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Abstract: This paper presents the implementation of a modified state observer-based adaptive
dynamic inverse controller for the Black Kite micro aerial vehicle. The pitch and velocity adaptations
are computed by the modified state observer in the presence of turbulence to simulate atmospheric
conditions. This state observer uses the estimation error to generate the adaptations and, hence, is
more robust than model reference adaptive controllers which use modeling or tracking error. In
prior work, a traditional proportional-integral-derivative control law was tested in simulation for
its adaptive capability in the longitudinal dynamics of the Black Kite micro aerial vehicle. This
controller tracks the altitude and velocity commands during normal conditions, but fails in the
presence of both parameter uncertainties and system failures. The modified state observer-based
adaptations, along with the proportional-integral-derivative controller enables tracking despite these
conditions. To simulate flight of the micro aerial vehicle with turbulence, a Dryden turbulence model
is included. The turbulence levels used are based on the absolute load factor experienced by the
aircraft. The length scale was set to 2.0 meters with a turbulence intensity of 5.0 m/s that generates a
moderate turbulence. Simulation results for various flight conditions show that the modified state
observer-based adaptations were able to adapt to the uncertainties and the controller tracks the
commanded altitude and velocity. The summary of results for all of the simulated test cases and the
response plots of various states for typical flight cases are presented.

Keywords: modified state observer; adaptive control; micro aerial vehicle

1. Introduction

Micro aerial vehicles (MAV) have recently gathered much attention for use in both civil and
military applications. Research is being carried out in developing a robust and safe micro aerial
vehicles in various laboratories all over the world. Effort is also made to develop a feasible flight
certification of the vehicle.

In order to build a robust vehicle which can be flown in uncertain environments and also by
less-skilled pilots, adaptive control systems have been developed for general aviation aircraft at
Wichita State University. The work has been based on the neural network based model reference
adaptive controller (MRAC) work at NASA, by J.E. Steck and others [1–3]. The published research
work were referred to aid in the development of the flight control system for the Black Kite MAV
model. Arning et al. [4] shows an integrated autopilot design for DO-MAV using Micro Electro
Mechanical System (MEMS) sensors. They presented an optimized flight control law design for roll
control by varying the aircraft configuration and control parameters. Jordan et al. [5] described the
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development of a 5.5% scaled unmanned aerial vehicle (UAV) testbed named AirSTAR, designed
to investigate the dynamics and control of a large transport airplane in the upset conditions in the
flight envelope. The paper gives details about the overall program structure including the scaled
model design, ground station functionalities, and flight test capability. Knoebel et al. [6] developed a
MRAC-based adaptive control algorithm for pitch and roll attitude holds of an MAV. Flight tests were
conducted for three MAVs without changing the adaptation gains. The MRAC controller was tested
for the uncertainty in aerodynamic coefficients by deploying the flap during flight tests. Beard et al. [7]
used a L1 adaptive algorithm to control the pitch attitude loop for MAVs. Simulation and flight test
showed that L1 adaptive controller exhibited robustness for variable sample rates, as well as for time
delays. Ismail et al. [8] studied the roll response of MRAC and modified-MRAC adaptive control
methods on an Ultra Stick UAV model. Their simulation results showed an absence of oscillations
in the transient response of the roll command. Waszak et al. [9] used a modified nonlinear dynamic
inversion technique [10] that does not require the plant model. They developed a controller for the
MAV in which the control input is less than the control variables. The controller use the accelerometer
measurements to adapt to the actuator failures and aircraft damage.

Kim et al. [11] proposed the use of neural networks for a nonlinear inverse controller that is
trained off-line and a second neural network to compensate for un-modeled dynamics by training
on-line using flight data. McFarland et al. [12] proposed a method that uses neural networks and direct
adaptive control to compensate for unknown nonlinearities and un-modeled dynamics. Calise [13]
used neural networks to estimate the uncertainty and to compensate for, and provide robustness to,
the un-modeled dynamics of an aircraft. He demonstrated through simulation by considering the
neural network-based inverse controller in a command augmentation system. Gundy-Burlet et al. [14]
uses a neural network-based direct adaptive control in the presence of damage or failures in order
to achieve desired flight control performance. Test results show that a neural flight control system
can provide additional control authority under emergency conditions. Johnson et al. [15] devised
an adaptive control method for reusable launch vehicles with control authority limitations. Neural
network adaptations are used to control the system without scheduled gains and aerodynamic data.
Johnson et al. [16] developed an adaptive controller based on a pseudo-control hedging technique and
applied this to adapt for modeling errors in a six degree-of-freedom (DOF) autonomous helicopter.
Flight testing results shows that the controller is able to adapt for the modeling errors in the system
dynamics. Cao et al. [17] developed the L1 adaptive controller technique in which a companion
model adaptive controller (CMAC) enables tracking and a filtering technique using a low-pass filter
in the feedback loop enables guaranteed transient performance. Many excellent papers on L1-based
adaptive control are available in literature [18–22]. At Wichita State University, Pesonen et al. [1]
developed a neural network-based adaptive longitudinal flight control system and used simulation to
show the controller capability to adapt for modeling errors and control surface and engine failures.
Steck et al. [23] studied the effect of turbulence on the neural network-based adaptive controller.
Using a first-order filter on the elevator command signal, simulation results showed reasonably good
adaptations for the velocity and flight path angle commands.

