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Abstract: This review describes a number of biologically inspired principles that have been applied
to the visual guidance, navigation and control of Unmanned Aerial System (UAS). The current
limitations of UAS systems are outlined, such as the over-reliance on GPS, the requirement for more
self-reliant systems and the need for UAS to have a greater understanding of their environment. It is
evident that insects, even with their small brains and limited intelligence, have overcome many of
the shortcomings of the current state of the art in autonomous aerial guidance. This has motivated
research into bio-inspired systems and algorithms, specifically vision-based navigation, situational
awareness and guidance.
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1. Introduction

The past decade has seen an ever-increasing trend toward the use of autonomous robots for civil
and defence applications. In particular, Unmanned Aerial System (UAS) have become a resourceful
solution in many commercial flight operations. At present, there is a rich variety of UAS designs,
ranging from medium to large fixed wing endurance aircraft (e.g., Global Hawk, Reaper, Scan Eagle)
to smaller, more manoeuvrable, easily deployed multi-rotor platforms (e.g., Phantom Drone,
Parrot AR Drone). Table 1 provides a brief overview of the main commercial and military UAS used
nowadays, along with their specifications and intended applications.

Table 1. A brief overview of various Unmanned Aerial System (UAS) platforms and applications.

UAS Type Approx. Size (m) Endurance Primary Function

Global Hawk [1] 14 (length), 40 (wingspan) 32+ h Surveillance
Hummingbird [2] 11 (length), 11 (wingspan) 24 h Military reconnaissance
Predator [3] 8.2 (length), 14.8 (wingspan) 24 h Military reconnaissance and air strike
Scan Eagle [4] 1.6 (length), 3.1 (wingspan) 24+ h Surveillance
Raven [5] 0.9 (length), 1.4 (wingspan) 60–90 min Communications
Air Robot [6] 1.0 (diameter) 25 min Surveillance and inspection
Phantom 3 [7] 0.35 (diagonal length excluding propellers) 23 min (max) Aerial imaging

The growing popularity of UAS can be largely explained by the increased capabilities they
provide when compared to manned aerial navigation. Unmanned aircraft provide a safer and
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robust alternative for long-term flight operations, especially in performing monotonous tasks,
and navigating in hazardous environments or cluttered scenes that would normally require a pilot’s
full attention.

Current applications for UAS include monitoring and surveillance, search and rescue,
disaster zone recovery, terrain mapping, structure inspection and agricultural crop inspection and
spraying. These tasks often require flying at low altitudes and low speeds in urban or cluttered
environments, thus encouraging the development of UAS that possess Vertical Take-off and Landing
(VTOL) capabilities.

1.1. Current Limitations of Unmanned Aerial System (UAS)

Despite the existing diversity within unmanned aircraft, there are a number of limitations with
the solutions that are currently available for UAS guidance. Examples of shortcomings include
limited levels of autonomy (necessitating substantial human input), limited robustness to external
disturbances, restricted endurance, and suboptimal human-machine interfaces [8]. In addition to the
successful completion of specific missions, greater autonomy in aerial guidance requires navigation
to be more self-reliant (with increased, independent onboard sensing), a deeper understanding of the
surrounding scene (situational awareness), ultimately including an embedded ability to interact and
respond appropriately to a dynamic environment that may change unpredictably.

1.1.1. Navigation

Currently, most manned and unmanned aircraft rely on satellite-based navigation systems
(e.g., the Global Positioning System (GPS)). GPS is often used as the primary navigation sensor,
and combined with an Inertial Measurement Unit (IMU) to fully determine the aircraft’s state
(attitude, and 3D position and velocity). However, GPS-based navigation solutions remain limited by
satellite signal coverage and also become unreliable, in terms of accuracy, in cluttered environments
(e.g., dense forests, cities and locations surrounded by structures). Alternative solutions for
navigation in GPS-denied environments include Simultaneous Localisation and Mapping (SLAM)
and vision-based techniques, such as Vision-based SLAM (VSLAM) and optic flow.

SLAM is a popular technique that simultaneously constructs a map of an unknown environment
and locates the robot within the completed map. The use of these map-based methods provides robots
with the capacity to navigate in cluttered urban and indoor environments [8]. Traditionally, SLAM
techniques used laser data to construct maps, however, VSLAM enables simultaneous localisation
and mapping through the use of imaging sensors. Both SLAM and VSLAM provide accurate and
robust GPS-free navigation through the use of natural landmarks. However, the selection and
extraction of these landmarks in outdoor environments can be computationally expensive and is still
a challenge for machine vision algorithms.

Another method to navigate in GPS-denied or challenging environments is to exploit
radar [9]. Millimetre wave radar systems have been demonstrated to provide robust and accurate
measurements, to be utilised as the primary sensor for SLAM [10,11]. The main drawback, at present,
is that these radar systems have been confined to ground-based robots due to size, weight and power
restrictions on UAS.

As alluded to above, in an effort to overcome the constraints of GPS, as well as reducing
the computational burden of SLAM, vision sensors are increasingly being utilised in conjunction
with biologically inspired algorithms (e.g., optic flow) for autonomous navigation in a variety of
environments. Optic flow, which is the pattern of image motion experienced by a vision system as
it moves through the environment, can be analysed to estimate the egomotion of an UAS. However,
it is a challenge to obtain noise-free estimates of optic flow, and the resulting estimates of the position
of the UAS will display errors that increase with time.
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1.1.2. Situational Awareness

Safe navigation at low altitudes is only the first step to the future of UAS. Situational awareness
is an important capability for enabling UAS to sense changes in dynamic environments and execute
informed actions. Situational awareness is a requirement for applications such as collision avoidance,
detection and tracking of objects, and pursuit and interception. The need for situational awareness
in UAS becomes more apparent in the context of their integration into the civil airspace, where there
is an increasing need for detecting and avoiding imminent collisions (e.g., Automatic Dependent
Surveillance-Broadcast (ADS-B), FLARM (derived from “flight alarm”), Traffic Collision Avoidance
System (TCAS), etc.). Although they have their place, sensors currently used for the detection of
other aircraft (e.g., ground-based [12,13] or airborne [14,15] radar) can be bulky and expensive, and
therefore, are often unsuitable for small-scale UAS.

Indeed, even with the present technology in early warning systems, during the period 1961–2003
there were 37 mid-air collisions in Australia, 19 of which resulted in fatalities [16]. It is interesting
to note that out of the 65 aeroplanes involved, 60 were small single-engine aeroplanes, which are
generally not equipped with the expensive early warning systems. Therefore, the development of
more self-aware, vision-based, detection systems will also benefit light manned aircraft.

The goal for future autonomous aircraft may not be to simply avoid all surrounding objects.
There is also a growing interest for robots to have an understanding of surrounding objects and the
ability to detect, track and follow or even pursue them. For this, a UAS will need to be able to classify
surrounding objects, which might include the object type or its dynamics. In essence, this will provide
a UAS with the capability to determine whether an object is benign, a potential threat, or of interest
for surveillance.

1.1.3. Intelligent Autonomous Guidance

Once UAS have the ability to acquire an understanding of their surroundings, for example an
awareness of threats, the next step is to respond appropriately to the situation at hand. The control
strategy for a potential collision will vary greatly depending upon whether the task involves flying
safely close to a structure, or intercepting an object of interest. Future UAS will not only be
required to assess and respond to emerging situations intelligently, but also abide by strict airspace
regulations [17].

One way to better understand how these challenges could be addressed is to turn to nature.
Flying animals, in particular insects, are not only incredible navigators (e.g., honeybees [18]), but
also display impressive dexterity in avoiding collisions, flying safely through narrow passages and
orchestrating smooth landings [19], as well as seeking out and capturing prey (e.g., dragonflies [20]).
By investigating these animals through behavioural and neurophysiological studies, it is possible to
develop simple and efficient algorithms for visual guidance in the context of a variety of tasks [18].

1.2. Vision-Based Techniques and Biological Inspiration

It is a marvel that flies instinctively evade swatters, birds navigate dense forests, honeybees
perform flawless landings and dragonflies (such as the one seen in Figure 1) efficiently capture their
prey. Nature has evolved to simplify complex tasks using vision as the key sense and utilising a
suite of elegant and ingenious algorithms for processing visual information appropriately to drive
behaviour. Animals such as insects display simple, yet effective, control strategies even with their
miniature brains. These navigation (e.g., visual path integration, local and long-range homing,
landing) and guidance (e.g., object detection and tracking, collision avoidance and interception)
strategies are observable at various scales, and appear tailored specifically to each biological agent
to suit its manoeuvrability, sensing ability, sensorimotor delay and particular task (e.g., predation,
foraging, etc.).
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Figure 1. A dragonfly that has landed on a cable, demonstrating the impressive visual guidance of
insects, despite their small brains and restricted computational power.

