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Abstract: The advent, during the first decade of the 21st century, of the concept of acoustic
metamaterial has disclosed an incredible potential of development for breakthrough technologies.
Unfortunately, the extension of the same concepts to aeroacoustics has turned out to be not a trivial
task, because of the different structure of the governing equations, characterized by the presence of
the background aerodynamic convection. Some of the approaches recently introduced to circumvent
the problem are biased by a fundamental assumption that makes the actual realization of devices
extremely unlikely: the metamaterial should guarantee an adapted background aerodynamic
convection in order to modify suitably the acoustic field and obtain the desired effect, thus
implying the porosity of the cloaking device. In the present paper, we propose an interpretation
of the metamaterial design that removes this unlikely assumption, focusing on the identification
of an aerodynamically-impermeable metamaterial capable of reproducing the surface impedance
profile required to achieve the desired scattering abatement. The attention is focused on a moving
obstacle impinged by an acoustic perturbation induced by a co-moving source. The problem is
written in a frame of reference rigidly connected to the moving object to couple the convective wave
equation in the hosting medium with the inertially-anisotropic wave operator within the cloak.
The problem is recast in an integral form and numerically solved through a boundary-field
element method. The matching of the local wave vector is used to derive a convective design
of the metamaterial applicable to the specific problem analyzed. Preliminary numerical results
obtained under the simplifying assumption of a uniform aerodynamic flow reveal a considerable
enhancement of the masking capability of the convected design. The numerical method developed
shows a remarkable computational efficiency, completing a simulation of the entire field in a few
minutes on mid-end workstations. The results are re-interpreted in term of boundary impedance,
assuming a locally-reacting behavior of the outer boundary of the cloaking layer. The formulation
is currently being extended to the analysis of arbitrarily complex external flows in order to remove
the limitation of the background uniform stream in the host.

Keywords: acoustic metamaterial; acoustic cloaking; aeroacoustics; convective wave equation;
boundary integral equations; boundary element method

1. Introduction

The aim of the present paper is the modeling of the response of an acoustic metamaterial using
a boundary integral formulation of the governing equations valid in the presence of relative motion
between the metamaterial device and the surrounding medium. The specific problem analyzed
is the abatement of the acoustic scattering (or acoustic cloaking) of a moving object impinged by
the acoustic perturbation generated by a co-moving source. The location of the source is such that
the assumption of planar incoming wave fronts is not applicable. The ultimate goal of the research is
the development of a reliable, accurate and computationally-efficient tool for the design of innovative
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acoustic devices tailored to aeronautical applications. The availability of such a tool would disclose
the potential of the metamaterial concept in aeroacoustics, enabling the possibility to introduce
a new generation of acoustic treatments for the mitigation of the noise impact in the next generation
of commercial aircraft. An example of the possible application of such a material is the surface
treatment of the engine nacelle to achieve the so-called virtual scarfing of the intake, i.e., the possibility
to focus the noise emission upward without the reshaping of the intake duct and, thus, without
degradation of the aerodynamic efficiency. Another possibility is represented by the treatment of
the high-lift devices to avoid the propagation towards the ground of highly energetic sound
components, like the flap side-edge noise. In all of these cases, the fundamental aspects that must be
taken into account in the modeling of the acoustic wave propagation are the presence of a background
aerodynamic flow, the motion of the sources and the scattering boundaries and their relatively short
spatial distance. These requirements represent the rationale behind the present research. Indeed,
these aspects have never been considered simultaneously in the modeling of metamaterials. Since
the early appearance of this groundbreaking concept, the analysis of acoustic metamaterials has been
the object of great attention by the research community, but almost completely limited (with some
exceptions, that will be discussed later) to the analysis of obstacles at rest within a quiescent fluid
impinged by planar wave fronts. The fundamental reason for this situation is basically the legacy
inherited from the electromagnetism community, where these concepts were first developed. Indeed,
the coordinate transformation approach, which is the origin of the metamaterial concepts that will
be used throughout the present work, was originally developed as a strategy to identify the physical
properties of idealized media capable of producing substantial distortions of electromagnetic fields
(Leonhardt [1], Pendry et al. [2] and Milton et al. [3]). The same concept has been ported to acoustics
by Cummer and Shurig [4], observing that, under certain hypotheses, Maxwell’s equations exhibit
a formal analogy with the mass and momentum conservation equations of a quiescent, compressible
inviscid fluid. This remarkable achievement represented a real breakthrough concept for the acoustic
community, inducing a gigantic amount of research on the topic and the production of an extensive
literature in a relatively short time. A detailed bibliographic review is definitely beyond the scope
of this paper. Among others, it worth mentioning the work done by the Wave Phenomena group of
the University of Valencia (see, e.g., [5–8]) or the fundamental theoretical contribution from Norris
(e.g., [9,10]). This fibrillating research produced remarkable achievements on the subject, including
the actual realization of acoustic cloaking devices. Despite these tremendous efforts, the results
attained so far in the modeling of the problem in the presence of flow and/or motion of
the scatterers and the sources are not even comparable to those obtained in static conditions.
The fundamental reason is the failure of the formal invariance of the governing equations under
coordinate transformation, which is the basis of the coordinate transformation approach. Indeed,
the presence of convective terms in the conservation laws introduces a differential coupling of
space and time, which cannot be preserved through coordinate transformations, at least using
the standard Riemannian geometry tools. Recently, Garcia-Meca et al. [11,12] suggested adopting
the mathematical instruments proper for the Lorentzian differential geometry, starting from the
observation, first published by Visser in 1998 [13], that the convective form of the wave equation
has a relativistic structure. Garcia-Meca introduced a novel approach, the Analogue Transformation
Acoustics (ATA), to extend the Standard Transformation Acoustics (STA) to the aeroacoustic domain.
Nevertheless, despite the claimed capability to extend the range of application to the aeroacoustics
of fast transportation means, such as aircraft or trains, the simulations presented so far deal with
test cases too simple and too far from realistic conditions. An exception can be found in the work
by Huang et al. [14], where the analogue transformation acoustics is used to derive a correction
for the classic static metamaterial valid for an object at rest surrounded by a moving medium. In
the author’s opinion, this paper is the most valuable contribution published so far on the topic.
In Huang et al. [15], the method is extended to the cloaking of an object immersed in a turbulent
fluid, adopting an approach based on numerical optimization to identify the optimal design.
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The present work is partially inspired by that paper and aims at the removal of the assumption of
an incoming plane wave and at the extension to moving sources arbitrarily close to the obstacle.
In the present method, the differential problem is first reformulated into an integral form derived
from that presented in Iemma and Burghignoli [16] and extended to consider the motion of
the obstacle and the source. The contribution of the mechanical properties of the metamaterial is taken
into account in the form of an acoustic analogy, i.e., recasting the homogeneous equation governing
the wave propagation in the unconventional medium with the standard wave equation written for
the surrounding medium (air, in our case) forced by field sources depending on the metamaterial
constitutive equations. Two formulations are used to treat these fictitious field sources. Finally,
the results are reinterpreted in terms of the estimation of the complex wall impedance required
to achieve the desired aeroacoustic response. This interpretation is certainly of greater help for
the aeronautical engineering community on the path to the actual realization of these devices, since
it is consistent with the point of view typically adopted in the design of the surface treatments of
aircraft components. The main limit of the current version of the formulation is the limitation of
the aerodynamic convection to a uniform stream. The elimination of this assumption is currently
the primary object of attention in the improvement of the formulation. The paper is structured
as follows. Section 2 deals with the integral formulation of the problem in the cloaking layer and
in the host domain, presenting both formulations for the treatment of the metamaterial response.
The extended BEMused for the numerical solution of the problem is presented in Section 3, whereas in
Section 4, the convective correction of the cloak design is derived. The results of an accurate campaign
of numerical simulations is presented and commented on in Section 5, including information about
the computing effort required.