Rajagopal et al. [24] proposed an observer-controller design that separates the observer and
controller functions, thereby enabling the use of high adaptation gains. The modified state observer
(MSO) estimation error dynamics are determined much faster than the systems dynamics. This
allows for large adaptive gains without introducing the typical oscillations associated with high gain
adaptation on the system error dynamics. This controller structure was tested in simulation for the
short-period dynamics of a fighter aircraft and the results are compared with those obtained using the
L1 adaptive control technique [24]. Pappu et al. [25] used the MSO-based adaptations to remove the
undesired Power Lever Arm (PLA) oscillations that are observed during the flight tests of a neural
network-based MRAC adaptive controller for a general aviation aircraft. The longitudinal adaptive
capabilities were tested on the ground, as well as in flight, using the Beech Bonanza aircraft [26].
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This paper presents the adaptive capabilities of the modified state observer-based adaptations
for the Black Kite micro aerial vehicle, both in calm air and in the presence of atmospheric turbulence.
Section 2 details the architecture of the adaptive controller. Section 3 gives a description of the
geometric properties of the Black Kite MAV and the equations that represent the mathematical model
of the aircraft. The Proportional-Integral (PI) controller and the longitudinal dynamic inverse controller
design is presented in Section 4. Section 5 details the turbulence model, simulation test cases, and
response plots for typical test conditions with, and without, turbulence. The development of the
mathematical model of the aircraft is shown in the Appendix.

2. Modified State Observer Architecture

The MSO-based adaptive controller combines the observer feature and neural network-based
basis function approximations to compute the adaptations. The dynamics of the MAV are represented
by Equation (1):

“ .
xT ,

.
xm

‰

“ f pxT , xm, uq ` d pxT , xm, uq (1)

The term f pxT , xm, uq represents the known nonlinear dynamics and d pxT , xm, uq represents the
unknown dynamics of the vehicle. xT is the vector of states that are controlled, say rh VsT , h is the
altitude and V is the aircraft’s velocity. xm is the vector of measurable states, say rα qsT , α is the angle of
attack and q is the dynamic pressure. u is the vector of control inputs and, for longitudinal dynamics,
it can be rT δes

T . T is the engine thrust and δe is the elevator deflection. The variables
.
xT and

.
xm are

the rate of change of controlled and measured states, respectively. To estimate the unknown dynamics,
Equation (1) is rewritten in observer structure as in Equation (2):

.
x̂T “ f pxT , xm, uq ` d̂ pxT , xm, uq ` K2 pxT ´ x̂Tq (2)

The uncertainty term d̂ pxT , xm, uq is approximated as a product of the neural network-based
weight vector Ŵ and basis function vector Φ pxT , uq, as d̂ pxT , xm, uq “ ŴTΦ pxT , uq. The parameters
of the basis function Φ pxT , uq is the Kronecker product of the states that affect the commanded state
vector xT . The states considered are pitch angle θ,

.
θ, and normalized velocity V{15. The MAV is

designed to fly at the speed variations of 12 to 20 m/s. Hence, the airspeed that the MAV cruises at
wing level condition (trim velocity) is set as 15 m/s. The adaptive controller performance is studied at
this cruise speed. The basis function vector for the longitudinal adaptations are as in Equation (3):

Φ “

„

1 θ
.
θ

V
15

θ
V
15

.
θ

V
15

θ
.
θ θ

.
θ

V
15

T
(3)

In Equation (2), K2 is a design parameter and is a gain on the estimation error ê “ pxT ´ x̂Tq

between the measured states xT and the estimated commanded states x̂T . The design procedure for
K2 is described in [25]. This estimation error, rather than tracking or modeling error, is used in the
Lyapunov-based stable weight update rule as given in Equation (4):

.
Ŵ “ ΓΦ pxT , uq êT P´ σŴ (4)

Here Γ is the adaptation rate, σ is the robust term to ensure boundedness of the neural network
weights, and P is the solution to the Lyapunov equation [24].