Nature has demonstrated that vision is a multivalent sense for insects and mammals alike,
with the capacity to enable complex tasks such as attitude stabilisation, navigation, obstacle
avoidance, and the detection, recognition, tracking, and pursuit of prey or avoidance of predators.
Thus, vision is likely the key to the development of intelligent autonomous robotics, as it provides
the abundance of information required for these challenging tasks. This shared perception has led to
a dramatic shift toward vision-based robotics.

One of the many benefits of vision is that it provides a passive sense for UAS guidance that
(a) does not emit tell-tale radiation and (b) does not rely on external inputs such as GPS. Vision sensors
are also compact, lightweight and inexpensive, thus enabling use in smaller-scale UAS. They also
provide the capability for increased autonomy, because they can also be used for additional tasks
such as object identification.

Following the pioneering work of Nicolas Franceschini, who was one of the first to translate
the principles of insect vision to the development of ground-based robots that would navigate
autonomously and avoid collisions with obstacles [21], a number of laboratories have progressed
research in this area (e.g., [22–25]). These principles have been used to design and implement
numerous bio-inspired algorithms for terrestrial and aerial vehicles, including safely navigating
through narrow corridors (e.g., [26–30]), avoiding obstacles (e.g., [31]), maintaining a prescribed
flight altitude (e.g., [23,32,33]), monitoring and stabilizing flight attitude (e.g., [34–37]), and docking
(e.g., [38–42]) or executing smooth landings (e.g., [43–46]).

This paper will focus primarily on a summary of recent research in our own laboratory, with brief
references to directly related work. It is not intended to be an exhaustive survey of the literature in the
field. Other reviews pertaining to the field of UAS development, and biologically inspired robotics
include Chahl [47], Duan and Li [48] and Zufferey et al. [24].

1.3. Objective and Paper Overview

In this paper, we will provide insights into some of the biologically inspired principles for
guidance, navigation and control, which feature the use of unique vision systems and software
algorithms to overcome some of the aforementioned limitations of conventional unmanned aerial
systems. As the field of UAS research covers a large area, the work presented here will focus primarily
on visually guided navigation of a rotorcraft UAS, on distinguishing between stationary and moving
objects, and on pursuit control strategies (Guidance, navigation and control (GNC)). Novel GNC
techniques are tested on a rotorcraft platform in outdoor environments, to demonstrate the robustness
of vision-based strategies for UAS.

Section 2 provides an overview of the experimental platform with a description of the rotorcraft
UAS, the vision system and the control architecture. Optic flow and view-based navigation
techniques are discussed in Section 3; an example of situational awareness, by determining whether
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an object in the environment is moving or stationary, is covered in Section 4; and interception
guidance strategies are explained in Section 5. Finally, Section 6 presents concluding remarks and
future work. Each section will begin with the description of a biological principle, followed by a
description of how the principle is applied to rotorcraft guidance.

2. Experimental Platform

With a growing interest in the vast military and civilian applications, UAS have been deployed
in applications ranging from environmental structure inspection to search and rescue operations.
Many UAS applications now require the ability of flight at low altitudes, near structures and more
generally in cluttered environments. For these reasons, rotorcraft have gained popularity as they can
perform a large variety of manoeuvres, most notably vertical take-off, landing and hover.

2.1. Overview of Platform

Our experimental platform is a custom built quadrotor in the QUAD+ configuration, as shown
in Figure 2. The control system incorporates a MikroKopter flight controller and speed controllers for
low-level stabilisation and an embedded computer (Intel NUC i5 2.6 GHz dual-core processor, 8 GB of
RAM and a 120 GB SSD) for the onboard image processing, enabling real-time, high-level guidance
and control (roll, pitch, throttle) of the UAS. The platform additionally has a suite of sensors including
a MicroStrain 3DM-GX3-25 Attitude and Heading Reference System (AHRS) for attitude estimation,
a Ublox 3DR GPS and Swift Navigation Piksi Differential GPS (DGPS) for accurate ground truth
results, and a novel bio-inspired vision system.

Vision System

Figure 2. Quadrotor used for testing.

2.2. Biologically Inspired Vision System

The biologically inspired vision system on our flight platform is a design inspired by the insect
eye. The left and right compound eyes of a honeybee (Figure 3a) each cover an approximately
hemispherical field of view, thus providing near-panoramic vision, which is useful for accurate and
robust estimation of egomotion, as well as for detecting objects of interest in various directions.
The compound eyes also feature a 15◦ overlap in the front, which could provide stereo vision at
close ranges—although this is yet to be confirmed [18,49].

The vision system used in our flight platform, as demonstrated by Figure 3b, embodies the
functionality of the insect compound eye by using two Point Grey Firefly MV cameras with Sunex
DSL216 fisheye lenses. Each camera has a Field of View (FOV) of 190◦. They are oriented back-to-back
with their nodal points 10 cm apart, and are tilted inward by 10◦ to provide stereo vision in the
fronto-ventral field of view. The cameras are calibrated using a similar method to Kannala and
Brandt [50], and the images from the two cameras are software synchronised and stitched together to
obtain a near-panoramic image with a resolution of 360 by 220 pixels. This image is then converted
to grey scale and resized to 360 by 180 pixels to compute panoramic optic flow, and from it the
egomotion of the aircraft. In addition, stereo information is used to estimate the height of the aircraft
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(HOG) above the ground. Due to the relatively small baseline between the cameras (10 cm), the
operating range is within 0.2–15 m.

(a) (b)

Figure 3. (a) Compound eyes of a honeybee—by Michael J. Roberts. Copyright the International
Bee Research Association and the L. J. Goodman Insect Physiology Research Trust. Reproduced with
permission from [51]; (b) Vision system on flight platform.

2.3. Control Architecture

The high level to low level control architecture of the quadrotor utilises two cascaded
Proportional-Integral-Derivative (PID) controllers for position and velocity control. The objective
is for the quadrotor to minimise the error between the 3D position set point and the currently
estimated position.

As illustrated in Figure 4, the position error is fed into a PID controller that generates a velocity
command. This velocity command is compared with the aircraft’s measured velocity to generate
a velocity error signal, which is cascaded into another PID controller that generates appropriate
changes to the roll, pitch and throttle setpoints. These setpoints are the inputs for the Mikrokopter
flight controller. Finally, the output of the flight controller, together with the dynamics of the aircraft,
determine the quadrotor’s motion.

Control Structure

Rotorcraft 
dynamics

+
-

3D Position 
Controller 

(PI)

Vision 
system

3D position 
error

Greyscale 
stitched images

Roll, pitch, yaw and 
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3D Velocity 
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+
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measure
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Figure 4. Control architecture used by vision-based algorithms onboard the flight platform.

3. Navigation

Navigation is an essential first step for increased autonomy in UAS. As stated previously,
this requires knowledge of an accurate state of the aircraft (e.g., attitude, and 3D position and velocity)



Aerospace 2016, 3, 21 7 of 34

not only for navigation but also for more complex guidance tasks. Increasingly, however, applications
require UAS to navigate at low altitudes and in cluttered environments, which can cause sensors,
such as GPS, to become unreliable. This current overreliance on GPS limits the autonomy of UAS in
GPS-denied locations.

Vision-based navigation approaches have demonstrated their practicality for overcoming some
of the limitations of traditional GPS sensors. In Section 3.1, we will discuss how insects use optic flow
for their navigation and bio-inspired implementations for UAS GNC. Section 3.2.1 will cover holistic
(view-based) techniques that significantly reduce the complexity for local homing. Finally, Section 3.3
introduces works toward vision-only navigation.

