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Abstract: The capability of flapping wings to generate lift is currently evaluated by using the lift
coefficient CL, a dimensionless number that is derived from the basal equation that calculates the
steady-state lift coefficient CL for fixed wings. In contrast to its simple and direct application to
fixed wings, the equation for CL requires prior knowledge of the flow field along the wing span,
which results in two integrations: along the wing span and over time. This paper proposes an
alternate average normalized lift ηL that is easy to apply to hovering and forward flapping flight,
does not require prior knowledge of the flow field, does not resort to calculus for its solution, and its
lineage is close to the basal equation for steady state CL. Furthermore, the average normalized lift ηL
converges to the legacy CL as the flapping frequency is reduced to zero (gliding flight). Its ease of
use is illustrated by applying the average normalized lift ηL to the hovering and translating flapping
flight of bumblebees. This application of the normalized lift is compared to the same application
using two widely-accepted legacy average lift coefficients: the first CL as defined by Dudley and
Ellington, and the second lift coefficient by Weis-Fogh. Furthermore, it is shown that the average
normalized lift ηL has a physical meaning: that of the ratio of work exerted by the flapping wings
onto the surrounding flow field and the kinetic energy available at the aerodynamic surfaces during
the generation of lift. The working equation for the average normalized lift ηL is derived and is
presented as a function of Strouhal number, St.

Keywords: lift coefficient; normalized lift; physically proper parameter; flapping flight; Strouhal
number; hover; bumblebee; specific kinetic energy; blade element method; Reynolds numbers

1. Introduction

The lift coefficient CL is a dimensionless number that evaluates the capability of generating lift by
a translating fixed wing subjected to steady state aerodynamics [1] (p. 24):

CL “
L

1
2 ¨ρ¨v8

2¨sp
“

L
q8¨sp

(1)

This equation is applied directly to steady-state, fixed wings without further derivation, and the
resulting CL value, which allows for the comparison of dissimilar flyers (i.e., engineering, as well
as biological flyers, with fixed wings during gliding) is obtained by normalizing (dividing) lift L by
two variables that are widely accepted in the aerodynamic community: the dynamic pressure q8
(i.e., 1

2 ¨ρ¨v8
2) and a reference area, sp, the wing planform area (note the use of lower case symbol

sp, to be explained later). This ubiquitous and practical Equation (1) has three peculiarities, the first
peculiarity is that it uses the kinetic energy per unit volume of the mass of air, q8, as it flows over a
static airplane, to normalize lift L.
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Equation (1) is referred to as a basal equation as the current average lift CL that evaluates the
ability of generating lift by flapping wings is derived from it. As an example, an average lift coefficient,
CL DE, deduced by Dudley and Ellington [2] is shown below:

W ´ Lb “ CL DE¨ρ¨ f ¨
ż T

0

ż R

0
vr

2 pr, tq ¨c ptq ¨cosΨ¨
´

1´ cos2Φ ¨ sin2β
¯

1
2 drdt`

CD DE¨ ρ¨ f ¨
ż T

0

ż R

0
vr

2 pr, tq ¨c ptq ¨sinΨ¨
´

1´ cos2Φ¨sin2β
¯

1
2 drdt

(2)

This equation is one of a system of two equations and can be found in [2] (p. 62). This system
of equations is applied to hovering and translating flapping flight. A second example, also derived
from Equation (1), is the lift average lift coefficient CL W´F, a quick estimate derived by Weis-Fogh [3]
(p. 173) that is applied only to hovering flight:

L “
1
2
¨ρ¨π2¨ f 2¨Φ2¨CL W´F¨

ż r“R

r“0
c prq ¨r2dr¨

ż t“ 1
4 ¨n¨t

t“0
cos2 p2¨π¨n¨tq dt (3)

Solving the above integral results in the following working equation:

CL W´F “
4¨L

ρ¨π2¨ f 2¨Φ2¨σ¨c¨R3
(4)

Equations (2) and (3) are illustrative of current typical mathematical complications encountered
during the derivation of CL for flapping wings from the basal equation for CL.

The complexity of these equations derives from a second peculiarity found in the basal
Equation (1): the fact that it only accounts for the translation velocity v8 but does not account
for the average angular velocity ω of flapping wings. The absence of the average angular velocity
impedes the direct application of Equation (1) to evaluate the lift-generating capability of flapping
wings. In order to apply the equation to flapping wings, the average angular velocity ω must be
inserted in Equation (1) by means of an artificial computational construct, the blade element method
(BEM) [4] (p. 347), which result in Equations (2) and (3). This construct consists in dividing the
flapping wing into a large number of chordwise elements along its span R. Each of these elements of
infinitesimally small width are immersed in a unique local flow field that vary along the length of the
flapping wing and must be defined a priori by adding the translation velocity vector v8 (accounted
for in Equation (1)) to the local average tangential velocity vtg due to average angular velocity ω of
the flapping wing (both velocities vtg and ω are not accounted for in Equation (1)). The resultant of
both of these velocities vary along the spanwise length of the wing r as well as with time t (hence,
the integrands in Equations (2) and (3) are integrated with respect to dr and dt). In this way, the BEM is
the tool that introduces the effect of the average angular velocity ω of flapping wings in Equation (1).

This paper compares the average lift coefficient CL with the average normalized lift ηL, which has
a physical meaning, does not resort to the BEM and is simple to apply to flapping wings during hover
and forward flight [5,6].