Figure 1 shows the general architecture of MSO integrated with the traditional
Proportional-Integral-Derivative (PID) controller. The block “Aircraft Dynamics” holds the aircraft
model with the un-modeled uncertainties. Under ideal conditions, the PID controller is designed
to enable the aircraft to track the command. The desired command from the PID controller is fed
to the inverse controller which, in turn, gives the desired inputs, say, thrust and elevator deflection
to the aircraft. In the presence of uncertainties, the neural network-based approximation of the
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uncertainty, ŴTΦ pxT , uq gives the adaptations to compensate the system failures and un-modeled
aircraft dynamics. Additionally, the observer structure of the MSO negates the sensor noises, if any are
in the system.

Figure 1. Block diagram of modified state observer architecture.

3. Aircraft Model

The Black Kite MAV developed by National Aerospace Laboratories (NAL) Bangalore, has an
endurance of approximately 20 min, has a 2 km operational range, and flies at a cruise altitude of
60–100 m above ground level. The vehicle is designed for a cruise speed of 15 m/s and a climb
rate of 2.5 m/s. The aircraft is hand-launched. It is highly maneuverable and has excellent flight
characteristics. Figure 2 shows the prototype of the flying wing tractor-type Black Kite MAV.

Figure 2. Black Kite micro aerial vehicle.

The geometric properties of this aircraft are shown in Table 1.
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Table 1. Geometric properties of black kite.

Serial No. Properties Value Units

1 Mass, m 0.29 kg
2 Wing span, b 0.30 m
3 Mean Aerodynamic Chord, c 0.25 m
4 Wing Surface Area, S 0.06118 m2

5 Inertia

Ixx 0.00301326 kg¨ m2

Iyy 0.00310261 kg¨ m2

Izz 0.0002636712 kg¨ m2

Ixz 0.000001093 kg¨ m2

6 Moment Reference Position (0.074,0,0) m

An accurate mathematical model of the aircraft dynamics is developed using the nonlinear
six-degree-of-freedom equations of motion. The aerodynamic and stability derivatives of the Black Kite
300 mm wing span model are obtained from wind tunnel tests conducted by NAL. Equations (5)–(13)
show the linear and angular accelerations and the angular rates used to develop the aircraft model.
The derivation of these equations are shown in the Appendix.

3.1. Linear Accelerations

.
u “ rv´ qw´ gsinθ ` Xa (5)

.
v “ pw´ ru` gsinφ cosθ ` Ya (6)
.

w “ qu´ pv` gcosφ cosθ ` Za (7)

where, u, v, w = body fixed linear velocity components in forward, side, and vertical directions, m/s;
.
u,

.
v,

.
w = linear accelerations, m/s2;

Xa, Ya, Za = body forces per unit mass, N/kg;
p, q, r = body fixed roll, pitch, and yaw rates, degree/s;
g = acceleration due to gravity, m/s2;
θ, φ = Euler angles, degree.

3.2. Angular Accelerations

Solving the moment equations, the angular accelerations are as in Equations (8)–(10):

.
p “ C3L` C4N ` C2 pq` C1qr (8)

.
q “ C7M ´ C6

´

p2 ´ r2
¯

` C5 pr (9)

.
r “ C4L` C9N ` C8 pq´ C2rq (10)

where, C1 “
``

Iyy ´ Izz
˘

Izz ´ I2
xz

˘

{
`

Ixx Izz ´ I2
xz

˘

C2 “
`

Ixx ´ Iyy ` Izz
˘

Ixz{
`

Ixx Izz ´ I2
xz

˘

C3 “ Izz{
`

Ixx Izz ´ I2
xz

˘

C4 “ Ixz{
`

Ixx Izz ´ I2
xz

˘

C5 “ pIzz ´ Ixxq {Iyy

C6 “ Ixz{Iyy

C7 “ 1{Iyy

C8 “
`

Ixx ´ Iyy
˘

Ixx ` I2
xz{

`

Ixx Izz ´ I2
xz

˘

C9 “ Ixx{
`

Ixx Izz ´ I2
xz

˘

.
p,

.
q,

.
r = roll, pitch, and yaw accelerations, degree/s2;

L, M, N = roll, pitch, and yaw moments about body axis, N¨m;
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Ixx, Iyy, Izz = moment of inertia about x, y, and z axis, kg¨m2;
Ixz = product moment of inertia, kg¨m2.