3.1. Optic Flow-Based Navigation

Optic flow is the pattern of image motion that a vision system experiences when its owner
moves through the environment [17]. It can be described quantitatively as a set of vectors, commonly
termed the “optic flow field”, that characterise the direction and extent of motion of each part of
the image [52]. The optic flow field that an animal experiences is rich in information about the
animal’s motion in the environment [53,54]. Clockwise image motion of the entire panoramic image,
for example, indicates a counter-clockwise rotation (yaw) of the animal; downward image motion
in the left visual field and upward image motion in the right visual field indicates a clockwise roll;
forward image motion in the upper visual field and backward image motion in the lower visual field
indicates an upward pitch; and expansion of the image in any part of the the visual field indicates a
translatory motion of the animal in that direction [53,54]. Furthermore, during translatory egomotion,
the magnitude of the optic flow vector in each region of the image provides information on the
distance to the nearest object in that direction [19]. Flying insects have evolved to exploit optic-flow
information to stabilise and control flight attitude, control flight speed, avoid obstacles, fly safely
through narrow passages, measure distance flown, and execute smooth landings [18,19].

Although we do not yet fully understand the neural processing mechanisms by which bees
and other flying insects compute optic flow and analyse it to estimate their motion through
the environment, there are bio-inspired engineering solutions that have successfully adopted the
underlying principles for aircraft guidance.

In the engineering literature, several key algorithms have been devised for the computation of
optic flow, of which the most famous algorithms include Lucas and Kanade [55] as well as Horn and
Schunck [56]. These methods represent useful techniques for computing the optic flow field, which
can subsequently be analysed to estimate the egomotion of the UAS [19]. Applications for optic flow
are numerous, for example it has been utilised for speed regulation [29], terrain following [32,57],
monitoring wheel slip on the Mars Rovers [58], collision avoidance [31] and localisation for many
Simultaneous Localisation and Mapping (SLAM) systems [45].

Our optic flow algorithm, an engineering-based approach described in [46,59], utilises an
intensity-based pyramidal (similar in principle to that described by Lucas and Kanade [55])
block-matching algorithm. The panoramic images provided by our vision system, as discussed
in Section 2.2, are segmented into a grid of 25 × 15 regions in which 7 × 7 pixel image patches
are randomly chosen within each grid square. A 7 × 7 pixel search region is then used to find
matches between frames, to obtain the optic flow field. To estimate the egomotion from this optic
flow field, an iterative search algorithm is used to obtain the combination of 3D translation and 3D
rotation that best explains the measured flow field [46,59]. To reduce the complexity of the egomotion
computation, the ground is assumed to be a plane; however, the performance of the egomotion
estimation could be compromised if used over significantly uneven terrain [46,59]. Our algorithm
characterises the aircraft’s egomotion by delivering two vectors: (1) a 3D rotational vector, which
specifies the direction of the axis of rotation and the magnitude of this rotation, and (2) a 3D
translational vector which specifies the direction of the translation, where the magnitude of this vector
is scaled to the aircraft’s height above the ground (HOG). The HOG is measured by the on-board
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vision system, using stereo information, as described in Section 2.2. This scale factor is then used to
compute the translation in absolute distance units.

The stereo computation of the HOG is performed in a way analogous to the optic flow
computation. It also incorporates a pyramidal block-matching algorithm through the use of
7 × 7 texture patches and sub-pixel refinement; however, the stereo algorithm applies a 7 × 3 pixel
search region (instead of 7 × 7 pixels). This reduced search window biases toward horizontal motion
between the two patches, reflecting the half-pixel tolerance for the epipolar matching. The vector
pertaining to a valid match is then triangulated to estimate the range to the ground plane and
trigonometrically converted to a height over ground. The conversion of the range vector to a height
over ground, however, requires knowledge of the roll and pitch of the aircraft, which in most cases
is specified by the Attitude and Heading Reference System (AHRS). Once all the valid matches have
been triangulated to compute range, the range values are accumulated into a histogram, which is used
to apply outlier rejection. Finally, after the removal of outliers, the median value of the histogram,
encompassing 68% of the values, provides the true stereo height estimate.

The optic flow and stereo algorithms have been tested onboard a rotorcraft UAS in a
number of applications, such as visual odometry, drift-free snapshot-matching-based navigation and
autonomous landing, which are discussed in greater detail in the following sections. Our stereo vision
system is also used for the pursuit of a ground target, as explained in Section 5. In principle, optic
flow can be computed between two successive image frames, referred in this paper as frame-to-frame
optic flow (OF-FTF), or computed between the current image and a reference image, which will be
termed optic flow-based snapshot matching (OF-SM).

3.1.1. Visual Odometry

In the animal world, the ability to perform visual odometry has been demonstrated in honeybees.
The demonstration was accomplished by observing and video-recording the dances that bees perform
when they return to their hive after discovering a new food source. The bee oscillates its abdomen
from side to side during a phase of the dance known as the “waggle phase”, which conveys to its nest
mates the direction of the food source, and the distance they must fly to reach it [60]. The duration of
the waggle phase is proportional to the distance of the food source—the farther away the food source,
the longer the waggle duration. The bee’s nest mates use the information from this waggle duration
to navigate to the new food source. Evidently, honeybees possess an ‘odometer’ that informs them
about how far they have flown.

To investigate the nature of the honeybee’s odometer, [61,62] trained bees to fly directly from
their hive into a short, narrow tunnel that was placed very close to the hive entrance (Figure 5).
The tunnel was 6 m long and 11 cm wide. A sugar water feeder was placed at the far end of the
tunnel. The walls and floor of the tunnel were lined with vertical stripes. The dances of bees returning
from this feeder were video-filmed. Incredibly, these bees signalled in their waggles a flight distance
of approximately 200 m, despite the fact that they had flown only 6 m (Figure 5a). One explanation
for this exaggerated distance estimate would be that the bees were gauging the distance they had
flown by measuring the total extent of image motion that they had experienced during the flight
from the hive to the feeder, i.e., by integrating, over time, the optic flow that they had experienced
en route. The proximity of the walls and floor of the tunnel would greatly magnify the optic flow
that they experienced, in comparison with what would normally occur when foraging outdoors.
To test this hypothesis, the bees were flown in a tunnel of the same dimensions, but lined with
axial stripes, which induce no optic flow because the flight is in a direction parallel to the stripes.
The bees then produced no waggles in their dances (Figure 5), signalling the experience of a very
short journey. Evidently, in this case, the absence of optic flow caused the odometer to barely tick
over [61]. These studies, taken together with evidence from other kinds of experiments [18] provide
strong evidence that the bee’s odometer is visually driven, and delivers a measure of distance flown
by integrating, over time, the optic flow that is experienced during the journey.
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6 m ~ 0 m

6 m

Feeder
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~ 200 m
Waggle duration

Waggle duration

a

b

Figure 5. Honeybee odometry, investigated via the waggle dance. (a) Bees are trained to visit a
feeder positioned at the end of a short, narrow tunnel near the hive entrance. The returning bees
perform a strong waggle dance indicating a travel distance of 200 m, massively overestimating the
distance that they have flown in the tunnel; (b) When image motion cues are eliminated by decorating
the tunnel walls with horizontal, rather than vertical stripes, the bees display no waggle phase,
indicating that their perception of travel distance is based on the extent to which the image of the
environment has moved in the eyes during the journey from the hive to the food source. Reproduced
with permission from [18].

Visual odometry, as performed by the honeybee, is a useful tool for UAS navigation and has the
potential to reduce the number of sensors currently used on autonomous vehicles. Visual odometry
has been a popular method to compute the motion of ground and aerial vehicles through stereo-based
(e.g., [63–68]), homography-based (e.g., [69,70]) and optic-flow-based methods (e.g., [45,59,71–73]).
Currently, the majority of methods are tested on gound-based vehicles, however, studies that
demonstrate visual odometry on UAS include [59,68,69,71]. The vision-based navigation technique
investigated by Strydom, et al. [59], demonstrates that the information from OF-FTF and stereo can
be used to estimate the egomotion of a UAS from one image frame to another. To perform visual
odometry, the frame-to-frame egomotion vectors are summed sequentially to obtain the current pose
(3D position and 3D orientation) of the aircraft. This process is known as “path integration” [18,74].

The outdoor field tests presented in [59] demonstrate that this approach can be used
successfully for robust navigation of a UAS along a pre-defined trajectory (UAS visual odometry
flight video available at: https://youtu.be/I1QDAHEzlj8). In these tests, the rotorcraft UAS
took-off autonomously, navigated a square trajectory and landed without any human intervention.
These experiments demonstrate that this vision-based odometry technique is capable of returning the
aircraft to its take-off point with a mean error of 0.8 m after navigating a 10 × 10 m square trajectory,
at a height of 3 or 5 m, representing a total travel distance of 46–50 m, as shown in Figure 6a,b.
This represents an average error of approximately 1.7% of the total path length over all of the tests
that were conducted. Table 2 provides a comparison of various visual odometry solutions. Note, that
this is only a guide as each method is tested under varying conditions and hardware configurations.
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Figure 6. Trajectories of 30 flights (two sets of 15 flights) traversing a 10 × 10 m square at a height
of 3 m (a) or 5 m (b). Various trajectory colors are used to differentiate the individual experiments.
Landing positions are shown by the green points within each inset, which are relative to the takeoff
position. The red point denotes the mean landing position for 3 and 5 m test heights respectively.
Modified with permission from [59].

