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Abstract: The use of unmanned aerial systems (UASs) in both the public and military environments
is predicted to grow significantly. As the demand for UASs grows, the availability of more robust
and capable vehicles that can perform multiple mission types will be needed. In the public sector,
the demand will grow for UASs to be used for agriculture, forestry, and search and rescue missions.
Militaries continue to demand more UAS capabilities for diverse operations around the world.
Significant research has been performed and continues to progress in the areas of autonomous UAS
control. A majority of the work focuses on subsets of UAS control: path planning, autonomy, small
UAS controls, and sensors. Minimal work exists on a system-level problem of multiple-scenario
UAS control for integrated systems. This paper provides a high-level modular system architecture
definition that is modifiable across platform types and mission requirements. A review of the current
research and employment of UAS capabilities is provided to evaluate the state of the capabilities
required to enable the proposed architecture.

Keywords: Unmanned Aerial System (UAS); autonomous systems; UAS control; path planning;
system architecture; Multi-UAS control; collision avoidance; multi-scenario UAS control

1. Introduction

In July 2014, the Teal group predicted that worldwide Unmanned Aerial Systems (UASs)
expenditures will grow to over $11 Billion per year with a total investment of over $91 Billion by
2024. It is expected that 86% of the market will be military and 14% will be in the civil market [1,2].
As the growth continues, challenges and expectations will continue to rise as users will expect more
robust and capable vehicles. The military market continues to expand and develop new capabilities
and requirements. The growth in the civil market is expected to significantly expand as the rules
on civil use of UASs in the US and around the world become better defined. As these markets
expand, the need to have systems that can adapt to new missions, sensors, and environments will
drive requirements.

The Defense Advanced Research Projects Agency (DARPA) released a Broad Agency
Announcement (BAA) for the Collaborative Operations in a Denied Environment (CODE) Program
in 2014 [3]. This BAA defines numerous requirements and expectations for future system capability
of unmanned and autonomous vehicles working as single systems and multiple vehicle teams.
Many of the requirements defined in the CODE BAA can be utilized to define system architecture
and capabilities for both military and civilian systems. These requirements will provide a significant
portion of the requirements for the system defined herein. In early 2014, DARPA also released a BAA
for Distributed Battlespace Management (DBM) that proposes a series of automated and autonomous
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decision aids to assist battle managers and pilots [4]. The DBM envisions, amongst other needs,
the ability to enable improved command and control of autonomous operations of UASs, including
in manned-unmanned teams. There are multiple thrusts within the DBM program, but one of the
primary ones is for improved distributed adaptive planning and control. Additionally, requirements
that can be applied globally across UASs from the Federal Aviation Administration (FAA) and other
federal, state, and local laws are considered.

There are a significant number of current and future uses for UASs throughout the military and
civilian world. The military is currently using, and continues to anticipate increased usage of, these
systems in numerous areas including intelligence, surveillance, and reconnaissance (ISR) [5,6], data
and communication interfaces [7], electronic warfare [8,9], and limited attack roles [10]. Future cargo
and transport capabilities [11] along with search and rescue operations [12] have been envisioned.
In the commercial world, there are almost limitless possibilities of uses. Currently, applications exist
for agriculture, firefighting, police, sciences, and forestry [2]. Significant efforts in cargo delivery,
data capabilities, search and rescue, and traffic information are underway. Evaluating all of these
capabilities and needs result in four primary mission types: ISR, persistent loiter, delivery, and attack.
These four mission types will define the needs and requirements of the majority of the future UASs
across the industry.

An early systems engineering analysis to evaluating the requirements, needs, and capabilities
must be performed in an attempt to define a system that can be robust and adaptive to current
and future needs. Utilizing requirements defined in the CODE BAA and other resources, a set of
requirements can be defined and utilized to develop a system architecture to meet the users’ needs.
Section 2 provides a high-level problem definition that is addressed by this system architecture
design. Section 3 will provide this systems engineering review and architecture definition.

Future multiple-scenario capability will require the system to operate dynamically across one
or more of the four mission types and numerous subsets of those missions. Multiple-scenario
control algorithms and architectures will enable a single platform to perform multiple mission roles
with minimal reconfiguration. A dynamic architecture that enables recognition of sensors, system
capabilities, and requirements will ensure the platform enables multiple-scenario support.

Significant work in UAS control and autonomous processes have been performed. The system
defined in this paper requires numerous capabilities to be matured, some that already exist and some
that need significant development work. Section 4 provides a detailed review of the current state of
existing methods and capabilities in UAS autonomous path planning and safety controls. Some of
the work that has been completed needs some significant improvement to enable the transition of
the capabilities from theory and lab environments to practical applications. Section 5 provides some
recommended improvement areas and provides a focus for future planned work by the authors.
Final conclusions are provided in Section 6.