3.3. Angular Rates

The angular rates are related to Euler rates as in Equations (11)–(13). The Euler angles for this
MAV are restricted to +/´45 degrees:

.
θ “ qcos φ´ rsin φ (11)

.
φ “ p` qsin φtanθ ` rcos φtanθ (12)

.
ψ “ qsin φsecθ ` rcos φsecθ (13)

where, θ, φ, ψ = Euler angles, degree;
.
θ,

.
φ,

.
ψ = Euler rates, degree.

3.4. Aerodynamic Forces and Moments

The longitudinal and lateral directional aerodynamic forces and moments are functions of the
force and moment coefficients, respectively:

rXa Ya Zas “
qS
m
rCD CY CLs (14)

rL M Ns “ qS rbCl cCm bCns (15)

where, CD, CL, CY = drag, lift, and side force coefficients, per radian;
Cl , Cm, Cn = roll, pitch, and yaw moment coefficients, per radian;
q = dynamic pressure, N/m2;
S = wing planform area, m2;
b = wing span, m;
c = chord length, m.

The MAV is equipped with elevator and aileron controls. There is no rudder. The force and
moment coefficients are modeled in Equations (16)–(21).

3.5. Force Coefficients

CL “ CL0 ` CLαα` CLδe δe `
CLqqc

2V
(16)

CD “ CD0 ` K rCL ´ CLminDs
2
` CDδe δe ` CDδa δa (17)

CY “ CYββ` CYδa δa `

“

CYp p` CYrr
‰

b
2V

(18)

3.6. Moment Coefficients

Cl “ Clββ` Clδa δa `

”

Clp p` Clrr
ı

b

2V
(19)

Cm “ Cm0 ` Cmαα` Cmδe δe `
Cmqqc

2V
(20)

Cn “ Cnββ` Cnδa δa `

“

Cnp p` Cnrr
‰

b
2V

(21)

where, CD, CL, CY = drag, lift, and side force coefficients, per radian;
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Cl , Cm, Cn = roll, pitch, and yaw moment coefficients, per radian;
δe, δa = elevator and aileron deflection, degree;
CDmin = minimum drag coefficient, per radian;
CLminD = lift coefficient for minimum drag, per radian;
CLq = lift coefficient for unit change in pitch rate, per radian;
CD0, CL0, CY0, Cm0 = drag, lift, side force, and pitching moment coefficients at zero-angle of attack,
per radian;
CDα, CLα, Cmα = drag, lift, and pitching moment coefficients for unit change in angle of attack,
per radian;
γ, α = aircraft flight path angle and angle of attack, degree;
β = side-slip angle, degree.

4. Dynamic Inverse Controller Design

The nonlinear aircraft equations of motion are dynamically inverted to design the inverse
controller for the longitudinal dynamics of the aircraft. The drag, lift, and the pitching moment
equations (Equations (5), (7), and (9), respectively) are modified for wings in a level flight condition
pp “ r “ 0q , and the force terms Xa and Za are expanded to show the aerodynamic and thrust
components, as shown in Equations (22)–(24). These equations are manipulated to compute the
required thrust and the elevator deflection to attain the commanded linear acceleration,

.
Vcmd, and

pitch acceleration,
.
qcmd:

m
` .
u`wq

˘

“ ´mgsinθ ` FAX ` Tcos pφT ` αq ` FXδe
δe (22)

m
` .
w´ uq

˘

“ mgcosθ ` FAZ ´ Tsin pφT ` αq ` FZδe
δe (23)

Iyy
.
q “ MA (24)

The pitching moment model terms of Equation (20) are measured about the hinge point of the
MAV in a wind tunnel and, hence, to get an accurate rate of change of q, the moment about the center
of gravity is given by:

MTot “ qScCm ´ FZ prACq (25)

Substituting MTot for MA in Equation (24) and expanding Cm using Equation (20) yields:

.
q “

´

Cm0 ` Cmα α` Cmδe
δe ` Cmq

´ qc
2V

¯ ¯

qSc

Iyy
´

FZ.rAC
Iyy

(26)

where the downward force FZ “ ´qS psinαCD ` cosαCLq and rAC is the aerodynamic center.
Substituting for force coefficients using Equations (16) and (17) for CL and CD and rearranging

Equation (26) for elevator deflection, δe we get:

δe “

˜ .
qcmd Iyy ` azrAC

qSc

¸

´ Cm0 ´ Cmα α´ Cmq

qc
2V

Cmδe
´

bZ.rAC
qSc

(27)

where az “ ´qS
„

sinα

ˆ

CDmin ` K pCL ´ CLminDq
2
` cosα

`

CL0 ´ CLα α
˘

`
CLq qc

2V

˙

bz “ ´qS
“

sinαCDδe ` cosαCLδe

‰

.
Combining Equations (22) and (23) to transform them to wind axis and solving for Thrust, T gives:

T “
1

cos pφT ` αq

”

m
.