2. Integral Formulation of the Problem

Consider a sound-hard object impinged by an incoming acoustic perturbation. The acoustic field
resulting from the superposition of the incoming wave, the primary or incident field and the scattered
or secondary field, can freely propagate in the unbounded domain Ω. The latter is divided into two
sub-domains, Ωh and Ωc. The first is occupied by a compressible medium with reference density $0,
bulk modulus B0 and speed of sound c0 =

√
B0/$0. The domain Ωc is occupied by a metamaterial

capable of substantial modifications of the wave propagation pattern, so as to make the presence of
the obstacle undetectable in Ωh.

In the present work, without loss of generality for the theoretical and numerical formulation,
we limit our attention to the bi-dimensional problem depicted in Figure 1, for which an analytical
solution of the cloaking problem exists and represents a standard benchmark (see Cummer and
Shurig [4]). The approach used to recast the governing equations in an integral form is derived
from Iemma and Burghignoli [16] and extended to moving obstacles in the presence of co-moving
sound sources at a close distance. This extension represents the main novelty of the present work,
the existing literature on the subject being limited to the analysis of a cloaked obstacle in the far field,
assuming incoming planar wave fronts.

The standard coordinate transformation approach starts from the assumption that the physical
domain Ωc can be obtained by transforming an obstacle-free virtual domain Ω̄ through a mapping
x = f (x̄), x̄ ∈ Ω̄. The transformation is invertible almost everywhere, all of the points being mapped
one-to-one, with the exception of the reference point in Ω̄, which is mapped onto the boundary
of the obstacle ΓI (see Figures 1 and 2). In the following, the formalism adopted is that used in
Norris [9]. Indicating with the bar differentiation with respect to x̄, the deformation tensor associated
with the transformation is D = ∇̄ f (x̄) = ∇̄x (with Dij = ∂xi/∂x̄j), and its Jacobian is J = det D.
The Laplace operators in Ω̄ and in Ω are related by the equation ∇̄2 = J ∇ ·

(
J−1V2 ∇

)
where

V2 = D DT (clearly, DT∇ = ∇̄; see Norris [9]). The core of the Standard Transformation
Acoustic (STA) is in the interpretation of the coefficients arising from the coordinate transformation as
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the mechanical properties of a virtual material having unconventional properties. Defining B := J
and $ := J V−2, the wave equation in Ω̄ is transformed into:

B ∇ ·
(

$−1∇p
)
− p̈ = 0, x ∈ Ωc (1)

This equation governs the propagation of an acoustic perturbation within a medium having
anisotropic inertia, represented by the tensor $ and bulk modulus B. These unconventional
mechanical properties cause an acoustic wave traveling in Ωc to be bent around the object and
perfectly re-aligned behind it, exactly in the same fashion as straight lines in Ω̄c are bent by
f (x̄). An observer in Ωh sees undisturbed wave paths, thus achieving the desired cloaking effect.
The actual manufacturing of metamaterials reproducing this unconventional behavior is currently
one of the most intriguing technology challenges. Remarkable results have been obtained so far in
the design of metamaterials mimicking this response, including the realization of experiments in
the case of a medium and obstacle at rest (see, e.g., [10,17–19]).
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Figure 1. Nomenclature of the computational domain (A) and detail of the cloak/host interface (B).
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Figure 2. Effect of coordinate transformation on straight lines (red, dashed) and wave fronts (black,
continuous lines) from the virtual domain Ω̄ to the physical domain Ω. Object and source at rest.