Table 2. Comparison of various visual odometry methods.

Method Platform Path Length Number of Tests Average Error (%)

Feature-based stereo matching [75] Ground vehicle 20 m 1 1.3
Feature-based monocular/stereo matching [66] Ground vehicle 186 m; 266 m; 365 m 3 1.4

OF-FTF and stereo [59] UAS 46 m; 50 m 15 of each 1.7path length
Maimone [58] Ground vehicle 24 m; 29 m 2 2.0
Feature-based monocular/stereo matching [67] Ground vehicle 186 m; 266 m; 365 m 3 2.5
Monocular visual SLAM using SIFT features [76] Ground vehicle 784 m; 2434 m 2 2.7
Optic flow [77] UAS 94 m; 83 m 2 3.2

Template matching [78] Ground vehicle 10 m; 20 m; 50 m; 100 m 8 of each 3.3path length
Stereo/monocular interest point matching SLAM [79] UAS/Ground vehicle 100 m 2 3.5

This visual odometry algorithm offers many benefits for visual navigation and could,
in principle, be used on a variety of autonomous platforms (e.g., multi-rotor crafts, fixed-wing aircraft
and ground robots), without requiring GPS or computationally expensive feature extraction. As with
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any integrated signal, the main limitation of the OF-FTF technique is that the error in the positional
increases with distance travelled due to the noise that is inherent to the motion estimate at each step.

3.1.2. Landing

Flying insects appear to have evolved simple and elegant strategies for orchestrating smooth
landings. Honeybees were video-filmed as they approached and landed on a horizontal surface,
and their trajectories were reconstructed in 3D [61]. Analysis of the trajectories revealed that, during
the landing process, the bees adjust their flight speed in such a way as to keep the velocity of the
image of the ground constant as they approach it (Figure 7). Keeping the image velocity of the
ground constant automatically ensures that the flight speed is progressively reduced as the ground is
approached, and that it is close to zero at touchdown. The attractive feature of this landing strategy is
that it does not require information about the distance to the ground, or the speed of the insect, at any
instant of time. All that is required is a vision system that is capable of measuring the optic flow that
is generated by the ground. A subsequent study has shown that a generalised version of this strategy
of holding the optic flow constant can be adopted for landing on a surface of any orientation, be it
horizontal, vertical or oblique [18].

ω1

ω2

Figure 7. Honeybees make smooth landings by decreasing the flight speed progressively such that the
angular velocity of the image of the ground is held constant (ω1 = ω2). Reproduced with permission
from [19].

This simple strategy can be implemented into UAS for achieving robust landing without the
need for additional sensors to measure the height above ground or the velocity (e.g., by using GPS).
We note, however, that this strategy requires that the speed of the aircraft approach a value of
zero close to touchdown. Therefore, it is ideally applicable to an aircraft that is capable of hover,
such as a rotorcraft (e.g., [23,44,45]), but not to a fixed-wing aircraft that would stall at low speeds.
One approach to circumvent this problem is to use a small, lightweight aircraft that implements the
bee landing principle and stalls at the end of the landing approach, but at a height very close to
ground, thus avoiding damage [43]. This approach can be risky in a heavier aircraft that carries a
valuable payload.

A modified version of the honeybee’s landing strategy has been successfully applied to guide
the landing of a larger fixed-wing model aircraft (Autonomous landing of a fixed-wing aircraft
video available at: https://youtu.be/U9iy1B5QG-0) [46]. There the flight speed is held constant
(rather than reducing the velocity, as in the case of the honeybee), and the descent rate (rate of change
of height) is controlled by measuring and regulating the rate of increase of optic flow, which can be
set to achieve a fixed descent time, if desired. This mode of descent control is applied to reduce the
HOG from 15 to 4 m. Below 4 m, stereo-based height information is used to control the descent to the
point of touchdown. Stereo information provides accurate height readings below 4 m because this
height range is compatible with the stereo baseline and the resolution of the cameras. In this height
range it is difficult to derive reliable information from optic flow, because the magnitude of the optic
flow is too large to permit accurate measurement—recall that the fixed-wing aircraft approaches the
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ground at a constant speed, which means that the magnitude of the optic flow increases as the ground
is approached.

Figure 8a shows an example of an automatic landing. The left-hand panel shows an external
view of the landing aircraft and the right-hand panel shows the panoramic image captured by the
vision system, with the superimposed optic flow vectors. Figure 8b shows the height profile during
the landing. The initial descent from 40 to 15 m is open loop, and is achieved by setting the throttle
to a minimum and the pitch to −25◦. After the HOG has dropped to 15 m (as indicated by stereo),
the rate of descent is controlled through closed-loop regulation of the optic flow, and below 4 m the
descent rate is controlled by using stereo to monitor the height, as described above. Further details
are available in [46].
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Figure 8. Automatic aircraft landing using optic flow and stereo. (a) External view (left panel) and
panoramic image showing optic flow (right panel); (b) Performance of the automatic landing system,
showing the variation of height with time (magenta), and the readings of the on-board X, Y and Z
axis accelerometers (red, green and blue, respectively). The negative offset in the Z acceleration trace
represents the acceleration due to gravity (−1 G). The first spike in the Z acceleration trace (at 308 s)
represents the instant of touchdown, and the aircraft comes to a halt at the time when the signals from
the accelerometers register zero (at 312 s). Reproduced with permission from [46].

3.2. Drift-Free Hover Stabilisation and Navigation via Bio-Inspired Snapshot Matching

Hoverflies and dragonflies are living proof of the ability of insects to achieve stable hover
at any desired location, with minimal drift. It is thought that this form of station-keeping is
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achieved by acquiring a panoramic snapshot of the visual environment at the desired hover location,
and using this memorised snapshot to detect and correct any drift from the hover location by
detecting and analysing the difference between the current image and the memorised snapshot.
Furthermore, drift-free navigation can be achieved by first memorising a visual route, defined by
a sequence of snapshots, and then following this learned route back to the initial location.

3.2.1. Control of UAS Hover through Image Coordinates Extrapolation (ICE)

Autonomous hover has been successfully demonstrated in indoor environments through the use
of lightweight devices (such as infrared [80] and ultrasonic sensors [81]) but also through techniques
based on image servoing [82–86]. However, vision-based methods typically require the use of
artificial setups that constrain their applicability in outdoor environments [87]. Although outdoor
hover has been demonstrated with a good accuracy level in [88,89], VSLAM techniques require a
sufficient processing capability to extract and track hundreds of features.

Less computationally intense vision-based methods for stabilising hover rely on the image
difference function (pixel-wise difference between a reference snapshot and the currently experienced
view) [18]. For small displacements around a reference location (home), image differences increase
smoothly and monotonically in natural environments [90]. Gradient-based guidance techniques [60]
can be derived from the image difference function (IDF) to maintain the hover location by following
the direction along which the image differences decrease. However, such schemes require complex,
and therefore undesirable exploratory movements at each time step to sense the environment and
its image gradient. In addition to being sensitive to odometric errors, techniques that use gradient
descent in image differences do not provide a direct estimate of the distance to home.

Denuelle et al. [91] introduces a novel view-based method, based on the IDF, that does not
require any exploratory movements or the use of an odometer, once the process is initialised.
This approach, the Image Coordinates Extrapolation (ICE) algorithm, assumes that any location
around the reference position can be described by a difference image (pixelwise difference between
the reference snapshot and the current view), and that this difference image is a linear combination
of three reference difference images taken around the reference location (for navigation in 3D
environments). The current difference image is projected onto the reference difference image frame
(built from snapshots taken at the reference location), which provides relative coordinates to the
home position, as shown in Figure 9. This approach was applied to the stabilisation of hover of
a small-size rotorcraft UAS in natural environments (External ICE-based closed-loop hover video
available at: https://youtu.be/ZDPiF5Bfyj4, Onboard ICE-based closed-loop hover video available
at: https://youtu.be/X_tp4F9v8_I) in [92]. The ICE algorithm provides a computationally efficient
and a drift-free method to fully estimate the rotorcraft’s state (3D position and velocity) and maintain
accurate hover in unknown environments.

