (33)

As η increases or decreases from an unstable equilibrium, the next equilibrium may be stable or
unstable. Often, an unstable equilibrium will be followed by a stable one; Figure 7 shows why this is
true when the equilibriums are associated with the same aeroelastic mode. That this is not always true
will be shown in Section 5.8, where an LCO is discovered associated with a different aeroelastic mode.

5.7. Limit Cycles: V-ω-η Analysis at σ = 0

Among the six sets of continuation curves in Figures 6 and 7, there are five points where σ = 0,
at the intersection of the green and red line segments in Figure 8.

2

0

1

0.5

Normalized velocity

1

4

5

3

2

0.5 0.7 1

G
.c

. 
n
o
rm

(v)

(η
)

Figure 8. Five start points for LCO curves (Green means stable, red means unstable).

These points can be used to start V-ω-η processes, the goal in this exercise, shown as dotted
curves in Figure 8. The upper dotted curve could be started from Point 1, 2 or 3; either start point will
trace the same curve. Likewise, the lower dotted curve could be started from Point 4 or 5.

5.8. Optimal Path: V-σ-ω-η Analysis

Two of the grid lines in Figure 3 do not cross the σ = 0 axis (η = 0.5 in Figure 6 and v = 0.5 in
Figure 7), but come close. If all four parameters were allowed to vary instead of holding one fixed
and varying the other three, those two continuation processes might have also found limit cycle points.
A continuation process where the number of unknowns is greater than the number of equations plus one
requires only a minor modification of the continuation process and is in a sense an optimization procedure.

The idea is to allow any number of independent variables greater than the number of equations
(m) and to trace a special curve on the surface (or volume, or higher-dimension manifold): the shortest
path toward some goal, for example maximizing or minimizing some parameter β. The key to tracing
this curve is the tangent to the curve, computed by projecting the vector:

w =

{
∂β

∂xi

}
(34)

onto the null space of the Jacobian (Equation (11)). Aside from this modification, the continuation
process is unchanged.
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Here, the goal is σ = 0, a limit-cycle oscillation, and the equations are:

f (x) =

{
Dq
q2k

}
∈ R2ns+1 x =


V
σ

ω

q

 ∈ R2ns+3 (35)

Assuming the start point is at a negative σ, the tangent vector is computed by projecting:

w =

{
∂σ

∂xi

}
=


0
1
0
0

 (36)

onto the null space of the Jacobian (Equation (11)).
Figures 9 and 10 show the result of such a process, starting at a mode in Figure 4 that peaks

around v = 0.9 and σ = −0.7 and continuing until σ = 0 is encountered.
Then, starting from the point where this curve meets σ = 0, a V-ω-η process traces a limit-cycle

curve shown in Figure 11.

0.95
Normalized velocity

0.8

0

−1

G
ro

w
th

(σ
)

(v)

Figure 9. Optimal path starting from V-σ-ω at η = 0 (black curve with arrow indicating tracking
direction) (Green means stable, red means unstable).
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Figure 10. Optimal path: σ-ω, black curve with arrow indicating tracking direction (Green
means stable).
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Figure 11. LCO from the optimal path (black curve with arrow indicating tracking direction) (Green
means stable, red means unstable).

The complete set of LCO curves, with stable and unstable LCO again shown in green and red, is
shown in Figure 12.

Note that at v = 0.9 in Figure 12, as η increases from the unstable (static) equilibrium at zero,
the next equilibrium encountered is also unstable, followed by two stable equilibriums and finally
an unstable LCO. A σ-ω-η process would show continuity in two different modes, a three-Hertz mode
and a 10-Hertz mode, and each of these would have the usual pattern of stable followed by unstable
and vice versa.

2
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(ω
)

(η
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(v)

Figure 12. Complete LCO boundaries, v-η and v-ω views (Green means stable, red means unstable).

6. Decreasing LCO Amplitudes

It is often desirable to reduce the amplitude of limit cycles, whether to avoid structural damage
or to improve ride quality. Sometimes, this can be done with structural changes, such as reducing
free play or increasing damping; in other situations, such changes might be impractical, and it may
be necessary to resort to control systems. In either case, the technique of Section 5.8 can be used to
decrease the amplitude of a generalized coordinate undergoing LCO.



Aerospace 2016, 3, 44 15 of 20

For example, including a simple control system (matrix T in Equation (13)) can be used to
reduce the amplitude of generalized coordinate 1 in the unstable LCO at normalized velocity 0.8 in
Figure 12. Details of the control system are unimportant, as it is just for illustration; it simply feeds back
displacement in generalized coordinates 1 and 2 to add stiffness to these coordinates with two complex
gains: g1eiφ1 and g2eiφ2 . The equation to be solved is as before, Equation (23), with m = 2ns + 2, but
now with three more unknowns than equations:

x =



g1

φ1

g2

φ2

ω

q


∈ R2ns+5 (37)

A projection vector pointing towards decreasing |q̂1| is:

w = −
{

∂|q̂1|
∂xi

}
= −



0
0
0
0
0

wq


∈ R2ns+5 wq =

1√
q2

1 + q2
2


q1

q2

0
...