The derivation of integral formulations for inhomogeneous wave operators formally identical
to Equation (1) is not new. The formulation presented here extends to moving bodies and sources
the approach introduced in Iemma and Burghignoli [16], which is closely related to the work
presented in Martin [20]. It is worth mentioning also the early work of Stevenson [21] where
the tailored Green’s function of Equation (1) is derived in the free-space and in a layered half-space.
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The improvement of the method presented in Iemma and Burghignoli [16] using Stevenson’s
approach is currently under development. Assuming p(x, t) = p̃(x) ejωt, Equation (1) is rewritten
in the form of a non-homogeneous Helmholtz equation as:

∇2 p̃ + k2
0 p̃ = ∇ ·

[(
I − $̂−1

)
∇ p̃
]
−ω2$0

(
1
B −

1
B0

)
p̃, x ∈ Ωc (2)

where I is the second-order identity tensor, $̂ = $/$0. The acoustic analogy defined with Equation (2)
simulates the inertial and elastic response of the cloaking layer as a distribution of field sources forcing
the hosting medium in Ωc. Using this approach, an integral formulation of the problem can be easily
obtained with the standard procedure (see, e.g., [16]) as:

Ec(y) p̃(y) =
∮

Γc

[
G(x, y)

∂ p̃(x)
∂n

− p̃(x)
∂G(x, y)

∂n

]
dΓ(x) +

∫
Ωc

G(x, y) ζ(x) dΩ(x), y ∈ Ωc (3)

where Γc ≡ ∂Ωc = ΓI ∪ ΓO
- is the boundary of the cloak, ζ(x) = ∇ ·

[(
I − $̂−1)∇ p̃

]
−

p̃ ω2$0(B0 − B)/BB0 and G(x, y) is the free-space Green’s function. In Equation (3), the effect of
the metamaterial is accounted for as a single monopole source, yielding to a relatively simple
numerical implementation, at the cost of the evaluation of the divergence of q =

(
I − $̂−1)∇ p̃.

This approach has been widely assessed for the static case in Iemma and Burghignoli [16].
In the present work, a second formulation is introduced, in order to avoid the numerical evaluation
of the divergence in ζ:

Ec(y) p̃(y) =
∮

Γc

[
G(x, y)

∂ p̃(x)
∂n

− p̃(x)
∂G(x, y)

∂n

]
dΓ(x)

+
∫

Ωc
G(x, y) ∇ · q(x) dΩ(x) +

∫
Ωc

G(x, y) σ(x) dΩ(x), y ∈ Ωc

(4)

In this second formulation, the metamaterial contributes with the sum of a monopole
proportional to σ = p̃ ω2$0(B − B0)/BB0 and a dipole defined by ∇ · q. Integrating by parts
the first volume integral and applying the Gauss theorem (recalling the orientation of Γ) yields:

Ec(y) p̃(y) =
∮

Γc

{
G(x, y)

[
∂ p̃(x)

∂n
− q(x) · n

]
− p̃(x)

∂G(x, y)
∂n

}
dΓ(x)

−
∫

Ωc
q(x) · ∇G(x, y) dΩ(x) +

∫
Ωc

G(x, y) σ(x) dΩ(x), y ∈ Ωc

(5)

where the evaluation of the second derivatives of p̃ is avoided.
The derivation of an integral formulation valid in Ωh must take into account the motion of

the object and the source. In a frame of reference R′ rigidly connected with the moving object,
the propagation of an acoustic perturbation for the velocity potential function ϕ(x, t) is governed
by the convective wave equation:

∇2 ϕ− 1
c2

0

(
∂

∂t
− vb · ∇

)2
ϕ = 0, x ∈ Ωh (6)

Equation (6) simply states that an observer moving at speed vb sees the acoustic perturbations
in Ωh as propagating in a fluid moving as a uniform stream with velocity v0 = −vb. It is
important to notice that Equation (6) does not take into account the aerodynamic perturbation velocity
induced in the surrounding medium by the motion of the obstacle, nor its modification due to
the presence of the cloaking layer. This limitation necessarily yields an unphysical matching condition
at the outer interface. This will result in an imperfect cloaking of the object even in the presence of
the convective metamaterial design (see Section 5). On the other hand, Huang et al. [14] shows that
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the use of a convective cloak design produces an improvement of the masking capability even if
the simplistic assumption of a uniform stream is used (see Figure 1 of [14]) and that the introduction
of a more realistic external flow pattern recovers the complete cloaking property of the metamaterial
layer. As already mentioned, one of the objectives of the present paper is the development and
the preliminary validation of an efficient numerical solution of the aeroacoustic cloaking based on
the integral formulation of the problem, and for this reason, the analysis is limited to the uniform
stream assumption.

The reformulation of the convective wave equation into a boundary integral equation can be
considered as a standard procedure in aeroacoustics and potential aerodynamics, and the literature
available on the subject is extensive. Formulations close to the one presented here can be found in
Morino et al. [22], Guo [23] and Agarwal and Morris [24]. Defining the Mach number of the relative
uniform flow, M0, the integral formulation in the frequency domain of the above equation can be
easily obtained as:

Ec(y) ϕ̃(y) =
∮

ΓE

[
Ĝ(x, y)

(
∂ϕ̃(x)

∂n
−Mn

0 M0 · ∇ϕ̃(x)
)]

dΓ(x)

+
∮

ΓE

[
ϕ̃(x)

(
2ik0 Mn

0 Ĝ(x, y) + Mn
0 M0 · ∇Ĝ(x, y)− ∂Ĝ(x, y)

∂n

)]
dΓ(x), y ∈ Ωh

(7)

where Mn
0 = M0 · n and Ĝ(x, y) is the free-space solution of ∇2Ĝ +

(
j k2

0 + M0 · ∇
)2 Ĝ = δ(x − y).