2. Problem Definition

As the need for future autonomous flight grows and systems mature, a high-level framework
of how to design and integrate autonomous systems into existing and new vehicles is needed.
Work continues to be performed in developing control capabilities and algorithms required to enable
autonomous flight. However, in order for a framework to work, it must provide an architecture that is
open and easily modifiable across a diverse type of vehicles and sensor capabilities. The system must
enable the autonomous system algorithms to run in a framework that enables maximum flexibility
while understanding vehicle capabilities.

3. System Design

In order to ensure the ability of autonomous systems to function and be effective across multiple
vehicle types, a framework needs to be defined that enables flexibility in design and functionality.
A high-level systems engineering review of requirements has been performed based upon the CODE
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BAA [3] and DBM BAA [4] in Section 3.1. A system architecture has been defined that enables the
flexibility of design and functionality for autonomous vehicles in Section 3.2. Current and future
research needs are briefly discussed in Section 3.3.

3.1. System Requirements

The CODE BAA [3] identified four top-level goals for any system proposed and developed:

1. develop and demonstrate the value of collaborative autonomy in a tactical context;
2. rapidly transition the capability to the warfighter;
3. develop an enduring framework to expand the range of missions, platforms, and capabilities

that can leverage collaborative autonomy; and
4. develop an open architecture that enables all members of the rich community of unmanned

systems and autonomy researchers to contribute to current and future capabilities.

Similarly, the DBM BAA [4] identified a goal of adaptive planning and control that could
be distributed across systems to aid a variety of vehicles, weapons, and sensors. The goal is to
enable UASs to satisfy the commander’s intent while operating in normal or limited communication
environments. The ability to have an adaptive decision process across mission types is critical.
Hierarchical task processing under limited communication will be an important enabler of autonomy.
The autonomous capabilities should be vehicle agnostic. The UASs should be able to negotiate
both high-level battle manager tasks and low-level tactical tasks. The capability will need to exist
to execute cooperative tasks with other UASs and manned vehicles.

Seven key performance objectives were identified in the CODE BAA where significant
improvements are sought and would be critical for any system also developed for the DBM BAA or
any other project. Six of the objectives are discussed below. The seventh objective, transition-ability
is not considered in this review.

1. Mission Efficiency:

Mission efficiency is an important requirement for both military and civilian operations.
The cost of completing the mission needs to be considered. The expense of flying the vehicle
along with the duration required to complete the mission are critical concerns for all parties
involved. Additionally, the ability to quickly react to changes in mission requirements or
system functionality is critical for robust systems of the future. The bulk of the review of
current capabilities in existing systems will relate to mission efficiency and control of the system.
Mission efficiency can be considered in countless manners, including time to complete the
mission (time efficiency), fuel used to complete the mission (fuel efficiency), endurance of
mission (endurance), and total number of tasks completed (task efficiency).

2. Communication requirements:

Limited communication frequencies will be available in the future. Limited bandwidth and
minimization of communication will be required in future operations and will be a feature for
more autonomous vehicles. Additionally, communication in a denied electronic environment
will necessitate limited communications. The ability to have communications in unique
environments with cognitive capabilities will be required in the future [13].

3. Manning:

Currently, the ratio of operators to vehicles is many-to-one but in the future the desire is to flip
the ratio to be one-to-many. To support this change in operational manning, a significant increase
in system autonomy must be created. A system must be able to automate its mission path and
plan with minimal operator inputs. Hierarchical logic for decision making must be implemented
to ensure the most effective completion of the mission and rapid response to mission or system
changes. The system must be able to react to both external inputs (operator) and internal inputs
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(system and sensor data). Additionally, unique challenges of training and educating future
operators will be critical [14]. The review of current capabilities of algorithms and autonomous
features as it relates to mission efficiency will incorporate the considerations of reduction in
manning of operations.

4. Command Station:

Future command stations must be robust and provide significant situational awareness for the
operator. Being able to command vehicles from a mobile or fixed-based control station will
be necessary to ensure flexibility in capabilities. Interfaces that enable the operator to quickly
upload new tasks and parameters will be necessary. Limited command station requirements
and current capabilities will be addressed in this paper.

5. Openness of the architecture:

Open system architecture is a key of any current and future system viability. To provide a system
architecture that can be utilized across multiple system sizes and types it must employ an open
architecture to minimize the costs of integration with any existing or new systems. The design
proposed in this paper attempts to provide a framework architecture that would satisfy current
open architecture standards. Limited review of open architecture requirements will be addressed
in this paper.