2. The Average Normalized Lift ηL

The normalized lift ηL evaluates the lifting capability of aircraft with a fixed wing during forward
(translating) flight and uses the same variables for normalizing the steady state lift L in Equation (1),
but reformatted in the following way: the specific kinetic energy available at the wing due to translation,
ek trans, or 1

2 ¨v8
2, the density ρ, and a reference area Sp (note upper case S):

ηL “
L

ek trans¨ρ¨Sp
(5)
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Note that the density ρ has been “dissociated” from the dynamic pressure q8
´

“ 1
2 ¨ρ¨v8

2
¯

in
Equation (1) resulting in the product of the specific kinetic energy, ek trans, available at the translating
wings, 1

2 ¨v8
2, and the density ρ of the surrounding static flow field. This dissociation shifts the legacy

reference coordinate system from being affixed to a static lifting surface, say, an aircraft model in
a wind tunnel, from which the incoming airflow’s kinetic energy q8 is being measured, to a new
reference coordinate system that is affixed to the static air mass from which the aircraft’s kinetic energy
ek trans (or 1

2 ¨v8
2) is measured.

Note that Equation (5) has introduced a new definition of the reference area Sp (written in upper
case) that differs from the lower case sp in Equation (1). The original reference area Sp in Equation (1)
is found to be its third peculiarity. More on this later.

The term representing the specific kinetic energy (per unit mass) of the flyer, ek in Equation (5),
can be written in a more general format as the total specific kinetic energy available, say, at a lifting
rotor that has a translating velocity v8 and an angular velocity ω. As the presence of these two
velocities are accompanied by the possession of corresponding kinetic energies, the total specific
kinetic energy ek can be written as the sum of these two scalar components: the translating kinetic
energy ek trans and the rotating kinetic energy ek rot:

ek “
ÿ

eki “ ek trans ` ek rot “
1
2
¨v82 `

1
2
¨

I
m
¨ω2 (6)

The term I/m is the specific moment of inertia (again, per unit mass) of the flapping wing and
it accounts for the spanwise mass distribution along its length R. More on this ratio later. To write
Equation (5) in a more general format, the kinetic energy term ek trans found in its denominator is
replaced by Equation (6). This results in the equation for the normalized lift ηL that can be applied
directly to evaluate the lifting capability of, say, a lift rotor that generates lift L while translating at a
velocity v8 and rotates at an angular velocity ω:

ηL “
L

ř

eki¨ρ¨Sp
“

L
”´

1
2 ¨ v82 ` 1

2 ¨
I
m ¨ω

2
¯

¨ρ¨Sp

ı (7)

The average normalized lift ηL of flapping wings is obtained by replacing the steady state lift L
and angular velocity ω in Equation (7) by the average lift L and the average angular velocity ω due
to flapping:

ηL “
L

ř

eki¨ρ¨Sp
“

L
”´

1
2 ¨v8

2 ` 1
2 ¨

I
m ¨ω

2
¯

¨ρ¨Sp

ı (8)

Throughout this paper, the freestream velocity v8 and the average angular velocity ω are assumed
to remain constant over time. Note that for gliding flight, ω = 0 in Equation (7) and ω = 0 in Equation (8),
and as a result, the normalized lift ηL in Equation (7) and the average normalized lift ηL in Equation (8)
equal the steady state lift coefficient CL in Equation (1). In case of the average lift ηL for gliding or
soaring flight, ω = 0, we find that the normalized lift ηL equals the steady state lift coefficient CL:

ηL “
L

ř

eki¨ρ¨Sp
“

L
1
2 ¨v8

2ρ¨Sp
“ CL (9)

For small values of the average angular velocity ω due to flapping, the quasi-steady state
assumption for flapping flight can be invoked and the above steady state equation, Equation (9),
can be applied. More on the quasi-steady assumption is given in Section 5.

The quasi-steady assumption tells us that the average normalized lift ηL « lift coefficient CL
with one caveat: the definition of the reference area Sp (symbol in upper case) chosen for both ηL
and CL is the sum of all planform areas of the aerodynamic surfaces that (i) contribute to the net
average lift L and (ii) are found (close to) perpendicular to the vector lift L (the contribution to lift by
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the fuselage or body is neglected in this paper). This definition of reference area is considered to be
physically proper (upper case Sp) whereas the definition of a reference area that does not consider
all surfaces contributing to lift (in a positive or negative sense) is considered a physically improper
reference area (lower case sp), as is the case of the legacy reference area sp of an airplane in Equation (1)
(which does not account for tail or canard surfaces, both contributing to lift). In the case of a bumblebee,
the physically proper reference area Sp is its total wing area.

The average normalized lift ηL during hover (v8 = 0 in Equation (8)) is:

ηL “
L

1
2 ¨

I
m ¨ω

2¨ρ¨Sp
(10)

Whereas the legacy equations for CL in Equations (2) and (4) require prior knowledge of the
flow field surrounding a flapping wing (which implies the calculation of the velocity field ahead of
each element of the wing along its span r and over time t by resorting to the BEM), Equations (8)
(for forward flight) and (10) (for hovering flight) do not require such knowledge, and so, do not resort
to the BEM as the average angular velocity ω due to flapping is included in these equations. It is
recalled that the sole function of resorting to BEM is to introduce ω of the flapping wings into the basal
Equation (1).

With the exception of the ubiquitous usage of the kinetic energy q8 of a flowing mass of air,
the field of aerodynamics does not made extensive use of the concept of energy as do the fields
of strength of materials and structure design (i.e., elastic strain energy, Castigliano’s theorem, etc.).
Nor has aerodynamics made frequent use of appropriate figures of merit a used in mechanics and
thermodynamics. A figure of merit is defined here as a dimensionless number that (i) possesses a
physical meaning, that of a ratio of work w and kinetic energy ek; (ii) uses only physically proper
parameters for normalizing (dividing) the average lift L (or average drag D and thrust T, forces not
covered in this paper), that is, parameters that have a dominant effect in the generation of lift L; (iii) is
associated with a maximum value ηL max which is usually empirical in nature, and (arguably) close
to 1; and (iv) can be read on a stand-alone basis as a “high” or a “low” value.