Vcmd `mgsin pθ ´ αq ` qSCDpδe“0q

ı

(28)
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where φT = thrust-line angle, positive up;
.

Vcmd = commanded acceleration, m/s2;
T = thrust, N.

The nominal outer loop PI controller is designed based on the aircraft short-period mode
characteristics. The PI gains are chosen such that they generate a closed loop rise time value close to
the aircraft rise time value calculated using the short-period mode damping and frequency values. The
MSO algorithm, described in Section 2, is integrated with the aircraft model along with this nominal PI
controller and the dynamic inverse controller. The proportional gains for the velocity and pitch angle
control loops are designed based on the required system response characteristics. The proportional and
integral gain values are NAL proprietary details and, hence, are not disclosed in this paper. In normal
flight conditions, the altitude, hcmd, and velocity, Vcmd, commands are tracked by the PI controller
designed for the longitudinal dynamics of the MAV. The MSO adaptations become active when the
aircraft has modeling errors and failures. Figure 3 shows the integration of the PI controller and MSO
adaptations with the aircraft model and dynamic inverse controller.

Figure 3. Block diagram of MSO adaptations and PI controller integrated with the Black Kite model
and inverse controller.

5. Simulation Results

The Black Kite aircraft model integrated with MSO, PI controller, and inverse controller is modeled
in MATLAB/SIMULINK® software. A Dryden turbulence model is used to model the atmospheric
turbulence in the aircraft flight path. The length scale of the turbulence is set to 2 m (approximately six
times the wing span length) and the turbulence intensities of 5 m/s. The International Civil Aviation
Organization (ICAO) definitions of turbulence levels are given in [23], are shown in Table 2, and the
load factors observed in simulation are compared with the range of load factors to interpret the results.
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Table 2. International Civil Aviation Organization’s (ICAO’s) definitions of turbulence levels.

Level Absolute Load Factor (nZ) Centered
around 1g Explanation

Very Low Below ˘0.05 Light oscillations
Low ˘0.05 to ˘0.20 Choppy; slight, rapid, rhythmic bumps or cobble-stoning

Moderate ˘0.20 to ˘0.50 Strong intermittent jolts
Severe ˘0.50 to ˘1.50 Aircraft handling made difficult

Very Severe Above ˘1.50 Increasing handling difficulty, possible structural damage

The MAV is given a ramp/step altitude command and also a step velocity command to test the
capabilities of the MSO adaptations to enable the inverse controller to track the longitudinal commands
in the presence of uncertainties and turbulence. Various scenarios are studied to observe the adaptation
capability for the parameter uncertainties:

A. No Modeling Errors
B. Modeling Error in Aircraft
C. Modeling Error in Inverse Controller

5.1. Adaptation for No Modeling Error

The PI controller is tested in simulation to track the altitude and velocity commands with no
modeling errors in the aircraft. Table 3 shows the simulation conditions and the response of the MAV
with, and without, adaptations. The engine and elevator failures, if any, are activated simultaneously at
140 s. Cases 1 and 2 show the scenario in which elevator efficiency is 100% and 70%, respectively, while
the engine efficiency is 100% and 25%, respectively, in the absence of turbulence. The PI controller is
able to track the longitudinal commands for Cases 1 and 2. The elevator efficiency is reduced by 40%
in Case 3 and the aircraft is unable to track the altitude and velocity commands both with, and without,
MSO adaptations. Cases 4, 5, and 6 are similar to 1, 2, and 3, except for the introduction of turbulence.
Though the PI controller is capable of tracking the commands in Cases 4 and 5, the presence of MSO
adaptations reduce the effective load factor from moderate to low level turbulence. Figures 4–10
show the response of the commands, associated states, and control inputs (Elevator deflection, δe and
Thrust, T) for Case 5.

Table 3. Simulation results—No modeling error.