 (38)

Beginning at v = 0.8 on the upper curve in Figure 12, where η = 1.18 and |q̂1| = 1.16,
the projection vector guides the solution toward |q̂1| = 0, as shown in Figure 13. The stability
of the LCO at each point on the curves is computed as in Section 5.6.

Gains Phases (deg)

1.16

0
−0.1 0 0.15 −2 0 6

G
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. 
a
m
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li

tu
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|q̂ 1
|

Figure 13. Reduction of an LCO amplitude with control system parameters (Green means stable, red
means unstable).

7. Bifurcation

When tracing a curve with a continuation method, it is possible to encounter a bifurcation, where
two curves cross [1,17]. Other characteristics of a bifurcation, useful in detecting their presence, are
a rank-deficient Jacobian matrix and a change in the sign of the determinant of the Jacobian matrix
augmented with the tangent vector. It can be shown [1] that a change in the sign of:

µ(x) = det

[
J

tT

]
= det

[
JT t

]
(39)
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indicates that a bifurcation has been passed. A method for computing µ is shown in Section 8 that is
economical enough that it could (and should) be done at every step.

One of the curves in the V-σ-ω process shown in Figure 6 encounters a bifurcation, although it is
not evident at that scale. When plotted σ versus ω with an expanded scale, the bifurcation becomes
more evident, as shown in Figure 14. Arrows indicate the direction of the positive determinant. Had the
bifurcation not been detected, the process would have tracked only the green curve. Detecting the
bifurcation and computing the bifurcation tangent allows the blue curve to be traced.

A brief summary of the steps necessary to trace the bifurcation branch is given here; for more
detail, see [1,17].

7.18+

7.18
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(ω
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(σ)

(σ)

Figure 14. Bifurcation in a V-σ-ω process. Arrows indicate the direction of positive µ, the blue curve
arises from the bifurcation (Green means stable, red means unstable).

Branching from the bifurcation requires the tangent to the branch curve. For a simple bifurcation
at xb, detected by a change in the sign of µ(x), the Jacobian will have one rank deficiency, and the
Q2 matrix has two columns, some combination of which gives the branch tangent; and another
combination continues the original curve.

A singular value decomposition (SVD) [7] (p. 76) of the Jacobian at xb,

J = UΣV T , U ∈ Rm×m, V ∈ Rm+1×m+1 (40)
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reveals the rank and is necessary for branching from the bifurcation. The last column of U (um) and
the last two columns of V T (vm and vm+1) are left and right null vectors of the Jacobian, and the two
tangents emanating from the bifurcation are combinations of these:

tk = αkvm + βkvm+1, k = 1, 2 (41)

where:

αk =
ck√

c2
k + a2

11

=
a22√

c2
k + a2

22

βk =
ck√

c2
k + a2

22

=
a11√

c2
k + a2

11

a11 =
∂2g
∂ξ2

1
≈ 1

ε2 [g(ε, 0)− 2g(0, 0) + g(−ε, 0)]

a12 =
∂2g

∂ξ1∂ξ2
≈ 1

4ε2 [g(ε, ε) + g(−ε,−ε)− g(ε,−ε)− g(−ε, ε]

a22 =
∂2g
∂ξ2

2
≈ 1

ε2 [g(0, ε)− 2g(0, 0) + g(0,−ε)]

ε ≈ 10−6

g(ξ1, ξ2) = uT
m f (xb + ξ1vm + ξ2vm+1) (42)

One of these tangents is aligned with the original curve, the other with the bifurcation curve.
Comparing with the previous tangent (t j) determines which is the primary tangent (tc) and the
bifurcation tangent (tb):

t1 =
∣∣∣tT

j t1

∣∣∣ , t2 =
∣∣∣tT

j t2

∣∣∣
tc, tb =

{
t1, t2 if t1 > t2

t2, t1 otherwise
(43)

8. Programming Considerations

Much of the computational effort in the continuation method is in the factorization of the Jacobian
matrix in Equation (7), where QR factorizations are used to solve the underdetermined system.
Some continuation methods [1,18] add an equation in the corrector phase to constrain corrections, for
example to hold one of the variables constant, creating a square set of linear equations that can be
solved using an LU factorization instead of QR. Theoretically, LU is faster than QR; but QR is more
stable, and modern computer architectures eliminate the speed advantage [7] (p. 299). QR is also
necessary for the optimal-path technique of Section 5.8.