The average normalized lift ηL is a figure of merit like the efficiency η used in mechanics and
thermodynamics, and has the same physical significance: the ratio of work and energy.

The physical meaning of the average normalized lift ηL is the ratio of the work w (= L{ρ¨Sp)
exerted by the surface Sp and the kinetic energy ek available at this reference surface Sp during the
generation of the average net lift L [5]. This ratio w/ek is made apparent by rewriting Equation (8) as:

ηL “

L
ρ¨Sp

1
2 ¨v8

2 ` 1
2 ¨

I
m ¨ω

2 “
w
ek

(11)

Note that when the wing loading, L{Sp, found in the numerator of Equation (11), is divided by
the density ρ, it results in the specific work w exerted by the flapping wings.

Equation (11) does not imply that the average lift L generated by flapping is sensitive to the specific
moment of inertia I/m of the flapping wings, but the average normalized lift ηL is. The above equation
format (i.e., w/ek) allows for a novel physical interpretation of the normalized lift, an interpretation
that is shared with all physically proper lift coefficients CL, as applied, say, to a fixed-winged airplane
(ω = 0 in Equation (11)) as it accelerates gradually during straight and level flight as it generates a
constant amount of lift L (equal to its weight W) while gradually reducing its angle of attack. In this
scenario, the work exerted by the fixed wing, L/ρ¨Sp, remains constant (L = W = constant) whereas the
kinetic energy 1

2 ¨v8
2 available at the wing gradually increases. Its normalized lift ηL (or lift coefficient

CL) measures the amount of work w done “per kinetic energy available” ek that is found to reduce
gradually as evidenced by the gradual reduction of the angle of attack. In other words, L/ρ¨Sp remains
constant in the numerator of Equation (11), whereas its denominator gradually increases, resulting in
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a decrease of the normalized lift ηL (or lift coefficient CL). This physical concept is applicable to the
lift coefficient CL as long as it is calculated by normalizing lift L by physically proper parameters only.
The use of one or more physically improper parameters for calculating CL will render it also physically
improper and unfit for use for comparing different lifting surfaces (say, between flapping wings and
rotating cylinders in Magnus effect). At this point, and possibly addressing the possible question
raised by the reader on the purpose or validity of comparing such differing lifting systems, it is argued
that the usefulness of a figure of merit may be seen to increase if these comparisons, however unlikely,
are allowed as meaningful (in the same way the efficiency η of, say, the Otto cycle and a jet engine’s
Brayton cycle can be compared in thermodynamics). The use of physically improper parameter(s) will
result in physically improper legacy coefficients CL and CDo that do not allow for such meaningful
comparisons, as is the case when comparing the lift coefficient CL of different aircraft configurations
(e.g., flying wing against tail-configured aircraft) or when comparing the parasite drag coefficient CDo
of airplanes of different wing areas (e.g., F-104 Starfighter against B-58 Hustler). When using these
legacy coefficients, meaningful comparisons can still be made by limiting the comparison of CL to
airplanes of same configuration (flying wing against flying wing), or comparing the CDo of airplanes
with same physically improper reference area sp [5].

Enter the third peculiarity of Equation (1): as mentioned above, a valid side-by-side comparison
of the normalized lift ηL of steady state lift systems (i.e., fixed-wing aircraft) as well as the average
normalized lift ηL for time-dependent lift systems (i.e., bumblebees) requires a consistent, physically
proper reference area: the reference surface Sp (upper case S) in Equation (5) (and onwards) is the total
planform area found (close to) perpendicular and contributing to the net average lift L. As discussed
above, an expected application of a dimensionless coefficient, be it the lift coefficient CL, the normalized
lift ηL or its average value ηL is the comparison of the ability of generating lift L by various types
of lift systems, be these designed by engineers (i.e., tail or canard-configured airplanes, lift rotors,
ornithopters) or researched by biomechanicists (i.e., flapping wings of bumblebees). As mentioned,
the possibility of a side-by-side comparison of these differing systems has a valuable cross-pollination
potential that unfortunately is not currently possible as the definition of a reference area selected
for normalizing steady-state lift L of aircraft (with a reference area represented by a lower case sp

in Equation (1)) is not consistent with the definition of a reference area used for normalizing the
time-dependent lift L in biological flight (with a reference area represented by an upper case Sp in
Equation (5) and onwards). The average lift coefficient CL of a bumblebee is obtained by normalizing
its lift L by all the aerodynamic surfaces contributing to its generation, an all-inclusive definition made
explicit by the use of the upper case symbol, Sp, as shown in Equation (5). In contrast, and here is the
third peculiarity of CL in Equation (1), the reference area used for a tail or canard-configured airplane
considers only the main wing planform sp. This definition of the legacy sp, suggested by Munk in
1923 [6], excludes the tail surface and so, neglects its contribution to the net lift L (usually a negative
one due to stability purposes) as well as the canard surface (and so, neglects its contribution to the net
lift L, always a positive one). This non-inclusive definitions of reference area is a third peculiarity of
Equation (1) that results in an physically improper parameter, and is made explicit in this paper by
choosing for a lower case symbol, sp, as shown in Equation (1).