It important to notice that the integrals in Equation (7) extend on ΓE ≡ ΓO
+ , i.e., on the outer side

of the interface between the two media. This point is important in the derivation of the continuity
conditions that will be used to couple Equations (3) and (4) with Equation (7).

3. Numerical Solution

Equations (3) and (4) in Ωc and Equation (7) in Ωh must be solved simultaneously to simulate
properly the effect of the cloaking layer on the scattering in the host medium. In order to do this, it is
important to derive suitable continuity conditions at the interface between the two media. Assuming
as negligible the motion of the outer boundary ΓO induced by the acoustic perturbation, the continuity
of the acoustic field is expressed in term of pressure and normal acceleration. The unit normals to
the two sides of ΓO, ΓO

- and ΓO
+ , are denoted by n- and n+, respectively with n+ = −n- = n

(see Figure 1). The boundaries of the two sub-domains are defined as ∂Ωc = ΓI ∪ ΓO
- , ∂Ωh = ΓE.

The boundary conditions on ΓI depend on the nature of the object. Here, we analyze the simple case
of a sound-hard obstacle (see Iemma and Burghignoli [16] for general boundary conditions on ΓI).
The momentum conservation equations in the cloak and in the host are given by:

∂v
∂t

= −$−1∇p for x ∈ Ωc,
Dv
Dt

= − 1
$0

∇p for x ∈ Ωh (8)

with D/Dt = ∂/∂t + v0 · ∇. Combining the above equations and deriving the relationship between
pressure and velocity potential in Ωh by integrating the momentum equation under the assumption of
homentropic, potential flow, the continuity of the acoustic field at the media interface in the frequency
domain becomes:

∂ p̃O

∂n−
= −$r

$0

∂ p̃E

∂n+
, p̃O = −j ω ϕ̃E + v0 · ∇ϕ̃E, x ∈ ΓO (9)

where the tensor $ has been assumed to be diagonal with [$]11 = $r (see Norris [9] and Iemma and
Burghignoli [16] for details) and the superscripts O and E denote the solutions of Equation (2) in Ωc

and Equation (6) in Ωh, respectively.
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The numerical solution of the problem is obtained using the extended boundary element
method presented in Iemma and Burghignoli [16], suitably adapted to take into account
the field terms appearing in Equations (3) and (4). Each boundary contour is divided
into M line elements, and the domain Ωc is partitioned into N quadrilateral elements.
The variables are assumed to be piece-wise constant on each element, and the collocation method
is used to solve the problem, with collocation points located at the centers of the elements.
The column vectors collecting the value of the pressure and its normal derivatives are indicated with
as p̃X and χ̃X, where the superscript X is equal to I, O, or Ω, to indicate collocation on ΓI, ΓO, or in Ωc,
respectively. The vectors collecting the values of velocity potential and its normal derivatives on ΓE

are indicated with ϕ̃E and ψ̃h. In a similar fashion, the single and double layers’ integral coefficients
arising from the discretization of the equations are assembled into matrices denoted with BXY and
CXY, respectively, whereas the field source and dipole coefficients are collected into matrices HXY,
GXY

r and GXY
θ (see Appendix for the definition of each coefficient). In the matrices’ naming scheme,

the first superscript indicates the sub-domain where y is located and the second one that to which
the influencing element belongs. Finally, Dr, Dθ and S are the finite-difference operators that build
q and ζ from the pressure. Assuming a sound-hard object, Equation (3) yields a final system of
equations having the form:

YII p̃I + BIOχ̃O + CIO p̃O −HIΩS p̃Ω = 0

COIp̃I + BOOχ̃O + YOO p̃O −HOΩS p̃Ω = 0 (10)

CΩIp̃I + BΩIχ̃O + CΩO p̃O + (I−HΩΩS) p̃Ω = 0

with YXY = 0.5 I + CXY, whereas for Equation (5), we obtain:

YII p̃I + BIOQOχ̃O + CIO p̃O + (GIΩ
r QΩ

r Dr + GIΩ
θ QΩ

θ Dθ −HIΩ) p̃Ω = 0

COIp̃I + BOOQOχ̃O + YOO p̃O + (GOΩ
r QΩ

r Dr + GOΩ
θ QΩ

θ Dθ −HOΩ) p̃Ω = 0 (11)

CΩIp̃I + BΩIQOχ̃O + CΩO p̃O + (I + GΩΩ
r QΩ

r Dr + GΩΩ
θ QΩ

θ Dθ −HΩΩ) p̃Ω = 0

The Q matrices contain the inertial coefficients of the radial and azimuthal components
of the vector q on ΓO and in Ωc. In order to couple the above system of equations with
the acoustic field in Ωh, the acoustic perturbation is assumed to be the superposition of a primary
(or incident) field, p̃p, ϕ̃p, i.e., the field that would be present in Ω if all of the obstacles were absent,
and the secondary (or scattered) field, p̃s, ϕ̃s, induced by the presence of the scattering objects.
Applying the same discretisation procedure and taking into account the fact that the primary field
satisfies Equation (7) yields:

ψ̃E
s =

[
B̂EE
]−1

(
1
2

I + ĈEE

)
ϕ̃E
s = ẐEE ϕ̃E

s (12)

Equation (12), together with Equation (9), is used to rewrite the systems eliminating the terms
χ̃O from the unknowns. Denoting the column vectors of unknown and known terms as:

z =


p̃I

ϕ̃E
s

p̃Ω

 , b =

{
ψ̃E
p

ϕ̃E
p

}
(13)

The linear system of 2M + N equations in 2M + N unknowns can be written as:

z = A ($,K, k0)K($̂, k0) b (14)
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where the dependence of the system matrices on the cloak’s parameter has been explicitly introduced.
Regardless of the formulation used, matrix K has the form:

K =

 −$̂ BIOB −CIO

−$̂ BOOB −YOO

−$̂ BΩIB −CΩO

 (15)

where $̂ = $0/$r and B is the discrete Bernoulli’s operator, relating pressure and velocity potential
on ΓE. On the contrary, matrix A depends on the formulation used. Specifically, Equation (3) yields:

A =

 YII CIO − $̂ BIOBẐEE −HIΩS

COI YOO − $̂ BOOBẐEE −HOΩS

CΩI CΩO − $̂ BΩIBẐEE I−HΩΩS


−1

(16)

whereas Equation (5) produces:

A =

 YII CIO − $̂ BIOBẐEE GIΩ
r QΩ

r Dr + GIΩ
θ QΩ

θ Dθ −HIΩ

COI YOO − $̂ BOOBẐEE GOΩ
r QΩ

r Dr + GOΩ
θ QΩ

θ Dθ −HOΩ

CΩI CΩO − $̂ BΩIBẐEE I + GΩΩ
r QΩ

r Dr + GΩΩ
θ QΩ

θ Dθ −HΩΩ


−1

(17)

The matrix T($,K, k0) = A ($,K, k0)K($̂, k0) can be considered as the matrix transfer function of
the cloaked object relating the incident field on ΓE (which is known) with the solution in Ω̄c. Once that
the solution z is known, the velocity potential field in Ωh can be obtained as ϕ̃h

s = B̂EE ψ̃E
s − ĈEE ϕ̃E

s .

4. Effect of Motion on the Metamaterial Design

In the model developed so far, the mechanical properties of the cloaking layer are obtained
by applying the coordinate transformation to the Helmholtz equation in the virtual domain Ω̄.
The definition of $ and B does not take into account the effect of the relative motion of the cloaked
object and the hosting medium. As already mentioned in the Introduction, the problem has been
already addressed in the literature by several authors. In particular, Huang et al. [14,15] have
developed an approach that is, in the author’s opinion, the most suitable for a direct application
to real aeroacoustic problems. In particular, in [14], the convective design of the cloaking material
is obtained by imposing the matching of the wave vector at the cloak/host interface, taking into
account the effect of a uniform mean flow in Ωh on the propagation speed of an incoming plane
wave. Equivalent source terms are then derived using the first Born approximation. The use of
this approximation is definitely legitimate in the specific application addressed in that paper, since
the static cloak, used as a reference design, guarantees by itself a negligible scattering field. In general,
when the mechanical properties of the cloaking layer are not known a priori and no reasonable initial
guesses can be made, a simulation based on Born approximation could lead to inconsistent results.
Let us consider, for example, the numerical optimization of the metamaterial properties starting from
scratch. The optimization procedure could, in principle, explore regions of the design space leading
to a very poor cloaking performance. The use of the Born approximation for the simulation of these
design points could drive the optimization scheme towards the wrong optimization dynamics.

The integral formulation proposed here is derived without making a priori assumptions on
the intensity of the scattered field, thus being suitable to analyze coherently any scattering problem.
Furthermore, the objective of the present research makes the assumption of incoming plane waves
not acceptable.

An observer co-moving with the frame of reference R′, rigidly connected with the object and
source (i.e., the frame of reference used so far in the development of the formulation) sees an acoustic
field proportional to exp [j (ωc t− k0 · x)], where ωc is the observed angular frequency and x is
the position vector in R′. Indicating with X the position vector in a frame of reference at rest, R,
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the coordinate transformation between R and R′ reads X = x− vb t. Using this transformation and
imposing the frame invariance of the local wave structure, we obtain the classic Doppler correction
for the frequency observed in R′:

ωc = ω
[
1− k̂0 (x) ·Mb

]
(18)

where k̂0 is the local unit wave vector, not constant in space for a moving source close to
the observation point (see Figure 3). Using an approach similar to Huang et al. [14], we obtain
the convective correction of the metamaterial properties as:

$M(x) =
$(x)[

1− k̂0 (x) ·Mb

] , BM(x) = B(x)
[
1− k̂0 (x) ·Mb

]
(19)

In case of planar wave fronts, and considering that the convective Mach observed in R′ is
M0 = −Mb, the correction indicated by Equation (19) reduces to Equation 11 of [14]. It is important
to notice that the use of this correction in the present formulation is extremely simple. Indeed,
Equation (20) simply changes into:

∇2 p̃ + k2
0 p̃ = ∇ ·

[(
I − $̂−1

M

)
∇ p̃
]
−ω2$0

(
1
BM

− 1
B0

)
p̃, x ∈ Ωc (20)

In addition, the use of Equation (5) avoids the evaluation of the derivatives of the correction
factor yielding a corrected integral formulation in Ωc having the form:

Ec(y) p̃(y) =
∮

Γc

{
G(x, y)

[
∂ p̃(x)

∂n
− qM(x) · n

]
− p̃(x)

∂G(x, y)
∂n

}
dΓ(x)

−
∫

Ωc
qM(x) · ∇G(x, y) dΩ(x) +

∫
Ωc

G(x, y) σM(x) dΩ(x), y ∈ Ωc

(21)

It must be pointed out that the correction factor so obtained is not constant in space and depends
on the source location, resulting, in principle, in a more complex practical realization of the device.
Nevertheless, this difficulty is not critical in those applications where the relative position of scatterers
and sources is known and invariant.

																															 	

! = #(!%)	

!	

!'	
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!%'	

(	(% 	

)*	

Figure 3. Effect of coordinate transformation on straight lines (red, dashed) and wave fronts (gray,
continuous lines) from the virtual domain Ω̄ to the physical domain Ω. Object and source moving
with velocity vb.

