Next Article in Journal / Special Issue
Experimental Aeroelastic Models Design and Wind Tunnel Testing for Correlation with New Theory
Previous Article in Journal / Special Issue
Vertical Wind Tunnel for Prediction of Rocket Flight Dynamics
Article Menu

Export Article

Open AccessArticle
Aerospace 2016, 3(2), 11; doi:10.3390/aerospace3020011

A Six Degrees of Freedom Dynamic Wire-Driven Traverse

Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Raffaello Mariani
Received: 3 February 2016 / Revised: 20 March 2016 / Accepted: 5 April 2016 / Published: 14 April 2016
(This article belongs to the Special Issue Innovations in Wind Tunnel Testing)
View Full-Text   |   Download PDF [5987 KB, uploaded 14 April 2016]   |  

Abstract

A novel support mechanism for a wind tunnel model is designed, built, and demonstrated on an aerodynamic platform undergoing dynamic maneuvers, tested with periodic motions up to 20 Hz. The platform is supported by a 6-DOF (six degrees of freedom) traverse that utilizes eight thin wires, each mounted to a servo motor with an in-line load cell to accurately monitor or control the platform motion and force responses. The system is designed such that simultaneous control of the servo motors effects motion within ±50 mm translations, ±15° pitch, ±9° yaw, and ±8° roll at lower frequencies. The traverse tracks a desired trajectory and resolves the induced forces on the platform at 1 kHz. The effected motion of the platform is measured at 0.6 kHz with a motion capture system, which utilizes six near-infrared (NIR) cameras for full spatial and temporal resolution of the platform motion, which is used for feedback control. The traverse allows different platform model geometries to be tested, and the present work demonstrates its capabilities on an axisymmetric bluff body. Programmable timed outputs are synchronized relative to the model motion and can be used for triggering external systems and processes. In the present study, particle image velocimetry (PIV) is used to characterize the realized wakes of the platform undergoing canonical motions that are effected by this new wind tunnel traverse. View Full-Text
Keywords: model support; 6-DOF; wind tunnel testing; aerodynamics; wakes model support; 6-DOF; wind tunnel testing; aerodynamics; wakes
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Lambert, T.J.; Vukasinovic, B.; Glezer, A. A Six Degrees of Freedom Dynamic Wire-Driven Traverse. Aerospace 2016, 3, 11.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Aerospace EISSN 2226-4310 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top