The inconsistency in the definition of reference areas results in, say, the bumblebee having a
relatively lower wing loading L{Sp, whereas the tail and canard-configured airplanes will have a
higher wing loading L/sp (as tail and canard areas are not accounted for). This results in an “inflated”
wing loading (as sp < Sp, so L/sp > L{Sp) for the tail and canard-configured airplanes when compared
to a bumblebee. This larger wing loading, when divided by the density ρ (as per Equation (11)) results,
again, in an “inflated” work w exerted by the tail and canard-configured airplanes, which in turn
results in an inflated ηL (and ηL max) when compared to a bumblebee. This inflated value can be
mistakenly reported as a result of a Reynolds number effect but is, instead, due to an inconsistency in
the definition of reference areas. That an increase in the Reynolds number has an effect of an increase
in CL max is not in question: what is highlighted here is a significant contribution towards an increase
in the lift coefficient CL (and CL max) that is a result of a more mundane problem: the neglect of the
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tail and canard areas. If comparisons between biological flyers and aircraft are necessary, the reader
is encouraged to compare their legacy CL (and CL max) values using flying wings instead of tail and
canard-configured airplanes. In other words: the comparison of the capability of generating lift by
tail and canard-configured airplanes on one side and bumblebees on the other may be flawed due to
the use of inconsistent definition of their reference areas that, by neglecting a large percentage of their
lifting areas that contribute to net lift («tail and canard are typically 20% of the total lifting planform)
invalidates a meaningful comparison between lift coefficients, as results show an overestimate of the
lift capability of tail and canard-configured by, typically, 20%. Although not related to flapping flight,
the above-described situation also arises when comparing the (inevitably lower) CL max of a flying
wing with the CL max of a tail or canard-configured aircraft. The normalized lift ηL is a figure of merit
that is not configuration-dependent and allows for the meaningful comparison of a large variety of
lifting systems due to its use of a consistent, physically proper definition of reference area Sp [5].

Next, we evaluate two physically proper parameters found in Equation (11): the average angular
velocity ω and the specific moment of inertia I/m. From these parameters, other physically proper
parameters will be derived, and their inclusions in Equation (11) will make this equation more practical.

The average angular velocity ω of flapping wings in Equation (11) equals 2¨f ¨Φ where f is the
flapping frequency in cycles per second (a cycle is a downstroke followed by an upstroke) and Φ is the
stroke angle (a stroke is the wing’s upstroke or downstroke).

The specific moment of inertia I/m in Equation (11) is the specific moment of inertia of a single
flapping wing, a term that is not related to aerodynamics but to its spanwise (not chordwise) mass
distribution. The specific moment of inertia I/m of a wing is related to the second moment of inertia, but
from a “kinetic energy-during-flapping” standpoint that occupies us here, the chordwise placement of
the wing’s center of gravity, CG, is neglected. This is so as is the wing pronation/supination involves a
negligible amount of kinetic energy as the wing rotates about the wing’s long axis during each flapping
cycle. So, the “second moment” scenario is now a “first moment” one, were the two-dimensional
wing is substituted by a one-dimensional rod of constant density distribution along its length, a valid
substitution as long as the wing’s spanwise CG location coincides with the rod’s CG (as the rod of
length R has a constant density along its length R, its center of gravity is placed at R/2). From an
inertial standpoint and from a “per unit basis” (and understanding that aerodynamics does not play a
role in I/m) the flapping wing will have the same inertial property (i.e., I/m) as the rod, as long as
both (i) share the same kinetic characteristics (wing pronation and supination during flapping are not
considered) and (ii) the CG of the wing and rod are placed at the same spanwise distance dCG from
the axis of rotation. Whereas the length R of the wing and the rod may be different, the distance of
their CG to the axis of rotation dCG must be the same for this substitution to be valid (i.e., same dCG).
So, if the CG of the wing is not known, the term I/m is obtained by replacing the wing by a cylindrical
rod of the same length R as the wing’s span. It is not necessary to know the mass m of the wing as
Equation (11) contains specific kinetic energy terms ek, that is, energies per unit mass.

There are two cases to contemplate: as mentioned above, if the CG of the wing is not known,
it can be assumed to be at half the wing’s length, R/2, and so, its specific moment of inertia I/m can
be substituted by the moment of inertia per unit mass of a rod as it rotates about its end and equal to
1{3¨R2, a value found in [7] (p. 251, Figure 9f). The 1/3 value is what Weis-Fogh calls the shape factor
for the second moment of the area, σ [3] (p. 173, Table 1, first row). The second case is when the center
of gravity of the wing can be calculated and is not found to be at (or close to) R/2 on the wing but at a
distance, say, dCG, from the axis of rotation. In this case, the rod substituting the wing will be of length
2¨dCG, and its specific moment of inertia I/m of the wing becomes 1{3¨(2¨dCG)2.

If the assumption of the placement of the center of gravity of the wing at R/2 is acceptable, then
I/m in Equation (11) can be replaced with 1{3¨R2, and ω is replaced by 2¨f ¨Φ, and the fraction 1

2 is made
a common factor and placed outside of the parentheses. With these changes made in the denominator
of Equation (11), we define the total wing velocity Vw of a flapping wing as:
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Vw “

„

v82 `

ˆ

I
m

˙

¨ω2


1
2
“

„

v82 `

ˆ

1
3
¨R2

˙

¨ p2¨ f ¨Φq2


1
2
“

„

v82 `
1
3
¨ p2¨ f ¨Φ¨Rq2


1
2

(12)

The product Φ¨R equals the peak-to-peak amplitude A travelled by the wing tip along a upstroke
(or a downstroke) and if multiplied by the frequency 2¨f, it results in the average tangential velocity
vtt of the wing tip (subscript tt stands for tip, tangential) during a stroke. Replacing in Equation (12),
the total velocity Vw is:

Vw “

„

v82 `
1
3
¨ p2¨ f ¨Aq2


1
2
“

„

v82 `
1
3
¨vtt

2


1
2

(13)

For a non-zero translating flight velocity, v8 ‰ 0 in Equation (13), the translation velocity v8 is
made a common factor and, when taken out of the parentheses, the above expression is written as a
function of the velocity ratio vtt{v8 that equals the Strouhal number, St [8]:

Vw “ v8¨

«

1`
1
3
¨

ˆ

vtt

v8

˙2
ff

1
2

“ v8¨
ˆ

1`
1
3
¨St2

˙
1
2

(14)

This definition of the total wing velocity Vw is based on kinetic energy considerations and
varies from Lentink and Dickinson’s definition of the characteristic speed U, which derives from the
kinematics of the flapping wing [9] (p. 2695).