5. Results and Discussion

Equation (3) presented in Section 2 has been extensively validated in Iemma and Burghignoli [16]
on the classic test case of a circular cylinder subject to an impinging plane wave, using the cloak
design first introduced by Pendry et al. [2] for the electromagnetic fields and ported to acoustics by
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Cummer and Shurig [4]. Here, we use the same benchmark to assess Equations (3) and (5) in the case
of a moving cylinder impinged by the field induced by a co-moving monopole point source located
at xs = (0, 5R2). In polar coordinates, (r, θ), the static cloak design is given by:

$̂ =


r

r− R1
0

0
r− R1

r

 , B = B0

(
R2 − R1

R2

)2
[$̂]11 (22)

The validation of the method starts with the analysis of the h-convergence of the numerical
scheme. The parameter adopted to measure the cloaking efficiency is the scattering cross-section,
here defined as:

σcs =
1

2π

∫ 2π

0

(
p̃rms
s

p̃rms
p

)2

, dθ =
1

2π

∫ 2π

0

| p̃s|2
| p̃p|2

dθ (23)

The domain Ωc is partitioned into 200 ≤ Nel ≤ 3200 field elements, and the analysis is performed
in the reduced frequency range 1 ≤ ka ≤ 8, with a = R2. The static cloak design is used for Mach
numbers in the range 0.0 ≤ Mb ≤ 0.2.

The numerical results are presented in Figures 4 and 5. In case of an object and
source at rest (Mb = 0.0), both formulations appear to converge with a rate O(h2),
as the comparison with the reference red line in the log-log plots confirms. As expected,
the absolute value of σcs for a specific value of Nel is lower at lower frequencies, because of
the higher number of elements per wavelength. For increasing the Mach number, the cloaking
efficiency deteriorates significantly, both in terms of the rate of convergence and the value of
the scattering cross-section. Furthermore, this result is not surprising, since the metamaterial used
in these tests is based on the static design, Equation (22), which is not capable of completely adjusting
the local impedance of the cloaking layer in the presence of the background convection in Ωh.
The effect of the reduced efficiency of the cloak at higher Mach numbers can be clearly seen in
Figure 6, where the density plot of the pressure field in Ωc ∪Ωh is presented for both formulations at
Mb = 0.0 and Mb = 0.1. The primary field in the hosting medium appears almost undisturbed
in the case of an object at rest, whereas significant perturbations are present when Mb = 0.1.
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Figure 4. Convergence of σcs with the number of field elements in Ωc, Nel , for four values of ka.
Equation (3). Mach number Mb = 0.0, 0.1, 0.2 (A, B, and C, respectively). The red line indicates
the h2 rate.
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Figure 5. Convergence of σcs with the number of field elements in Ωc, Nel , for four values of ka.
Equation (5). Mach number Mb = 0.0, 0.1, 0.2 (A, B, and C, respectively). The red line indicates
the h2 rate.

Mb = 0.0, Equation (3) Mb = 0.0, Equation (5)

Mb = 0.2, Equation (3) Mb = 0.2, Equation (5)

Figure 6. Field of total pressure in Ωc ∪Ωh. Comparison of the results obtained with Equations (3)
and (5) at ka = 6, for Mb = 0.0, 0.1.

5.1. Effect of Convective Cloak

The efficiency loss observed in the presence of motion can be substantially reduced using
the corrected cloak design presented in Section 4. The effect of the local Doppler correction on
the scattering cross-section σcs is presented in Figure 7. As anticipated in Section 4, the corrected
cloak design is applied only to Equation (5) to avoid the numerical evaluation of the derivatives of
the correction factor in the divergence of ζ.
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Figure 7. Scattering cross-section σcs as a function of the reduced frequency ka at Mb = 0.0, 0.1, 0.2.
Black dashed lines for a static cloak; red continuous lines for a convective cloak.

The beneficial influence of the correction is evident, resulting in a maximum abatement of
the scattering signature of more than one order of magnitude for the object in faster motion and
at higher frequencies. Additional information about the behavior of the convective cloaking layer can
be achieved by observing the polar pattern of the insertion loss, calculated as:

IL = 20 log
10

| p̃s|2
| p̃p|2

(24)

Figure 8 depicts the directivity patterns measured at r = 20 R1, for ka = 1 and three values
of Mb. At low frequency, the red curves, the solution of Equation (21), are slightly closer to the
perfect cloak limit (IL = 0) along the entire evaluation contour than those obtained with Equation (5).
The beneficial effect of the correction is much more evident at higher frequencies (Figures 9 and 10),
as to be expected from the analysis of σcs presented in Figure 7.

M= 0.0, ka = 1
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M= 0.1, ka = 1

Convected
Static

−3 −2 −1 0 1
0

11π/6

5π/3

3π/2

4π/3

7π/6

π

5π/6

2π/3

π/2

π/3

π/6
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Figure 8. Directivity pattern at r = 5R2 of the insertion loss IL for ka = 1 (Equation (5)). Mach number
Mb = 0.0, 0.1, 0.2.
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M=0.0, ka = 3.4
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Figure 9. Directivity pattern at r = 5R2 of the insertion loss IL for ka = 3.4 (Equation (5)).
Mach number Mb = 0.0, 0.1, 0.2.

M=0.0, ka = 6

Convected
Static

−3 −2 −1 0
0

11π/6

5π/3

3π/2

4π/3

7π/6

π

5π/6

2π/3

π/2

π/3

π/6

M=0.1, ka = 6

Convected
Static

−4 −2 0
0

11π/6

5π/3

3π/2

4π/3

7π/6

π

5π/6

2π/3

π/2

π/3

π/6

M=0.2, ka = 6

Convected
Static

−7,5 −5 −2,5 0 2,5
0

11π/6

5π/3

3π/2

4π/3

7π/6

π

5π/6

2π/3

π/2

π/3

π/6

Figure 10. Directivity pattern at r = 5R2 of the insertion loss IL for ka = 6 (Equation (5)). Mach number
Mb = 0.0, 0.1, 0.2.