3.2.2. Control of UAS Hover Through Snapshot Matching

Denuelle, et al. [93] uses the snapshot concept in the computation of optic flow to stabilise the
control of hover of a rotorcraft UAS. Optic flow is a popular technique for the real-time stabilisation
and control of small-size rotorcraft [23,31,45,94–97].

In the approach proposed in [93], the optic flow is estimated between a reference snapshot
(panoramic image) and the current camera frame. The use of a reference snapshot eliminates
cumulative odometric errors and prevents long-term drift in the visual estimates [93], thus providing
drift-free control of hover, as shown by the blue line and shading in Figure 10. Although the
snapshot-based method remains limited by the size of the catchment area (the 3D region within
which position estimates can be accurately determined and lead to successful hover maintenance),
results from closed-loop flight experiments (OF-SM based closed-loop hover flight (external view)
video available at: https://youtu.be/5jACjzUcA7Y) demonstrate better hover performance than
approaches that are based on traditional frame-to-frame measurements of optic flow, such as the
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technique described in Section 3.1, which is depicted by the green line and shading in Figure 10.
Compared to [98], the full rotorcraft’s state (both 3D position and velocity) is estimated by using the
optic flow computed with reference to the initial snapshot only.

δz
δx

δy Ix

Iy

Iz

I

Ix

Iy

Iz

S0

Sx
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Sz

(a) (b)

Figure 9. (a) Initialisation of the Image Coordinates Extrapolation (ICE) algorithm for
visually-stablised hover. Once the desired hover position is defined by a reference snapshot S0, 3
snapshots (Sx, Sy, Sz) are taken along the exploratory steps (dashed lines) to compute the difference
images (Dx, Dy, Dz) = (Sx − S0, Sy − S0, Sz − S0). From these difference images, an orthonormal set
of difference images is built to form the reference frame (Ix, Iy, Iz) (shown in blue); (b) Coordinates
(δx, δy, δz) of the location of the current difference image are obtained by computing its inner products
with the difference images forming the reference frame. Reproduced with permission from [92].
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Figure 10. Mean position errors measured during two hover tests, one using the snapshot-based
approach (blue) for the computation of sparse optic flow, and the other using traditional
frame-to-frame optic flow measurements (green), conducted at the same location. Standard deviations
of the mean position errors are depicted by the shaded areas. Reproduced with permission from [93].
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3.2.3. Control of UAS Navigation Through Snapshot Matching

The snapshot-based approach can also be applied to autonomous navigation. Instead of relying
purely on dead reckoning [31,45,59], navigation from a location A to another location B can be
performed by acquiring panoramic snapshots at a series of waypoints along the route from A to B
in a “learning” phase. If each waypoint is considered to be a hover location and if the waypoints
are sufficiently closely spaced that their catchment areas overlap, then the route can be followed by
moving from one catchment area to the next.

Traditionally, a visual route is composed of a sequence of discrete waypoints, representing
visual locales and defined by either global (whole image, image histogram) [99–104] or local
descriptors extracted from input images (geometric features, SIFT points, average landmark
vectors, etc.) [105–111].

Denuelle and Srinivasan [112] proposes a lightweight navigation framework where the UAS
learns a visual route to a goal by memorising a sequence of snapshots at selected waypoints
along the route, and returning home by retrieving, in reverse order, the snapshots corresponding
to the sequence of waypoints. This minimalistic technique for route learning and navigation is
demonstrated in Figure 11a,b. Both the route learning and navigation modules make use of
the snapshot-based method (see Section 3.2.2) to estimate the rotorcraft’s egomotion relative to a
memorised panoramic snapshot. The egomotion information is used to either select whether the
current camera frame should be memorised as a new snapshot waypoint (route learning), or to
estimate the 3D state (position and velocity) of the UAS relative to the position corresponding to
a snapshot acquired previously along the navigated route. In the proposed scheme, successive
snapshots are selected so that their catchment areas (CAs) overlap by a large amount (at least 50%),
which enables a simple navigation strategy. Indeed, as soon as the UAS reaches the center (or its
vicinity) of the current CA, it is also located within the next snapshot’s CA, thus enabling the UAS to
update its next intermediary goal location. An example of the homing journey conducted in a field
test is presented in Figure 12. Despite the simplicity of the route description, drift-free navigation is
achieved. The technique also leads to route optimisation and the subsequent reduction of the number
of memorised snapshots required to describe a route between two locations.

Outbound Homebound

(a) (b)

Figure 11. Illustration of a quadrotor performing route learning (a) and route following (b) using
snapshots only. The solid grey circles represent the catchment areas and the dashed circles are the
snapshot vicinities. The filled circles depict the locations of the various snapshots, and the home and
goal locations are denoted by the square and diamond respectively. The red arrows represent the local
homing vectors.
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Figure 12. Example of homing trajectory during a closed-loop flight test. The red curve shows the
path followed back to the home location. Homing is achieved by reaching the vicinity (indicated
by blue circles) of each route waypoint memorised during the outward journey (dashed blue line)
to the goal location. Home and goal positions are marked by a square and a diamond, respectively.
Home vectors to each route waypoint are shown in magenta. Reproduced with permission from [112].

Another snapshot-based navigation strategy, presented in [113], makes use of a visual route
composed of a series of snapshot-vector duples (each memorised snapshot is associated with a vector
pointing toward the previous CA, as illustrated in Figure 13a). This approach progressively builds
a minimal route description that enables efficient snapshot-based navigation between two given
locations, without requiring path integration. As in [112], navigation back home is achieved by
retrieving each memorised snapshot’s location in reverse order, but a faster path optimisation is
achieved (see Figure 14 for an example), with significant route reduction when travelling repeatedly
between two familiar locations. When the final route description has been achieved, the number of
learnt snapshots is reduced because the route is more direct.

Outbound

vlvh

vCA

Homebound

(a) (b)

Figure 13. Route learning (a) and route following (b) using snapshot-vector duples. The solid grey
circles represent the catchment areas and the shaded circles are the intermediate catchment areas
whose snapshots are only momentarily memorised during route learning. The solid round dots depict
the locations of the various snapshots, and the home and goal locations are denoted by the square and
diamond respectively. The associated vectors stored with the memorised snapshots are displayed in
dark blue. Finally, the dashed vectors are the relative position estimates to the snapshot waypoint
locations, as provided by the snapshot-based egomotion estimator [94], and the red arrows represent
the local homing vectors.
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Figure 14. Route learning and long-range homing in a closed-loop flight test: the home and goal
locations are represented by a square and a diamond, respectively. The exploratory journey is shown
in dark blue, with green crosses indicating the snapshot waypoint locations and the corresponding
catchment areas (CAs), shown in cyan. The homing path back to the home location is represented in
black, with the red vectors being the homing vectors that point towards the center of each memorised
CA in reverse order. Reproduced with permission from [113].

3.3. Vision-Only Navigation

One limitation of the methods presented here, as is common to most vision-based navigation
algorithms, is the need for an Inertial Measurement Unit (IMU) to estimate the orientation of the
aircraft. This information was used to set the direction of the normal to the ground for the optic
flow and stereo measurements. IMUs, however, are prone to noise induced drift, which compromises
performance [114]. Indeed, the long-term drift in the OF-FTF estimates would diverge even faster if
the IMU provides an incorrect attitude estimate.

Future work in autonomous vision-based navigation could see the use of a pure vision system
that uses optic flow information, the horizon profile or the use of an image difference function
to determine the orientation of the UAS. The horizon-sensing algorithms developed in [36,115],
designed for a fixed wing aircraft travelling at a higher altitude than a quadrotor, could potentially be
adapted to suit low altitude flight. More recently, as shown in [37], a 3D sky compass can be used to
achieve robust estimation of the UAS attitude in low altitude scenarios. It could form part of a purely
vision based navigation technique, if used in conjunction with our egomotion algorithms.

4. Situational Awareness

Situational awareness in a dynamic environment is key for various UAS applications,
for example to avoid potential accidents. Since safety is a growing concern for small but powerful
autonomous vehicles as they increase in numbers, awareness of the UAS surroundings is paramount.
One such requirement is to evaluate the risks posed by surrounding objects, either for the purpose
of ignoring, pursuing or for avoiding collisions with them [116,117]. One way to assess whether an
object might pose a threat would be to determine if the object is moving or stationary.