In the same vane, the total dynamic pressure Q is defined as a function of total velocity Vw and the
Strouhal number St:

Q “
1
2
¨ρ¨Vw

2 “
1
2
¨ρ¨v82¨

ˆ

1`
1
3
¨St2

˙

“ q8¨
ˆ

1`
1
3
¨St2

˙

(15)

The total dynamic pressure Q results from the addition of the dynamic pressure due to the wing
translation, q8, and the dynamic pressure due to flapping, and should not be confused with the
total pressure p0, the sum of static and dynamic pressure. Note that for the translating flight of fixed
wings (i.e., gliding flight), the flapping frequency f is 0, and so, the Strouhal number St is zero, and
the total velocity Vw is then reduced to the freestream velocity at infinity, Vw = v8, in Equation (14).
Furthermore, the total dynamic pressure Q is reduced to the dynamic pressure q8 in Equation (15).

The average normalized lift ηL of flapping wings is next written as a function of Strouhal number:

ηL “
L

1
2 ¨ρ¨v8

2¨
´

1` 1
3 ¨St2

¯

¨Sp

(16)

The relationship between the steady state lift coefficient CL and the time-dependent average
normalized lift ηL is evaluated by the ratio CL{ηL, or the ratio Equation (1)/Equation (16):

CL
ηL
“ 1`

1
3
¨St2 (17)

As the flapping frequency f tends to 0 for a given forward velocity v8, the Strouhal number St
tends to 0 and ηL tends to CL (fÑ0, then StÑ0 and CL{ηLÑ1). Equation (17) can be used to advantage
to calculate the average normalized lift ηL in two steps: the first step calculates the coefficient CL for the
steady state flight (by assuming extended wings and simply not considering its flapping kinematics)
using Equation (1). The second step “corrects” CL for the time-dependent effects of flapping by
dividing the steady state CL by 1 + 1{3¨St2. The lift coefficient CL in Equation (17) during flapping
flight can be interpreted as the hypothetical steady-state lift coefficient CL required from the extended,



Aerospace 2016, 3, 24 8 of 15

non-flapping wings as they generate an (unrealistic) lift L equal to the weight of the flyer as it translates
at the same forward speed v8 as the actual flapping flyer. This steady state CL is unrealistic as the
wings will stall at a much lower value. Correcting this steady-state fictitious CL value by dividing it
(1 + 1{3¨St2) results in the average normalized lift ηL of the flapping wings of the flyer. A quasi-steady
analysis of flapping flight can be contemplated when the values of the steady state lift coefficient CL
and the corresponding average normalized lift ηL are close (i.e., CL « ηL). More on this subject in
Section 5.

The total velocity Vw defined in Equation (14) can be used to advantage to characterize the
Reynolds number of flapping wings of characteristic chord c, surrounded by the air of kinematic
viscosity, υ:

Re “
Vw¨c

υ
“

´v8¨c
υ

¯

¨

ˆ

1`
1
3
¨St2

˙
1
2
“ Ress¨

ˆ

1`
1
3
¨St2

˙
1
2

(18)

The Reynolds number Re due to flapping can be calculated in two steps: the first step calculates
the steady state Reynolds number Ress (the subscript ss stands for steady state) contained in the leftmost
parentheses, and the second step corrects Ress for flapping effects by multiplying it by (1 + 1{3¨St2)

1
2 .

A closely-related approach to evaluating the Reynolds number of flapping wings has been suggested
by Lentink and Dickinson [9] (p. 2696).

The average normalized lift ηL can be written in a familiar format, as a function of the total
velocity Vw or the total dynamic pressure, Q,

ηL “
L

1
2 ¨ρ¨Vw

2¨Sp
“

L
Q¨Sp

(19)

The following Table 1 shows how the time-dependent variables Vw, Q, ηL and Re can be calculated
by “correcting” the corresponding steady-state parameters v8, q8, CL and Ress by the term (1 + 1{3¨St2):

Table 1. Time-dependent variables obtained from steady state variables.

Time-Dependent Variable Time-Dependent Variables as a
Function of Steady State Parameters Equation No.

Total velocity, Vw Vw = v8¨(1 + 1{3¨St2)
1
2 14

Total dynamic pressure, Q Q = q8¨(1 + 1{3¨St2) 15
Average normalized Lift, ηL ηL = CL¨(1 + 1{3¨St2)´1 17

Reynolds number, Re Re = Ress¨(1 + 1{3¨St2)
1
2 18

For illustration purposes, Table 2 shows how the correction factor (1 + 1{3¨St2), the ratio of total
dynamic pressure and dynamic pressure, Q/q8, and the ratio of the Reynolds number of a flapping
wing and the corresponding steady state Reynolds number of the same wing, Re/Ress, vary with
Strouhal number, St:

Table 2. Strouhal number effect on total dynamic pressure Q and Reynolds number Re of
flapping wings.