This result is confirmed by Figure 11, where the relative cloaking performance recovery is shown.
The performance recovery is defined as |σSC

cs − σCC
cs |/|σSC

cs |, where superscripts SC and CC indicate
the static and convective cloak design, respectively.
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Figure 11. Relative cloaking recovery performance of the convective cloak, |σSC
cs − σCC

cs |/|σSC
cs |.

Black dots M = 0.1; red squares Mb = 0.2.
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The masking recovery clearly appears to increase with Mach number and reduced frequency,
at least in the range analyzed. The visual sketch of the wave patterns in Ωc ∪ Ωh is presented in
Figure 12 for ka = 3.4 and Figure 13 for ka = 6. The use of the convective cloak design reduces
substantially the perturbation of the wave fronts due to the residual scattering, recovering almost
completely the wave pattern of the primary field induced by the moving source.

Mb = 0.1, SC Mb = 0.1, CC

Mb = 0.2, SC Mb = 0.2, CC

Figure 12. Field of total pressure in Ωc ∪ Ωh. Comparison of results obtained with static (SC) and
convected (CC) cloaks at ka = 3.4.

Mb = 0.1, SC Mb = 0.1, CC

Mb = 0.2, SC Mb = 0.2, CC

Figure 13. Field of total pressure in Ωc ∪ Ωh. Comparison of results obtained with static (SC) and
convected (CC) cloaks at ka = 6.
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5.2. Boundary Impedance Estimate

This section is dedicated to the re-interpretation of the results obtained in terms of an equivalent
wall impedance distribution on ΓO. Indeed, the availability of a reliable end efficient tool for
the modeling and simulation of metamaterials in aeroacoustics could be, in principle, considered
as an alternative approach to the non-trivial task of identifying the optimal distribution of surface
impedance required to attain a specific acoustic response. In aeronautics, this possibility would
represent a major improvement in the design of specific passive noise-controlling devices, such as
nacelle liners and high-lift device surface treatments. Indeed, the estimate of the wall impedance
in the presence of flow is not a trivial task (see, e.g., [25–27]). The numerical simulations required
are extremely time consuming (and often not completely reliable), and experiments are extremely
expensive. Consequently, the design of noise abatement devices is a design task that absorbs
a large amount of resources, especially in the presence of environmental constraints becoming stricter
and stricter. In this preliminary work, we address the problem simply by assuming that the outer
boundary of the cloak is a locally-reactive surface and evaluating the local impedance Z = R+ jX .
It is important to stress the fact that we are not claiming that the metamaterial could act as
a locally-reacting surface. It is simply a re-thinking of the problem to guess what kind of
locally-reacting surface treatment could mimic the behavior of our cloaking device. The rationale
behind this stems from the consideration that the aeronautical industries have developed advanced
technical capabilities in the realization of active and passive surface treatments to attain specific
impedance distributions, and in most cases, the major difficulties are in the identification of
the impedance distribution required for a specific acoustic response. To this aim, the acoustic
metamaterial theory could be interpreted as a tool to circumvent these difficulties. This evaluation
of Z is simplified, in the present formulation, by the use of the velocity potential function ϕ̃ as
the unknown function in Ωh, the acoustic flow on ΓO

+ being directly obtainable from ψ̃E
s + ψ̃E

p.
In a locally-reacting surface, the normal component of the particles’ acoustic velocity is proportional
to the local value of the acoustic pressure through the complex value of the acoustic admittance,
A = Z−1. For such a surface, acoustic invisibility can be achieved through the perfect matching
of the local value of Z with the specific impedance of the medium, Z0 = $0 c0. Indicating with α

the angle between the local normal to the surface and wave vector of the impinging perturbation,
the reflection coefficient is defined as (see, e.g., [28]):

R =
Z sin(π/2− α)− $0c0

Z sin(π/2− α) + $0c0

=
Z cos(α)− $0c0

Z cos(α) + $0c0

(25)

The invisibility condition can be derived analytically for simple sources in static conditions from
Equation (25) as Z = $0c0/ cos α.

Figure 14 shows the results for the simple case of a monopole at rest. The polar distribution
obtained at Mb = 0.0 is compared to the theoretical value of Z required to guarantee the impedance
matching with the free medium. The agreement with the theoretical prediction is remarkable.
The azimuthal location of the impedance peaks (corresponding to an incoming local wave vector
tangent to ΓE) are perfectly captured, whereas their intensity is slightly underestimated, consistently
with a substantially reduced, but not completely canceled, scattering field. Figure 15 shows the effect
of the motion on the wall impedance polar distribution. The distortion of the azimuthal pattern
induced by the motion of the obstacle and source is evident at Mb = 0.1 and Mb = 0.2.
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Figure 14. Polar distribution at r = 5R2 of the local adimensional impedanceZ/Z0 at ka = 3.4 in static
condition. Results of Equation (5) (black line) are compared to the analytical value from Equation (25)
(red dots).

Figure 15. Directivity pattern at r = 5R2 of the local impedance Z = R+ jX at ka = 3.4 obtained
using Equations (5) for Mb = 0.1 and Mb = 0.2.