4.1. Object Detection and Tracking

Before determining whether an object is a threat or not, it must first be detected. There are a
multitude of techniques for object detection. Infrared (IR) sensors have been used to detect a static
target in an indoor environment (e.g., [80,118]). Such systems are of restricted utility, as they are
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unsuitable for outdoor use. Motion contrast, typically measured through the use of dense optic flow,
is another method utilised in [119] to detect a moving target. Dense optic flow has the benefit that the
target does not have to be detected a priori, but this method is computationally expensive and cannot
detect static objects. Colour-based segmentation has been shown to be useful for the detection of
both static and moving targets without knowledge of the shape or size—although it does require the
specification of a reference colour. As the detection of an object is only seen as an intermediate step,
colour segmentation seems the most appropriate choice for the ability to test awareness algorithms.
Colour-based detectors typically use a seeded region-growing algorithm to ensure that the entire
object is detected, even in varying lighting conditions. This method also allows for slight colour
gradients across the object in an outdoor environment. Once the object has been detected, the next
steps are to determine if the object is a risk and then to pursue or avoid it.

Here we will focus on two principal challenges that need to be addressed after the target is
detected from a moving vision system: first, determining whether the target is stationary or moving
(“target classification”); and, second, as described in Section 5, adopting an appropriate control
strategy for pursuing or following the target.

4.2. Target Motion Classification: Determining Whether an Object Is Moving or Stationary

Pinto, et al. [120] describes three main techniques for determining whether an object is moving:
using background mosaics, identifying areas of motion contrast and the use of optic flow-based
geometrical methods. Arguably, the most popular of these methods is the use of motion contrast,
which deems the object to be moving if there is a difference between the motion of its image and that
of its immediate background.

Detecting moving objects using motion contrast is fairly trivial when the vision system is static,
whereby methods such as background subtraction [121] or frame differencing [122] can be employed.
However, the problem becomes much more challenging when the vision system is also in motion.
Motion contrast techniques that are used for the detection of moving objects onboard a moving
platform include background subtraction [123–125] and optic flow based methods [119,126,127].

Motion contrast is a reliable method for detecting a moving object if the object is approximately
at the same distance from the vision system as the background. However, when the object is at a
different distance, such as an elevated ball, motion contrast will be present even when the object is
stationary. This is a major limitation of many current techniques that rely solely on motion contrast
to determine whether an object is moving. The following sections will demonstrate two techniques
that overcome the limitations of motion contrast, one that uses an epipolar constraint and a second
that additionally tracks the size of the object’s image.

4.2.1. Using the Epipolar Constraint to Classify Motion

This approach computes the egomotion of the moving platform from the global pattern of optic
flow in the camera image, and looks for regions in the image where the local direction of optic flow
is different from that expected from a stationary environment [128]. This can be thought of as an
epipolar constraint. The epipolar constraint has also been utilised in [129] to detect independently
moving objects in non-planar scenes. The study by Strydom, et al. [128], describes a vision-based
technique for the detection of moving objects by a UAS in motion. The technique, which is based on
measurement of optic flow vectors, incorporates the following steps to determine whether an object
is moving or stationary:

1. Compute the egomotion of the aircraft based on the pattern of optic flow in a panoramic image.
2. Determine the component of this optic flow pattern that is generated by the aircraft’s translation.
3. Finally, detect the moving object by evaluating whether the direction of the flow generated by

the object is different from the expected direction, had the object been stationary.

This study demonstrates through outdoor experiments (An airborne vision system for the detection
of moving objects using the epipolar constraint video available at: https://youtu.be/KiTUoievrDE)



Aerospace 2016, 3, 21 19 of 34

that the epipolar constraint method is capable of determining whether an object is moving or
stationary with an accuracy of approximately 94%—the accuracy, (TP + TN)/(TP + TN + FP + FN),
is determined by computing the true positives (TP), false positives (FP), true negatives (TN) and
false negatives (FN). As with most vision-based algorithms, the epipolar constraint algorithm can
occasionally be deceived. One instance in which a moving object can escape detection if it moves in
such a direction as to create an optic flow vector that has the same direction as the flow created by
the stationary background behind it, that is the motion of the object is along the epipolar constraint
line [128,129]. This shortcoming is overcome by another approach, termed the Triangle Closure
Method, described below.

4.2.2. The Triangle Closure Method (TCM)

To classify whether an object is in motion the Triangle Closure Method (TCM) computes:

1. The translation direction of the UAS.
2. The direction to the centroid of the object.
3. The change in the size of the object’s image between two frames.

This information is then used to determine whether the object is moving or stationary,
by comparing the ratio of the predicted distances to the object at the two frame instants (if the object
were stationary), with the actually measured ratio of the distances as indicated by the sizes of the
object’s image at the two frame instants. A discrepancy between these ratios implies that the object
is moving. The performance of the method is validated in outdoor field tests, shown in Figure 15,
by implementation in real-time on a quadrotor UAS (An airborne vision system for the detection of
moving objects using TCM video available at: https://youtu.be/Hrgf0AiZ214). TCM discriminates
between stationary and moving objects with an accuracy of up to 97% [130,131]. The study by [131]
additionally compares TCM with that of a traditional background subtraction technique, where the
background subtraction method compensates for the motion of the aircraft; this is referred to in [131]
as “moving background subtraction”. Unlike that technique, TCM does not generate false alarms
that can be caused by parallax when a stationary object is at a different distance to the background.
These results demonstrate that TCM is a reliable and computationally efficient scheme for detecting
moving objects, which could provide an additional safety layer for autonomous navigation.

Figure 15. Outdoor experimental configuration for Triangle Closure Method (TCM). Reproduced with
permission from [130].

4.3. Situational Awareness Conclusions

It is clear that situational awareness is a fundamental stepping-stone for intelligent unmanned
aerial systems, as an understanding of the environment provides the necessary information to make
decisions that can greatly impact on the safety and autonomy of UAS.
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There are many variations of target classification, some of which include classifying the type or
class of a target, or determining if the object is a threat. One method to decide whether an object
is a threat, as observed in nature, is to differentiate between static and moving objects. We have
shown above that moving object detection can be accomplished in a variety of ways, predominantly
through the sensing of motion contrast and utilising the epipolar constraint. The methods described
in [130,131] are able to robustly distinguish between moving and static objects and overcome some of
the limitations of current techniques.

If the object is deemed to be moving, the next step would be to use an appropriate control
strategy to autonomously pursue or evade it, depending upon the requirements. This problem then
falls under the banner of sense-and-act. We will focus on the pursuit and interception strategies,
as described in Section 5.

5. Guidance for Pursuit and Interception

In the field of robotics, interception is often characterised by military applications such as a
drone neutralising a target. However, there are numerous applications in the civil environment as
well, including target following, target inspection, docking, and search and rescue. Indeed, these
applications are crucial for a complete UAS control suite.

5.1. Interception: An Engineering Approach to Pursue Ground Targets

This section will provide an engineering-based approach to pursue and intercept a ground target
by using stereo information. Interception of ground targets has been demonstrated through the use
of specialised fiducial marker-based targets [84], as well as the utilisation of additional sensors such
as pressure sensors to measure altitude [87], or laser range finders [132] to determine the distance
to the target. Although these methods have shown their capacity to intercept a ground target, the
main limiting factor is that these methods require either a known target size and pattern, which in
many cases would not be readily available; or the use of an additional height sensor (e.g., pressure,
ultrasound, LiDAR, etc.) on top of the vision system, which adds an additional point of potential
failure to the system.

The technique described in [133] utilises the imaging system, explained in Section 2.2, to detect
a target and determines its position relative to the rotorcraft. To determine the relative position,
and thus the relative velocity, the following steps are performed: (1) determine the direction to the
target; (2) estimate the height above ground using stereo, which is independent of the presence
of a target; and (3) geometrically compute the position of the target relative to the aircraft. Here
stereo is particularly useful as it intrinsically provides the relative position between the rotorcraft
and the target—to compute the distance to the target—Strydom, et al. [133] measures the aircraft’s
HOG, which is then used to trigonometrically determine the target’s relative position (based on the
azimuth and declination of the target); the attitude of the UAS is compensated for by using an AHRS,
see Section 2.1. As a side note, by utilising the on-board panoramic vision system, the target can
be detected in almost any direction. Using a PID controller, the distance between the target and the
pursuer (UAS) is minimised, where the UAS velocity is proportional to the relative distance in the
direction along the vector connecting the UAS and target positions.