6. Multi-mission capability:

The ability of a system to perform multiple missions will be critical for future viability.
Some airframes may not lend themselves to transition across the four primary mission types of
ISR, loiter, delivery, and attack. However, a system that operates primarily in one or two mission
areas should be able to perform multiple roles within those mission areas. For example, a system
that has a primary role of ISR should be able to perform recurring observation of fixed targets
but also be able to transition to tracking of moving targets or persistent observation over a fixed
target. The ability of systems to perform multiple missions will be discussed throughout the paper.

3.2. System Architecture

In the early 2000s, Boskovich, et al. [15] defined a control architecture for decision making
within an autonomous UAS framework. This architecture described a high-level framework for
designing autonomous intelligent control systems for UASs. The architecture defined four layers
of control: redundancy management, trajectory generation, path planning, and decision making.
This general philosophy is still present in many of the design work prevalent today in UAS mission
and path planning design. However, this architecture only considers the general control and path
planning of a vehicle. To address the high-level requirements previously defined in Section 3.1,
a system architecture needs to be developed that can provide the framework for system design
and functionality for more than just the mission control of the vehicle. Additionally, a significant
portion of the existing research in UAS path planning considers the vehicle a point mass and many
of the approaches consider only constant altitude and airspeed. There is minimal consideration of
actual vehicle dynamics in the existing research. In order to address the actual vehicle dynamics and
utilize those dynamics to improve mission performance utilizing existing methods, an architecture
that integrates vehicle dynamics and systems is needed.

Figure 1 provides the high-level architecture defined for our proposed autonomous system.
The definition proposes five primary functions: Mission Management, Vehicle Management, Sensors
Management, Communications Management, and Safety Management. These five areas provide the
sufficient top-level framework for any system, regardless of mission and vehicle type. The advantage
of this system is that it provides a modular functionality architecture that can be adjusted for specific
vehicles but can be common across numerous vehicle types. The autonomous algorithms will reside
within the mission management functionality and will be dependent upon common interfaces and architecture.
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Figure 2 provides a lower-level definition of the system architecture with key critical
functionalities within the primary management systems. The functions and capabilities within each
management area could be changed depending on each vehicle. However, the interface to the mission
management system needs to remain consistent. The key to the architecture is that each primary
functional area has a controller that manages the overall function, but capabilities can be added or
removed based upon mission and system requirements in a modular fashion without impacting the
larger system. Additionally, depending on mission tasking and systems on board, the controller
could enable or disable any resident capability to improve performance of mission objectives without
changes to the software. The detailed description of each of the five primary functions and their
subsidiary functions are provided below.

Mission Management
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Vehicle Management Sensor Management

Safety Management

Figure 1. Top-Level System Architecture.
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1. Mission Management:

The mission management function is the key to the success of the system architecture.
A significant portion of the efforts in this area would be consistent with the work of Boskovic,
et al. [15] as discussed earlier. The mission management will provide the primary high-level
decision making for the mission performance of the vehicle. The mission management area is
the focus of significant research in unmanned and autonomous control. There are three primary
functions within the Mission Manager:

(a) Mission Planning:

The mission planning function provides the mission requirement details for the
decision-making process of the mission executive. A mission-planning dataset could
include definitions of tasks, priorities, and threats. The mission-planning dataset could be
uploaded prior to a mission, during a mission, or self created depending on the autonomous
capabilities designed within the system. The mission-tasking information would provide
the required tasks the system is desired to perform. A mission-priority schema would
provide the executive a decision framework to determine which task is of greater priority.
For example, tracking a moving target could be defined as a higher priority than general
reconnaissance data collection. Threat definition would provide the system considerations
for areas to avoid due to known threats as well as considerations for how to handle newly
discovered threats. These considerations could include keep-out zones, self protection
actions with sensors, or other actions depending upon system capabilities.

(b) Path Planner:

The path planner is the key algorithm for defining where and how the vehicle should
move. The path planner utilizes the considerations defined in the mission planning
along with information provided (via the mission executive) on system states. The path
planning algorithms could be dynamic or changed for any given mission based upon the
needs, priority, and other considerations. The path planner must also determine path
planning based upon contingency management requirements of the system for subsystem
failures. The path-planning algorithm is a significant consideration of this paper and
current capabilities are discussed later in this paper.