St 1 + 1{3¨St2 Q/q888 Re/Ress

0 1.00 1.00 1.00
1 1.33 1.33 1.15
2 2.33 2.33 1.53
3 4.00 4.00 2.00
4 6.33 6.33 2.52
5 9.33 9.33 3.06
6 13.00 13.00 3.61
7 17.33 17.33 4.16
8 22.33 22.33 4.73
9 28.00 28.00 5.29

10 34.33 34.33 5.86
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A desirable feature of the average normalized lift ηL is its association with an empirical maximum
value, ηL max, that makes it possible to read it on a stand-alone basis, as a “high” or “low” value,
relative to ηL max. In a similar way, the lift coefficient CL of a fixed lifting surface can also be read
on a stand-alone basis (which does not necessarily imply it is a physically proper figure of merit).
This feature should not be taken for granted as is illustrated by the ubiquitous drag coefficient CD of
an airplane of, say, 0.0345 or 345 counts (calculated using the customary wing planform as a reference
area). This value cannot be read on a stand-alone basis as this value is not associated to a common
maximum value CD max, and so, cannot be read as a “high” or low” value.

3. Evaluation of CL and ηL of Hovering Bumblebees

This section compares the application of the normalized lift ηL against the two legacy and well
known legacy coefficients CL derived from the basal CL equation using the BEM. One lift equation is the
one derived by Dudley and Ellington (subscript DE), Equation (2), and the second equation is derived
by Weis-Fogh (subscript W–F), shown in Equations (3) and (4). In this section, these dimensionless
numbers, ηL, CL DE, and CL W´F are calculated for three bumblebees during hovering flight. Data on
weight W, reference area Sp and wing root-to-tip length R for the three bumblebees BB01, BB02, and
BB03 are presented in Table 3 and were obtained from Dudley and Ellington [10] (p. 32, Table 1):

Table 3. Weight and wing geometric parameters of the three bumblebees.

ID W (N) Sp (m2) R (m)

BB01 0.00172 0.00011 0.0132
BB02 0.0018 0.0001 0.0137
BB03 0.00583 0.0137 0.0154

Furthermore, kinematic data of these bumblebees are also given by Dudley and Ellington and are
presented in Table 4 [2] (Figures 8–10, Part A, pp. 38–40). During hover, the air density ρ is 1.23 kg/m3

at sea level, and the kinematic viscosity υ is assumed to be 1.46 ˆ 10´5 m2/s, corresponding to the
according to the standard atmosphere [11].

Table 4. Kinematic data of the flapping wings of the three bumblebees during hover.

ID f (Hz) Φ (rad) ω (1/s)

BB01 155 2.02 627.57
BB02 147 1.82 533.61
BB03 166 2.27 753.23

The average lift coefficient CL DE is calculated by Dudley and Ellington using Equation (2) and
read from a graph in [2] (p. 72, Figure 10), and the quick estimates CL W´F by Weis-Fogh’s using
Equation (3), and the average normalized lift ηL is calculated using Equation (10). Results are presented
in Table 5 below.

Table 5. Averages of the two legacy average lift coefficients CL and the average normalized lift ηL for
the three bumblebees during hover. Note lower average value of 1.29 for average normalized lift ηL.

ID CL DE CL W´F ηL

BB01 1.2 1.87 1.15
BB02 2.1 2.35 1.45
BB03 2.65 2.09 1.29

Average 1.98 2.01 1.29

The average normalized lift ηL has the lowest average.
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4. Evaluating CL and ηL of Forward Flying Bumblebees

This section compares the average lift coefficient CL DE by Dudley and Ellington with the average
normalized lift ηL. Weis-Fogh’s lift coefficient as per Equation (4) is not included in this study as his
equation is only fit for evaluating hovering flight. The forward velocity v8, frequency f, and flapping
stroke angle Φ, shown in the first three columns in Table 6 represent data of the three bumblebees at
the different forward velocities of 1, 2.5, and 4.5 m/s [2] (Figures 8–10, Part A, pp. 38–40). The next
three columns show the calculated mean flapping angular speed pω “ f ¨Φq, the tangential tip velocity
pvtt “ ω¨Rq, and Strouhal number

´

St “ 2¨ f ¨Φ¨R
v8

¯

. The next two columns show the average normalized

lift, ηL, Equation (16) and the average lift coefficient CL DE by Dudley and Ellington using Equation (2).
The final column shows the ratio of the actual Reynolds number of the flapping wing and the Reynolds
number Ress corresponding to the steady state for the same wing as it flies at the same translating
velocity v8 as the flapping wing).

Table 6. Kinematic data of flapping wings, flight data, Dudley and Ellington’s average lift coefficient
CL DE, average normalized lift ηL , and the ratio of flapping Re to steady-state Ress.

ID v8 (m/s) f (Hz) Φ (rad) ω (1/s) vtt (m/s) St ηL CL DE (1 + 1{3¨St2)
1
2 Re/Ress

BB01

0 155 2.02 627.57 – – 1.15 1.2 – –
1 145 1.95 566.84 7.48 7.48 1.34 1.72 19.66 4.43
2.5 152 2.18 663.18 8.75 3.50 0.83 1.28 5.09 2.26
4.5 144 1.80 517.70 6.83 1.52 0.74 1.15 1.77 1.33

BB02

0 147 1.82 533.61 – – 1.45 2.1 – –
1 132 1.73 456.13 6.25 6.25 1.84 2.18 14.02 3.74
2.5 132 2.01 529.84 7.26 2.90 1.09 1.8 3.81 1.95
4.5 143 1.66 474.17 6.50 1.44 0.75 1.05 1.69 1.30

BB03
0 166 2.27 753.23 – – 1.29 2.65 – –
1 157 2.22 695.95 10.72 10.72 1.47 3.25 39.29 6.27
2.5 141 1.68 472.46 7.28 2.91 2.42 2.1 3.82 1.96

These tabular values in Table 6 values are represented graphically in Figure 1, showing the average
lift coefficients CL DE (dashed line data, copied from [2] (p. 72, Figure 10)) and average normalized
lift values ηL (continuous lines) for hover (v8 = 0, along the ordinate axis) and forward flight, as a
function of forward speed v8. Table 7 shows results for CL DE and ηL.