To demonstrate the practicality of this approach, outdoor field experiments (Stereo-based UAS
interception of a static target video available at: https://youtu.be/INi8OfsNIEA, Stereo-based UAS
interception of a moving target video available at: https://youtu.be/XP_snIBXws4, similar to the
schematic in Figure 16) were conducted by Strydom, et al. [133]. These results demonstrate that
the approach outlined in [133] provides comparable results to current interception methods for a
static or moving target, as outlined in Table 3. Note, that this is only a guide as only methods
with quantitative results were compiled, and each method is tested under varying conditions
and hardware configurations. There are, however, other methods such as [42] that also provide
bio-inspired interception strategies.
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Table 3. Comparison of various following and interception techniques for static or moving targets, where NA denotes fields that are not applicable/supplied.
The angular error defines an error cone, which represents the deviation of the UAS from the desired position. The angular measure accounts for the different
test heights.

Method Reference Environment Static Target Moving Target

Test Height (m) Mean Error (m) Std. Error or RMSE (m) Angular Error (◦) Test Height (m) Mean Error (m) Std. Error or RMSE (m) Angular Error (◦)
Yang et al. [85] Indoor 1.00 0.03 NA 1.97 NA NA NA NA
Hou et al. [134] Indoor 0.70 0.04 NA 2.86 NA NA NA NA

Guenard et al. [83] Indoor 1.40 0.10 NA 4.09 NA NA NA NA
Masselli et al. [86] Indoor 0.80 0.11 0.08 5.74 NA NA NA NA
Azrad et al. [87] Outdoor 5.00 2.00 NA 21.80 NA NA NA NA
Lange et al. [84] Indoor 0.70 0.29 NA 22.29 NA NA NA NA

wenzel et al. [118] Indoor NA NA NA NA 0.25 0.02 0.07 14.90
Li et al. [135] Indoor NA NA NA NA 1.00 0.38 NA 20.81

Teuliere et al. [136] Indoor 2.00 0.10 NA 2.86 0.70 0.30 NA 23.20
Strydom et al. [133] Outdoor 2.00 0.01 0.32 9.09 2.00 0.14 0.24 6.84
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Figure 16. Schematic of a UAV intercepting a moving target. (a) Plan view of the interception
trajectory; (b) Side view and (c) Front view. Reproduced with permission from [133].

Through experimentation it was clear that the main limiting factor of this method is the
range at which the target can be accurately detected, and the range of the stereo measurements.
Therefore, this method would be well suited to facilitate the interception of a ground target for the
final stage of a pursuit or following strategy.

5.2. Interception: A Biological Approach

Many flying insects and birds seem to have evolved impressive strategies for pursuit and
interception, overcoming some of the current engineering limitations such as the above stereo range,
despite the fact that they possess limited sensing capacities. Thus, they are likely to provide important
inspiration for the design of pursuit-control algorithms for UAS.

For many airborne animals, the ability to detect and pursue mates or prey, or to ward off
intruders, is critical to survival of the individual as well as the species. In pioneering studies,
References [137,138] used high-speed videography to study and model the behaviour of male flies
pursuing other flies. They found that the chasing fly tracks the leading fly by means of a control
system in which the turning (yaw) rate of the chaser is proportional to (i) the angle between the
pursuer’s long axis and the angular bearing of the target, (the so-called “error angle”) and (ii) the rate
of change of this error angle (Figure 17a). This feedback control system causes the pursuer to tend to
point towards the target, without requiring specific knowledge of the object’s size or relative distance.
While this kind of guidance strategy will eventually lead to capture if the target continues to move in
a straight line and the pursuer is flying faster than the target, it is not necessarily the quickest way to
intercept the target. This is because, even if the target is moving in a straight line at a constant speed,
the pursuer’s trajectory will be a curve (Figure 17b).

Hoverflies overcome this problem by pre-computing a direct course of interception, based on
information about the angular velocity of the target’s image in the pursuer’s eye at the time when
the target is initially sighted [139]. Dragonflies seem to use a different, and perhaps more elegant
interception strategy [20,140], in which they move in such a way that the absolute bearing of the target
is held constant, as shown by the dashed lines in Figure 17c. If the target is moving in a straight
line at a constant speed, then the pursuer’s trajectory (assuming that it also moves at a constant
velocity) will also be a straight line (Figure 17c). This will ensure interception in the quickest possible
time. This strategy of interception only requires preservation of the absolute bearing of the target.
The orientation of the pursuer’s body during the chase does not matter, as shown by the grey lines
in Figure 17c. If the target changes its direction or speed mid-stream, this will cause the pursuer
to change its flight direction automatically, and set a new interception course that is optimal for the
new condition. More recently, it has been demonstrated that constant-absolute-bearing interception
of prey is also adopted by falcons [141] and echolocating bats [142].



Aerospace 2016, 3, 21 23 of 34

θ
d
dt
θ

Target

ω

Pursuer

2

3
4

5
6

1

2

3

4

5

6

2

3
4

5
6

1

2

3

4

5

6

1

a

b

c

Figure 17. Models characterising pursuit and interception of a moving target. (a) Model of pursuit in
which the rate of yaw of the pursuer is proportional to the error angle (θ), and to the rate of change
of the error angle ( dθ

dt ); (b) Example of a trajectory in which pursuit is steered according to the model
in (a); (c) Example of an interception strategy in which the pursuer maintains the target at a constant
absolute bearing. Numbers in (b) and (c) represent successive (and corresponding) positions of the
target (green) and the pursuer (red). Reproduced with permission from [19].

5.3. Comparison of Pursuit and Constant-Bearing Interception Strategies

The first step to better understand these interception strategies in nature is to obtain a model that
characterises the relationship between the visual input and the behavioural response. Although Land
and Collett [137] provide a guidance law for the pursuit strategy (as described above—see (1) below),
the sensorimotor delay in the system is not fully incorporated into their model. Strydom, et al. [143]
introduce an additional term to this control law, which models the sensorimotor delay (the delay
between sensing and action) observed in nature. This delay is modelled as a first-order low-pass
filter with a time constant τ (see (2) below).

The resulting model [118] produces results similar to biological observations conducted by Land
and Collett [137], providing intriguing evidence that, at least in the housefly, the sensorimotor delay is
compensated for by the control system. Thus, the complete model compensates for the sensorimotor
delay by computing the required ratio of the proportional (P) and derivative (D) gains for the PD
guidance law by Land and Collett [137], as shown in (3).

P(s) = Pθ + D
dθ

dt
(1)

M(s) =
P(s)

(1/τ) + s
(2)

TF = D
(

P/D + s
(1/τ) + s

)
(3)

Equation (3) reduces to a pure gain controller if P/D is selected to be equal to 1/τ, where τ is the
sensorimotor time constant. This is a particularly useful property, as only one of the gains (P or D)
has to be tuned to compensate for the sensorimotor delay, rather than both.

5.3.1. Evaluation of Pursuit and Interception Performance as a Function of Sensorimotor Delay

To provide a comparison between the constant bearing and pursuit strategies,
Strydom, et al. [143] investigated both strategies modelled by the PD control law (by Land and
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Collett [137]) with the additional first-order lead lag filter to compensate for sensorimotor delay,
as described in (3) above. The constant bearing and pursuit techniques were tested under the same
initial conditions in simulation (e.g., initial target and pursuer positions and velocities). The key
assumptions in the work by Strydom, et al. [143] are that the target moves with constant velocity,
and that the pursuer’s velocity is greater than the target velocity.