Case
Cmff—

Aircraft
*

Cmff—
Controller

*

Elevator
Failure,

%

Engine
Failure,

%

Turbulence Result

L, m σw , m/s Without
MSO nZ

With
MSO nZ

1 ´1 ´1 None None None None Tracks NA NA NA
2 ´1 ´1 30 75 None None Tracks NA NA NA
3 ´1 ´1 40 75 None None Fails NA Fails NA

4 ´1 ´1 None None 2 5 Tracks
Moderate

Tracks
Low

0.2 to 0.3 0.1 to 0.2

5 ´1 ´1 30 75 2 5 Tracks
Moderate

Tracks
Low

0.2 to 0.3 0.1 to 0.2
6 ´1 ´1 40 75 2 5 Fails NA Fails NA

* Actual Cmα values are normalized.
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Figure 4. Altitude response for 100% Cmα.

Figure 5. Pitch angle response for 100% Cmα.

Figure 6. Pitch rate response for 100% Cmα.
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Figure 7. Elevator deflection for 100% Cmα.

Figure 8. Load factor for 100% Cmα.

Figure 9. Velocity response for 100% Cmα.
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Figure 10. Commanded thrust response for 100% Cmα.

5.2. Adaptation for Modeling Error in an Aircraft

The nominal PI controller, with and without MSO adaptations, is tested for the parameter
uncertainties that arise from modeling inaccuracies and system failures. The aircraft pitching
moment coefficient due to alpha (Cmα) is reduced by 50% of the nominal design value for the aircraft
(Cmα = 0.5 ˆ design Cmα). The PI controller is able to track the altitude and velocity commands in the
absence of turbulence and elevator and engine failures as observed in Case 1 of Table 4. Case 2 shows
the aircraft’s response for reduced elevator and engine efficiency in the absence of turbulence. To
simulate the critical condition, both elevator and engine failures are initiated simultaneously at 140 s.
The

.
q and

.
v adaptations of MSO are required for the PI controller to track the h and V commands, when

system failures are included in the simulation. Cases 3–5 are similar to Cases 1 and 2 with the inclusion
of turbulence in simulation. The PI controller cannot track the h and V commands in the presence of
turbulence, even without failures (Case 3). The MSO adaptations, along with the PI controller, enable
tracking with low turbulence levels. Cases 4 and 5 shows the tracking capability of the controller
along with the MSO adaptations in the presence of turbulence and failures. Low turbulence level
is experienced by the aircraft for these cases. The aircraft does not have enough elevator to trim for
150% and ´100% of aircraft’s Cmα and, hence, Cases 6 and 7 are too much to be handled by the MSO
adaptive controller. The altitude and velocity response, for Case 4, along with the states and control
inputs, are shown in Figures 11–17.

Table 4. Simulation results—modeling error in an aircraft.

Case
Cmff—

Aircraft
*

Cmff—
Controller

*

Elevator
Failure,

%

Engine
Failure,

%

Turbulence Result

L, m σw , m/s Without
MSO nZ

With
MSO nZ

1 ´0.5 ´1 None None None None Tracks NA NA NA
2 ´0.5 ´1 40 75 None None Fails NA Tracks NA

3 ´0.5 ´1 None None 2 5 Fails NA Tracks
Low

0.1 to 0.2

4 ´0.5 ´1 30 75 2 5 Fails NA Tracks
Low

0.1 to 0.2

5 ´0.5 ´1 40 75 2 5 Fails NA Tracks
Low

0.1 to 0.2
6 ´1.5 ´1 None None None None Fails NA Fails NA
7 1 ´1 None None None None Fails NA Fails NA

* Actual Cmα values are normalized.
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Figure 11. Altitude response for 50% Cmα in aircraft (Cmα in an aircraft = 0.5 ˆ design Cmα).

Figure 12. Pitch angle response for 50% Cmα in an aircraft.

Figure 13. Pitch rate response for 50% Cmα in an aircraft.
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Figure 14. Elevator deflection for 50% Cmα in an aircraft.

Figure 15. Load factor for 50% Cmα in an aircraft.

Figure 16. Velocity response for 50% Cmα in an aircraft.
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Figure 17. Thrust response for 50% Cmα in an aircraft.