Table 7. The Dudley and Ellington’s average lift coefficient CL DE, and the average normalized lift ηL,
and corresponding averages for forward flight.

ID
CL DE ηL CL DE ηL CL DE ηL

1 m/s 2.5 m/s 4.5 m/s

BB01 1.72 1.34 1.28 0.83 1.15 0.74
BB02 2.18 1.84 1.8 1.09 1.05 0.75
BB03 3.25 1.47 2.1 – – –

Average 2.38 1.55 1.73 1.89 1.89 1.89

Dudley and Ellington have stated that no good quality for the average lift coefficient CL was
obtained for bumblebee queen BB03 at v8 of 4.5 m/s [10] (p. 35). According to their data though,
no abnormality was found in the average lift coefficient of BB03 at the prior speed of 2.5 m/s, which
measured a CL DE of 2.1, as shown in Figure 1. At this speed, the average normalized lift ηL of BB03 is
anomalously high, 2.42, as shown as a grey symbol “ ” in Figure 1.

Based on this data, the normalized lift ηL may be better suited for diagnosis and detection of
anomalous flight data.
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Figure 1. The average lift coefficient CL (dashed lines) and average normalized lift ηL (continuous
lines) of the three bumblebees during hover (along the ordinate axis, at v8 = 0) and forward flight
(for v8 > 0). Grey labels relate to abnormal data encountered by Dudley and Ellington.

5. Evaluating the Aerodynamics of Bumblebee BB01

The average normalized lift ηL of, say, bumblebee BB01 as it flies at a forward speed of 2.5 m/s
has been found to be 0.83, as shown in the third row, seventh column in Table 6. This value can be
easily computed with the aforementioned two-step approach and implied in Equation (17), repeated
below for convenience,

ηL “
CL

´

1` 1
3 ¨St2

¯ (20)

When using this approach, both the normalized lift ηL and the steady state lift coefficient CL are
calculated using the same physically proper reference area Sp, as defined in Section 2 (i.e., the total
wing area of the bumblebee). The first step calculates the steady state (non-flapping) lift coefficient CL
of the bumblebee using Equation (1), using the following information: its weight W of 0.001715 N, its
reference area Sp of 0.000106 m2, the density at sea level of 1.23 kg/m3, and a forward velocity v8 of
2.5 m/s. The resulting steady state lift coefficient CL equals 4.2, an obviously unrealistic value that is
much higher than the maximum value CL max that can be possibly reached during steady state at these
low (or any) Reynolds numbers (the steady state value for CL max at this Reynolds numbers is likely
< 1). The second step modifies this steady state lift coefficient CL by dividing it by the “correction
factor” (1 + 1{3¨St2) to account for the effects of time-dependent flow. This correction factor is 5.08,
where the Strouhal number St is 3.5

´

St “ 2¨ f ¨Φ¨R
v8

“ 2¨152¨2.18¨0.0132
2.5

¯

. The resulting average normalized
lift ηL is 0.83 (=4.2/5.08).

This second step can also be obtained graphically using Figure 2 by entering the steady state CL
of 4.2 and intersecting the isoline corresponding to a constant Strouhal number St of 3.5, and reading
the resulting average normalized lift of ηL on the vertical axis: 0.83.
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Figure 2. The average normalized lift ηL of flapping wings is related to their steady-state lift coefficient
CL of fixed wings by the isolines corresponding to various Strouhal numbers (0.2 < St < 5 shown).
The quasi-steady region, ηL « CL, is bound by St < 0.2.

Figure 2 shows a region delimited by the (vertical) ordinate axis and the isoline for St = 0.2
(dashed line). This area represents the quasi-steady region where the average normalized lift ηL of
flapping flight using Equation (16) is close to its steady-state CL calculated using Equation (1). In other
words, for flight conditions where the Strouhal number St is equal or less than 0.2, then ηL « CL and
so, it can be estimated by CL, and the actual average normalized lift ηL is smaller than CL by 1.33%.
If St = 0.3, ηL is smaller than CL by 2.91% and for St = 1, ηL is smaller than CL by 33%.

The ratio of the Reynolds number, Re, of a flapping wing and the Reynolds number Ress for the
corresponding steady state, non-flapping flight, Re/Ress, is given by Equation (21). Following a similar
aforementioned two-step procedure, the actual Reynolds number Re of flapping wings is calculated
by first calculating its steady state Reynolds number Ress for the wing of BB01 of chord c of 0.002 m
(span/aspect ratio = R/AR = 0.0132/6.56), flying at a forward velocity v8 of, say, 2.5 m/s, at sea level.
This results in a steady state Reynolds number Ress of 344, and when multiplied by (1+ 1{3¨St2)

1
2 with

St = 3.5, it results in Re of 777:

Re “
´v8¨c

υ

¯

¨

ˆ

1`
1
3
¨St2

˙
1
2
“ Ress¨

ˆ

1`
1
3
¨St2

˙
1
2
“ 344¨2.26 “ 777 (21)

The term (1+ 1{3¨St2)
1
2 in Equation (21) is a multiplier that converts the Reynolds number from

steady to time-dependent values. The multiplier can be computed graphically by using Figure 3: the
Strouhal number St of 3.5 is entered on the abscissa (horizontal axis) and intercepting the curve, one
reads the value for Re/Ress of 2.26 on the ordinate axis. Multiplying Ress by this number results in Re.