The linear algebra library LAPACK [19] provides several variants of QR factorizations; the
preferred routine for efficiency and stability is SGEQP3 [16] (Section 2.4.2.3). None of the QR routines
in LAPACK return the Q and R matrices directly; instead, all of the information to create them is
returned in the input matrix and a separate array named TAU. The R matrix is contained in the upper
triangle of the input matrix, and subroutine STRSM solves a set of equations with it. Subroutine
SORMQR is provided to multiply Q or QT by a vector.

Projecting a vector onto the null space of the Jacobian can be done in LAPACK without actually
forming the Q2 matrix with two calls to subroutine SORMQR:

Q2QT
2 w = Q

[
0 0
0 I2

]
QTw (44)
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that is, call SORMQR to multiply the vector by QT , zero the first m elements of the result, then call it
again to multiply by Q.

Updating the QR factorization to determine stability with Equation (32) can be done efficiently
with the qrupdate package available at [20].

Evaluating the determinant in Equation (39) is simplified by recognizing that the tangent came
from the QR factorization, that the determinant of an orthogonal matrix is ±1 and that the determinant
of a triangular matrix is the product of the diagonals. Furthermore, the tangent and the QR factorization
of the Jacobian it was computed from are available from the last corrector iteration, so the desired
determinant is:

det
[

JT t
]

= det [QR t] = det [Q1 Q2]

[
R 0
0 l

]

= l det Q det R = (−1)kl
m

∏
i=1

Rii (45)

where k is the number of non-zero elements in the TAU array [21] for LAPACK QR routines, and l
is +1 if QTt is positive, −1 otherwise.

Derivatives are an essential part of continuation methods. Accurate derivatives of parameters and
matrices with respect to the independent variables are necessary for computing the Jacobian matrix
that is used both to iterate to solutions and predict the next solution. Deriving formulas for complicated
expressions like Equation (19) can be tedious and error-prone. A technique that eliminates the need for
closed expressions for the derivatives and can reduce coding errors is automatic differentiation [22].
This programming technique gives exact derivatives at a cost on the order of evaluating the function
itself, in contrast with difference approximations, which are not exact and much more expensive to
compute. The autodiff.org [23] website is devoted to automatic differentiation resources.

9. Conclusions

A continuation method capable of treating frequency domain flutter equations with multiple
nonlinearities approximated with describing functions has been developed. With it, a set of continuation
processes can find with reasonable certainty all limit-cycle oscillations within a desired flight envelope,
tracing curves of limit-cycle amplitude versus velocity and indicating stability with colors.

With a small modification to the continuation method, curves can be traced taking an optimal path
with respect to any number of parameters toward some goal. This technique was used to seek out a limit
cycle that was missed and to reduce limit-cycle amplitudes by adjusting control-system parameters.

Tracing curves with continuation methods, it is always possible to encounter bifurcation.
Detecting bifurcation is inexpensive enough that it can be done at every step when tracing a curve;
missing a bifurcation risks missing an important curve. When a bifurcation is detected, a straightforward
calculation gives the two tangents, which are then used to start continuation processes to trace each
curve from the bifurcation.

Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

a sonic velocity
D̂, D complex and equivalent real dynamic matrices (Equations (13) and (16))
d structural damping coefficient
f vector of n real, nonlinear equations
J Jacobian matrix of partial derivatives (Equation (5))
Ji:, J :j row i and column j of matrix J
M, K, G, mass, stiffness, gyroscopic, viscous damping,
V , A, T unsteady aero and control-system matrices (Equation (13))
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M V/a, Mach number
ns the number of generalized coordinates
p s/V, complex reduced frequency
‖x‖2 2-norm of vector x =

√
xT x

q ρV2/2, dynamic pressure
q̂, q complex and equivalent real generalized coordinates (g.c.) (Equations (12) and (16))
Q, R QR factors of the transposed Jacobian (Equation (7))
Rn, Rm×n the real n-vectors and m by n matrices
<(),=() real and imaginary parts of a complex variable
r, γ, δ bilinear stiffness describing-function variables (Equation (19))
s Laplace variable σ + iω
t tangent vector
V velocity (true airspeed)
Vmax maximum velocity of interest (true airspeed)
v normalized velocity V/Vmax

w projection vector (Equation (11))
x independent variables
xi

j ith iteration at the jth continuation step (Equation (2))

xi ith element of vector x
ŷ, y complex and equivalent real eigenvector
z(t) motion of points of the structure (Equation (12))
η 2-norm of the generalized coordinates (Equation (15))
ω oscillation frequency (imaginary part of the Laplace variable)
Φ transformation from generalized to physical coordinates
ρ fluid density
σ growth factor (real part of the Laplace variable)
τ arc length along a curve
()T transpose
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