5.3. Adaptation for Modeling Error in the Controller

The MSO adaptation is tested for the parameter uncertainties that arise from modeling
inaccuracies in the inverse controller. The pitching moment coefficient (Cmα) of the controller is
varied as a percent of the nominal design value for the aircraft. The elevator and engine failures
are also introduced simultaneously at 140 s in the presence of modeling errors. Table 5 shows the
simulation results. Cases 1 through 6 has the controller’s Cmα as 0.5 times the nominal value. Results
for Case 1 and 2 shows that the PI controller is capable of tracking the altitude and velocity commands
even with failures (30% elevator failure, 75% engine failure) in the absence of turbulence. So the
MSO adaptations are not required for these cases. Case 3 introduces 40% elevator failure with the
same engine efficiency as in Case 2. It is observed that the PI controller is not capable of tracking the
commands even with MSO adaptations. Now, turbulence is introduced into the system, as seen in
Cases 4–6. With the addition of MSO adaptations, the MAV experiences low turbulence levels based
on the average load factor values, as noted in Cases 4 and 5. Similar to Case 3, the MSO adaptations
fail to enable the PI controller to track the altitude and velocity commands as in Case 6. The aircraft’s
response for the controller’s Cmα value of 1.5 times the nominal value is studied in Cases 7 through
10. The PI controller fails to track the longitudinal commands without MSO adaptations, as seen in
Cases 7 and 8. It is observed in Case 9 that 40% elevator failure is too much for the MSO adaptations to
guide the PI controller in tracking the altitude and velocity commands. Case 10 is similar to Case 7,
except for the inclusion of turbulence. The MSO adaptations were not sufficient enough to equip the
controller to track the commands in this case. Based on the results in Table 5, it is observed that the
advantage of using the MSO adaptations, in the presence of modeling uncertainties in the controller,
is limited to 30% elevator failure. Figures 18–24 show the response plots of the altitude and velocity
commands for Case 5.
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Table 5. Simulation results—modeling error in controller.

Case
Cmff—

Aircraft
*

Cmα—
Controller

*

Elevator
Failure,

%

Engine
Failure,

%

Turbulence Result

L, m σw , m/s Without
MSO nZ

With
MSO nZ

1 ´1.0 ´0.5 None None None None Tracks NA NA NA
2 ´1.0 ´0.5 30 75 None None Tracks NA NA NA
3 ´1.0 ´0.5 40 75 None None Fails NA Fails NA

4 ´1.0 ´0.5 None None 2 5 Tracks
Moderate

Tracks
Low

˘0.2 to ˘0.5 ˘0.1 to ˘0.2

5 ´1.0 ´0.5 30 75 2 5 Tracks
Moderate

Tracks
Low

˘0.2 to ˘0.5 ˘0.1 to ˘0.2
6 ´1.0 ´0.5 40 75 2 5 Fails NA Fails NA
7 ´1.0 ´1.5 None None None None Fails NA Tracks NA
8 ´1.0 ´1.5 30 75 None None Fails NA Tracks NA
9 ´1.0 ´1.5 40 75 None None Fails NA Fails NA
10 ´1.0 ´1.5 None None 2 5 Fails NA Fails NA

* Actual Cmα values are normalized.

Figure 18. Altitude response for 50% Cmα in the controller (Cmα in the controller = 0.5 ˆ design Cmα).

Figure 19. Pitch angle response for 50% Cmα in the controller.
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Figure 20. Pitch rate response for 50% Cmα in the controller.

Figure 21. Elevator deflection for 50% Cmα in the controller.

Figure 22. Load factor for 50% Cmα in the controller.
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Figure 23. Velocity response for 50% Cmα in the controller.

Figure 24. Thrust response for 50% Cmα in the controller.

6. Conclusions

The modified state observer-based adaptive controller is tested in simulation for its adaptive
capabilities in the longitudinal dynamics of the MAV, in the presence of turbulence. The range of test
cases considered shows the operational limitations of the use of MSO adaptations for the modeling
error in pitching moment coefficient, and elevator and engine failures. The aircraft pitching moment
coefficient is varied by +/´ 50%, the available elevator deflection is reduced by 40%, and the engine
efficiency is reduced by 75%. The presence of MSO adaptations not only enable the PI controller to
track the commands during adverse conditions, but also reduce the effect of turbulence on the MAV.
This is observed from the load factor values experienced by the aircraft. The hardware-in-loop ground
tests and flight tests of this adaptive controller for the longitudinal dynamics should be carried out to
demonstrate its real-time adaptation capabilities.
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Appendix

Derivation of Accelerations and Angular Rates:

The force, moment, and kinematics equations of motion [27] are used to derive the linear and
angular accelerations and angular rates. The force, moment, and kinematic equations in the airplane
body fixed axis system are shown in Equations (29) through (37).