Flapping flight in the region delimited by St ď 0.2 may be considered quasi-static and so, the
Reynolds number Re of the flapping wing may be approximated by its steady-state counterpart, Ress as
Re « Ress.
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6. Conclusions

“Essentially, all models are wrong, but some are useful”. Little is there to argue against this
statement, credited to the statistician George E. P. Box. This paper showcases the usefulness of the
average normalized lift ηL of flapping wings, a figure of merit with a physical meaning that is easy to
apply as it does not require prior knowledge of the surrounding flow field by the user and does not
resort to the BEM for its computation.

The close lineage of ηL with the basal equation for CL is evidenced by making the flapping
frequency f approach zero in Equation (8): when f Ñ 0, then ω Ñ 0, and ηL. Furthermore,
a quasi-steady regime for flapping flight can be defined quantitatively as a function of the Strouhal
number. This region, shown in Figure 2 is bounded by 0 < St < 0.2, where the maximum difference
between ηL and CL in this region is never to exceed 1.33%. This suggestion of the quasi-steady regime
boundary may only be accepted if this difference of 1.33% is acceptable. A reason the particular
upper boundary for quasi-steady flight was suggested is that it coincides with the lower boundary
of the Strouhal number that defines the region for high power efficiency for flying and swimming
animals during cruise, namely, 0.2 < St < 0.4, as documented by Taylor et al. [8]. The equations for
the average normalized lift ηL presented in this paper can also be applied to underwater locomotion
for the calculation of the average thrust ηT and drag ηD by using the appropriate physically proper
parameters (i.e., the reference planform area of the caudal fin for calculating ηT , and the reference
frontal area for calculating ηD) [5].

Normalizing the average lift L for calculating the normalized lift ηL by dividing it by physically
proper parameters assures the normalized lift to have a physical meaning: that of the ratio of work
w exerted by the wing and the kinetic energy ek available at the wing, a meaning that makes the
normalized lift ηL independent of the configuration or type of lifting system. The average normalized
lift ηL of a bumblebee can be compared meaningfully to the normalized lift ηL of, say, a tail or
canard-configured airplane, or the normalized lift ηL of a rotating cylinder in Magnus effect, a lift rotor,
a quadcopter or an ornithopter.

A final intriguing observation: Table 5 shows that the average value of the average ηL of the three
hovering bumblebees is 1.29, a value that is referred here as a “maximum operating ηL”. This value is
numerically close to a typical “maximum operating ηL” for aircraft (with no flaps, using a physically
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proper reference area Sp as the sum of all aerodynamic surfaces contributing to its net lift L, that
is, including horizontal tail and/or canard planform areas in the case of aircraft). Here, the term
“maximum operating ηL” is a transparent means by the author of staying away from ηL max (stall).
Additionally, it may be observed that the hovering bumblebees may not be flying at their ηL max as
they may have some energy reserve for an upward vertical acceleration. In the same way, airplanes
may have to fly at a higher normalized lift to effectively experience stall.

As the average normalized force set ηF containing the average normalized lift ηL, drag ηD
and thrust ηT share the same format of Equation (8) as well as subsequent derivations that
include the Strouhal number, their common use in different fields may contribute to a consistent
comparison of differing lift platforms, independent of configuration (wings vs. caudal fins) and favor
cross-pollination across engineering, science, and biomechanics borders and help understand the
effects of Reynolds numbers.

For reference purposes it is mentioned that an earlier paper introducing the normalized lift as LN
can be found in [12].
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Glossary

A amplitude (distance travelled) by the wingtips over a wing stroke
c mean chord of wing
CL steady-state lift coefficient (i.e., during gliding or soaring)
CL DE average lift coefficient derived by Dudley and Ellington
CL W´F Weis-Fogh’s quick estimate of average lift applicable to hovering flight only
dCG distance between spanwise location of center of gravity of wing and rod to axis of rotation
ek specific kinetic energy per unit mass of flyer at the flapping wing
f stroke frequency during flapping
I/m specific moment of inertia of flapping wing about its end (shoulder or hinge)
L lift
Lb Lift on the body
L average lift
m mass of the flyer or lifting system, mass of surrounding fluid (air)
f flapping frequency
q8 dynamic pressure, 1

2 ¨ρ¨v8
2 of a moving mass of fluid (air)

Q total dynamic pressure, not to be confused with the sum of static and dynamic pressure, po

R root-to-tip length of wing. Length of rod replacing a wing, used in calculation of I/m

r
a variable of integration representing the distance from wing root to a given wing station
along the semispan, 0 < r < R

Ress Reynolds number for steady state flight
Re Reynolds number of a flapping wing

sp

physically improper (lower case) reference wing planform area (subscript p stands for
planform). Excludes other aerodynamic surfaces contributing to the net lift L or average net
lift L. Upper case Sp is physically proper reference area

St Strouhal number

Sref
physically proper reference area used to normalize lift L for obtaining ηL. It is obtained by
adding all planform areas that contribute to the generation of lift L, ΣSref i

T period, the duration of one complete flapping cycle or wingbeat
t time, variable of integration
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vtg
tangential velocity due to the angular velocity of the flapping wing at a given chordwise
wing element during the application of the blade element analysis

vtt tangential velocity of flapping wing at the tip

v8
freestream velocity at infinity relative to a static flyer, velocity of translating flight while
inmersed in static mass of air

Vw total velocity
W weight of the flyer during equilibrium flight (forward flight or hover), equal to average lift, L
vr(r,t) relative velocity
β stroke plane angle
ρ density of air at sea level, 1.23 kg/m3

ηL normalized lift of fixed wing and propeller blades
ηL average normalized lift of flapping wings
Φ stroke angle in radians during downstroke or upstroke
υ kinematic viscosity, 1.46 ˆ 10´5 m2/s
σ shape factor for the second moment of the wing area [3]
ω average flapping angular speed
Ψ direction of the relative velocity vector
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