In the scenario where the target is moving at constant velocity, the P gain was optimised for a
range of sensorimotor delays and velocity ratios; the velocity ratio is the target speed divided by the
pursuer speed. Only the P gain was optimised as the sensorimotor delay was compensated through
the ratio of P and D in (3). It is demonstrated by Strydom, et al. [143] that the constant bearing
strategy outperforms the pursuit strategy, as measured by the time taken for the pursuer to intercept
the target. This is shown in Figures 18a and 19a, which demonstrate that the constant bearing strategy
provides a quicker interception time when the P gain is optimised for every velocity ratio (between 0
and 0.9) and sensorimotor delay (from 0 to 0.3 s) combination.
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Figure 18. (a) The time to interception when varying the sensorimotor delay and the velocity ratio
of a moving target using the pursuit strategy. The proportional (P) gain is optimized between 0.5
and 50 for each velocity ratio, and for various delays spanning the range (0, 0.3) s. The bar on the
right provides a key for the time to interception (0, 24) s; (b) The effect of sensorimotor delay on
P gain. The black line represents the mean P value over all velocity ratios for each sensorimotor
delay. The grey shading represents the standard deviation around the mean P gain; (c) The time to
interception when varying the sensorimotor delay and the velocity ratio of a moving target using the
pursuit strategy. The mean P gain (see (b)) for each delay is used. The bar on the right provides a key
for the time to interception (0, 24) s. Reproduced with permission from [143].
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Figure 19. (a) The time to interception when varying the sensorimotor delay and the velocity ratio
of a moving target using the constant bearing strategy. The P gain is optimised between 0.5 and 50
for each velocity ratio, and for various delays spanning the range (0, 0.3) s. The bar on the right
provides a key for the time to interception (0, 24) s. All cases resulted in interception; (b) The effect
of sensorimotor delay on P gain. The black line represents the mean P value over all velocity ratios
for each sensorimotor delay. The grey shading represents the standard deviation around the mean
P gain; (c) The time to interception when varying the sensorimotor delay and the velocity ratio of a
moving target using the pursuit strategy. The mean P gain (see (b)) for each delay is used. The bar on
the right provides a key for the time to interception (0, 24) s. Reproduced with permission from [143].
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It was also found that rather than optimising P for every possible velocity ratio and sensorimotor
delay, a mean P value over the range of velocity ratios values, as illustrated by Figures 18b and 19b,
can be used with near optimal performance for a particular sensorimotor delay, as shown in
Figures 18c and 19c. The changing value of P in Figure 18b, compared to the approximately constant
value of P in Figure 19b, is an indication that the constant bearing strategy is more robust to variations
in the velocity ratio and sensorimotor delays.

The main findings in [143] are that: (1) a controller consisting of a first order high-pass filter
satisfactorily compensates for the sensorimotor delay in real biological control systems; (2) it is
sufficient to use a single value of P for a particular sensorimotor delay, rather than optimise the
P value for each velocity ratio; (3) the pursuit control law in [137] can also be used for constant
bearing interception; and (4) in the scenario tested the constant bearing approach outperforms the
pursuit strategy, measured by mean time to interception when optimising for every velocity ratio and
sensorimotor delay combination, and also when using a single, optimised P gain.

Although the constant bearing strategy significantly outperforms the simple pursuit strategy,
there may be advantages to using a pursuit strategy, for example, before starting a constant bearing
approach or during the final moments before interception. Another situation where the pursuit
strategy may be preferable (especially in robotics) is when the vision system has a limited field of
view, thus requiring the target to be positioned close to the frontal direction of the pursuer.

5.3.2. Pursuit and Constant Bearing Interception in the Context of Robotics

Although not specifically designed for interception, there are other more engineering-based
approaches that can be used for pursuit and interception. Examples include a Linear Quadratic
Regulator (LQR), which may include sensorimotor delay as a part of the optimising objective
function [144]. In general, however, LQR is used to optimise a number of parameters where
individual gains would need to be re-adjusted for each sensorimotor delay. Another engineering
technique is the well known Model Predictive Control (MPC), which is in affect a finite optimisation
of a plant model [145]. MPC is known to provide high accuracy control, however, its main limitation
is that an accurate dynamics model is often required, which is not always available.

One of the benefits of the model presented in [143] is the ability to simplify the tuning process
of a robot’s controller for target interception through the use of bio-inspired principles. The tuning
process is simplified by adjusting the ratio of (P/D) in the proportional controller to match the time
constant of the low-pass filter that characterises the sensorimotor delay, thus requiring tuning of only
one parameter in the PD controller. In the case of a rotorcraft UAS intercepting a target—for example,
as described in the Section 5.1—the commanded flight direction that would be fed into the controller
is computed by using a vision-based system to regulate the rotorcraft’s state through a PD controller.

As mentioned earlier, vision-based solutions can also provide challenging control problems for
systems in which the computational load for visual processing, and therefore the sensorimotor delay
can vary from moment to moment depending on the task currently being addressed: e.g., navigation,
target detection, classification, tracking, or interception. The method proposed by Strydom, et al. [143]
provides a means by which such varying sensorimotor delays could be compensated for in real
time by an adaptive controller that uses a task-dependent look-up table to update the control
relevant gains.

Finally, a key benefit of the bio-inspired approach to pursuit and constant bearing interception
is that no prior information is required about the object (e.g., size, shape, etc.) or its relative position
and velocity. By using only information about the observed direction, an object can be pursued by a
robot (e.g., UAS) using either (or a combination) of the pursuit and constant bearing strategies.

6. Conclusions

The purpose of this paper is to provide a brief overview of bio-inspired principles to guidance
and navigation, to facilitate the development of more autonomous UAS. Additionally, we provide
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a review of the key limitations of the current state-of-the-art in UAS. The potential advantages
of biologically inspired techniques include navigation in cluttered GPS-denied environments,
awareness of surrounding objects, and guidance strategies for the pursuit and interception of
moving targets.

It is clear that animals, in particular insects, have demonstrated that simple vision-based
approaches can be used to overcome many of these limitations. Indeed, insects manage perfectly
well without external aids such as GPS, and although GPS provides useful position information,
it does not provide information about the location of the next obstacle (unless a digital terrain map is
also used). Vision, apart from being easy to miniaturise, has the added advantage that it involves the
use of a multi-purpose sensor that offers a cost effective solution not just for navigation, but also for
a number of other tasks in the domain of short-range guidance such as obstacle avoidance, altitude
control and landing. Although many of these biologically inspired mechanisms and algorithms may
or may not mimic nature in a literal sense, they adopt useful principles from animals to conduct tasks
more efficiently.

It is shown that robust navigation can be achieved by the use of a panoramic imaging sensor
in conjunction with biologically inspired guidance algorithms. We provide an overview of an optic
flow technique for the estimation of the change in the rotorcraft state (e.g., position and velocity)
from one frame to another. This method is capable of providing accurate information about the state
of the aircraft for short-term flights, using visual odometry. However, the accuracy of the result
decreases with increasing flight times and distances, due to the cumulative effect of noise. We show
that a solution to this problem is to use sparse visual snapshots along selected waypoints, to achieve
drift-free local and long-range homing. The main drawback of the current vision-based methods is
the requirement of an AHRS (or IMU) to determine the orientation of the aircraft. We show, however,
that vision can also be used to estimate aircraft attitude, thus paving the way for a navigation system
that relies purely on vision.

Vision can be used not only for navigation, but also to gather situational awareness of the
surrounding environment. An important requirement in the context of situational awareness is
the ability to distinguish between moving and stationary objects. We have discussed a number of
approaches to this challenging task. Notably, the epipolar constraint technique and the Triangle
Closure Method (coined TCM), that can be implemented in the vision system of a UAS to reliably
detect moving objects in the environment, and activate a sense-and-act response.

Once an object is deemed to be moving, action can be taken either to avoid it, or to pursue and
intercept it. In this paper we focus on the latter manoeuvre. It is shown that biologically inspired
strategies (e.g., pursuit and constant bearing) can be successfully used for target interception even in
the face of large sensorimotor delays. The comparison of the pursuit and constant bearing strategies
provides valuable insights into the differences in their performance. It is shown that a simple model
for the sensorimotor delay as observed in nature can be utilised to effectively compensate for the
delay and can be used to easily tune the control system. Finally, a stereo-based interception strategy
is developed for the robust pursuit and interception (or following) of a ground-based target in an
outdoor environment.

Table 4 provides a brief summary of the tasks that we have addressed in this review and the
biologically inspired techniques that have been used to achieve them. It is clear that bio-inspired
principles and vision-based techniques could hold the key for a UAS with greater autonomy.
The combination of the sensing, navigation and guidance capacities discussed in this paper provide
a stepping-stone for the development of more intelligent unmanned aerial systems, with a variety of
applications ranging from guidance of flight in urban environments through to planetary exploration.
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Table 4. Summary of tasks described in this paper and the corresponding techniques used to
achieve them.

Task Technique Section

Hover OF-FTF, OF-SM and ICE 3.2.1 and 3.2.2
Landing OF-FTF 3.1.2
Odometry OF-FTF and Stereo 3.1.1
Classifying target motion Optic flow and expansion cues 4.2
Target pursuit Stereo 5.1
Target pusuit in the presence of sensorimotor delay Simple pursuit and constant bearing 5.2 and 5.3
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