Force equations:
m

` .
u´ rv` qw

˘

“ ´mg.sinθ ` FAX (29)

m
` .
v´ pw` ru

˘

“ mg.sinφ cosθ ` FAY (30)

m
` .
w´ qu` pv

˘

“ mg.cosφ cosθ ` FAZ (31)

Moment equations:
Ixx

.
p ´ Ixz

.
r ´ Ixz pq `

`

Izz ´ Iyy
˘

rq “ L (32)

Iyy
.

q ` pIxx ´ Izzq pr ` Ixz

´

p2 ´ r2
¯

“ M (33)

Izz
.
r ´ Ixz

.
p`

`

Iyy ´ Ixx
˘

pq` Ixzqr “ N (34)

Kinematic equations:
p “

.
φ´

.
ψsinθ (35)

q “
.
θ cosφ`

.
ψcosθsinφ (36)

r “
.
ψcosθcosφ´

.
θ sinφ (37)

Rewriting Equations (29)–(31), the linear accelerations are given as shown in Equations (38)–(40):

.
u “ rv´ qw´ g.sinθ ` Xa (38)

.
v “ pw´ ru` g.sinφ cosθ ` Ya (39)
.

w “ qu´ pv` g.cosφ cosθ ` Za (40)

For angular accelerations:
Multiply rolling moment Equation (32) by Izz:

Ixx Izz
.

p ´ Ixz Izz
.
r ´ Ixz Izz pq `

`

Izz ´ Iyy
˘

Izzrq “ LIzz (41)

Multiply yawing moment Equation (34) by Ixz:

Izz Ixz
.
r ´ I2

xz
.
p`

`

Iyy ´ Ixx
˘

Ixz pq` I2
xzqr “ NIxz (42)
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Summing Equations (41) and (42), and rewriting, we get the roll acceleration as in Equation (43):

.
p “

„

Izz

Ixx Izz ´ I2
xz



L`
„

Ixz

Ixx Izz ´ I2
xz



N `

«

`

Ixx ´ Iyy ` Izz
˘

Ixz

Ixx Izz ´ I2
xz

ff

pq

`

«

`

Iyy ´ Izz
˘

Izz ´ I2
xz

Ixx Izz ´ I2
xz

ff

qr
(43)

Rewriting Equation (33), the pitch acceleration is as in Equation (44):

.
q “

M
Iyy
`
pIzz ´ Ixxq

Iyy
pr´

Ixz

Iyy

´

p2 ´ r2
¯

(44)

Multiply rolling moment Equation (32) by Ixz:

Ixx Ixz
.

p ´ I2
xz

.
r ´ I2

xz pq `
`

Izz ´ Iyy
˘

Ixzrq “ LIxz (45)

Multiply yawing moment Equation (34) by Ixx:

Izz Ixx
.
r ´ Ixz Ixx

.
p`

`

Iyy ´ Ixx
˘

Ixx pq` Ixz Ixxqr “ NIxx (46)

Summing Equations (45) and (46), and rewriting, we get the yaw acceleration as in Equation (47):

.
r “

„

Ixz

Ixx Izz ´ I2
xz



L`
„

Ixx

Ixx Izz ´ I2
xz



N `

«

Ixx
`

Ixx ´ Iyy
˘

` I2
xz

Ixx Izz ´ I2
xz

ff

pq

´

«

`

Ixx ´ Iyy ` Izz
˘

Ixz

Ixx Izz ´ I2
xz

ff

qr
(47)

For angular rates:
Multiply the kinematic Equation (36) by sin φ :

qsinφ “
.
θ cosφ sinφ`

.
ψcosθsin2φ (48)

Multiply the kinematic Equation (37) by cos φ :

rcos φ “
.
ψcosθcos2φ´

.
θ sinφ cosφ (49)

Adding Equation (48) and (49), and rearranging the terms, we get:

.
ψ “

pqsinφ` rcos φq

cosθ
(50)

Substituting
.
ψ in Equation (35) and rearranging the terms we get:

.
φ “ p` tanθ pqsin φ` rcos φq (51)

Multiply the kinematic Equation (36) by cos φ:

qcosφ “
.
θ cos2φ`

.
ψcosθsinφcosφ (52)

Multiply the kinematic Equation (37) by sin φ:

r sinφ “
.
ψcosθsinφcosφ´

.
θ sin2φ (53)
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Subtracting Equation (52) and (53), we get:

.
θ “ qcosφ´ r sinφ (54)
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