5.3. Computational Efficiency

One of the advantages of the formulation presented is the high computational efficiency with
respect to other approaches based on finite volumes (FV), finite differences (FD) or finite elements (FE)
methods. Although the present integral formulation requires the evaluation of field integrals, these
are confined within the cloaking layer, and the overall computing effort remains remarkably low.
In addition, the computational efficiency of the numerical scheme takes advantage of the high level
of intrinsic parallelism typical of the collocation methods based on integral equations. Indeed, the set
of integral coefficients pertaining to each collocation point can be calculated independently, and the
matrices to be assembled are smaller (although denser) than those typical of FV, FD or FE methods.
The method presented has been implemented by embedding adaptive numerical quadrature
C-routines in a scalable parallel environment written in the Wolfram Mathematica language, through
a set of Cwrappers. Overall performance indicators are collected in Table 1 for three different
generations of computing architectures. The computing time required to obtain a fully-converged
solution (Nel = 2800) is in the order of a few minutes for the evaluation of the solution in Ωc.
The estimate of the solution in Ωh increases the computing time from 20%–30% (depending on
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the architecture) since it only requires the evaluation of Equation (7) at the specified locations y ∈ Ωh,
without the solution of a linear system of equations.

Table 1. Average Wall Clock Time (WTC) in seconds for a complete simulation with and without
the evaluation of the acoustic field in Ωh.

CPU (Year) Op.System WCT Ωc WCT Ωc ∪ Ωh

Intel Xeon E5405 2.0 GHz (2007) GNU/Linux kernel 2.6.18 230 275
Intel Xeon E5520 2.2 GHz (2009) OSX 10.11.2 150 188
Intel i7 4 GHz (2015) OSX 10.11.3 68 90

The full three-dimensional implementation of the formulation presented is currently being
ported to the high-performance computing simulation tool AcouSTO (http://acousto.sourceforge.net),
developed by the author and his collaborators, to achieve optimal performance on distributed
systems and to address full-scale analysis on realistic configurations.

6. Conclusions

The modeling of the acoustic response of a cloaking device has been addressed using
an original boundary integral formulation valid for moving bodies impinged by an acoustic
perturbation produced by a co-moving source. The location of the source with respect to the obstacle
is such that the assumption of incoming planar wave fronts is not applicable. The aim of the work
is the development of an accurate, reliable and computationally-efficient formulation for the design
of metamaterial-based devices capable of substantially modifying the acoustic emissions induced
by fast transportation media. In particular, the target applications the research is focused on are
related to the design of a new generation of quieter aircraft, designed to fulfill the strict noise
abatement requirements envisaged in the 2050 horizon. The acoustic cloaking and hyper-focusing
concepts can lead to a new generation of surface treatments, capable of substantially reducing
the effect of the noise produced by engines and high-lift devices on the residential community.
The formulation has been applied to a simple 2D benchmark, using the standard Cummer–Shurig
static metamaterial design as a reference design to assess the beneficial effect of the convective
correction. The numerical results show a remarkable improvement of the cloaking efficiency in
the presence of flow, up to a flight Mach number Mb = 0.2, which is comparable to
the take off and landing speed of a commercial aircraft. The interpretation of the method
in terms of wall impedance of the outer contour of the cloaking layer discloses a different
interpretation of the approach, switching the attention to the modeling of the acoustic properties of
an ideal locally-reacting surface, rather than on the design of a suitable metamaterial. Although
the preliminary implementation of the method used here is far from being computationally
optimized, the performance measures on the computing architecture of three different generations
are extremely promising. Converged simulations can be computed in minutes, even when for
the solution, in a large portion, the hosting domain is required, taking advantage of the intrinsic
parallelism of the boundary integral methods and an efficient evaluation of the integral coefficients.
The major limitation of the formulation presented is the assumption of a uniform stream in the hosting
medium. This limitation is currently being removed by a reformulation of the problem starting from
a tailored reinterpretation of the Ffowcs Williams–Hawkings equation in Ωh.
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Appendix: The Integral Coefficients

Assuming piece-wise constant dependent variables, Equations (3), (5) and (7) are approximated as:

Ec(yk) p̃(yk) '
2M

∑
j=1

(
Bkjχ̃j − Ckj p̃j

)
+

N

∑
q=1

Hkq ζ̃q yk ∈ Ω̄c (26)

Ec(yk) p̃(yk) '
2M

∑
j=1

(
Bkjχ̃j − Ckj p̃j

)
−

N

∑
q=1

(
Gr

kq q̃r + Gθ
kq q̃θ − Hkqσ̃q

)
yk ∈ Ω̄c (27)

Ec(yk) p̃(yk) '
2M

∑
j=1

(
B̂kjχ̃j − Ĉkj p̃j

)
yk ∈ Ω̄h (28)

where the explicit dependence on the wave number k0 has been removed for notation compactness.
The coefficients appearing in Equations (26)–(28) are defined as:

Bkj =
∫

Γj

G(x, yk)dΓ(x)

Ckj =
∫

Γj

∂G(x, yk)

∂n
dΓ(x)

Hkq =
∫

Ωq
G(x, yk)dΩ(x)

Gr
kq =

∫
Ωq

∂G(x, yk)

∂r
dΩ(x)

Gθ
kq =

∫
Ωq

1
r

∂G(x, yk)

∂θ
dΩ(x)

B̂kj =
∫

Γj

(
1−Mn

0
2
)

G(x, yk)dΓ(x)

Ĉkj =
∫

Γj

[
2ik0 Mn

0 Ĝ(x, y) +
(

Mn
0

2 − 1
) ∂Ĝ(x, yk)

∂n
+ Mn

0 Ms
0

1
r

∂Ĝ(x, yk)

∂θ

]
dΓ(x)

where Mn
0 and Ms

0 are the components of M0 normal and tangent to ΓE. The definition of the domain
function Ec is related to the asymptotic behavior of the boundary coefficients for |x− yk| → 0. Its
detailed definition can be found in in Iemma and Burghignoli [16] for the two-dimensional case.
The numerical evaluation of the integrals is performed with the Cubature package [29], suitably
adapted to be run in parallel on multi-threaded machines.
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