(c) Mission Executive:

The Mission Executive (ME) is the primary decision maker for the vehicle. The functionality
of the ME defines whether to perform the current task defined by the path planner or reacts
to safety management information. The ME also provides and receives communication
updates with other vehicles, operators, and other sources as required. The ME commands
the vehicle management system to perform flight maneuvers and other vehicle system
functionality. The ME could be considered equivalent to a human operator within a manned
vehicle system.

2. Sensor Management

Sensor Management provides the control for all the mission sensors installed on the vehicle.
Mission sensors are defined as any sensor utilized to perform the mission. Sensors that are used
to manage the vehicle control and health are handled within vehicle management. There may
be some cross utilization of these sensors for both systems. However, the management of those
sensors would be handled by their primary user. Portions of sensor management, such as sensor types
and control, are well understood in existing systems. However, the sensor data processing will
require continued and significant research to provide autonomous sensor data at a decision level
that can be trusted. There are three key functions within the sensor management framework.
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(a) Mission Sensors:

Mission sensors are the sensors specifically installed on the aircraft for data gathering in
direct support of mission completion. The mission sensors will be dependent upon the
vehicle and mission requirements. These sensors will perform the primary mission duties
and could include electro-optical/infrared sensors, radar sensors, radio frequency sensors,
or any number of other types. The sensors will have a direct interface to the data-processing
module and the control-executive module. These sensors will perform their tasks based
upon commands received from the sensor-control executive.

(b) Sensor-Data Processing:

The sensor-data processor will analyze received data and make a decision on the
information received based upon algorithms defined. The processing could be utilized for
any number of tasks including target recognition, geo-location, target motion, and sensor
response. The data will also be processed for transmission, as required, and sent to the
sensor-control executive for passage to the communication management for dissemination.
A significant level of research is ongoing in areas of sensor data fusion, image processing,
and recognition that can support decisions and vehicle tasking.

(c) Sensor Control Executive:

The sensor-control executive (SCE) is the primary controller of all sensors and sensor
taskings. The SCE interfaces with the ME and provides sensor availability, sensor capability,
sensor data evaluation (target ID, geo-location, etc.), and sensor health. The ME provides
the SCE with sensor tasking. The SCE will be required to automatically identify what
sensors it has installed on board and what their capabilities are.

3. Safety Management

Safety Management provides overall safety monitoring for the vehicle. The types of safety
management performed can be dependent upon vehicle type, sensors installed, capabilities
required, and vehicle capabilities. The systems defined in this architecture are notional but
are critical for UASs. The safety executive can provide high-priority tasking to the mission
executive that can result in overriding current activities for safety reasons. Safety management
is an area that is understood, but the integration of it with autonomous systems continues to be
researched and developed across vehicle types. The core safety management functions defined
in this architecture are explained here, but are not exhaustive of possible functions.

(a) Safety Executive:

The Safety Executive (SE) processes all information from safety management capabilities
and provides that information to the mission executive for execution. The SE will prioritize
which safety feature should be addressed first (if multiple safety issues are occurring at the
same time) and determine the recommended actions.

(b) Collision Avoidance:

Collision Avoidance algorithms for both ground collision and air-to-air would reside within
the safety management area. These algorithms would determine when the vehicle is at risk
of impacting something and provide recommended action(s) to avoid these problems.

(c) Flight Termination:

Flight Termination is a key issue for unmanned air vehicles. Flight termination can
include destructive actions which result in the destruction of the vehicle. However, it
can also contain contingency efforts that include immediate landing, reduction in system
capabilities, flight-plan alteration, or other functionalities depending upon the mission and
range requirements.
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(d) Geo-Fence:
The geo-fence capability defines the areas within or outside of which a vehicle should
maintain a presence. There may be unique mission requirements that require a system
to fly in certain areas which the geo-fence may not allow based upon changes in mission or
knowledge of areas of operation. If the vehicle is approaching a fence limit or has crossed
a fence, the safety system should direct the vehicle back within the defined boundary.
This geo-fence could be dynamic based upon known aircraft (air collision avoidance), major
changes in weather (weather avoidance), or known threats and borders.

(e) Weather Avoidance:
Depending on vehicle capabilities or mission sensor capabilities and requirements there
may be a need to avoid undesirable weather. Weather avoidance would provide keep-out
areas to the safety executive that could be provided to either the mission executive
or the geo-fence capability for management of vehicle path. For sensor functionality
issues it would be more critical to provide that information to the mission executive for
determination of path route and sensor tasking.

(f) Population Avoidance:
Mission requirements may require the vehicle to perform tasks in areas with significant or
critical populations. As a result, there may be a need to fly close to population but avoid
interference or impact with people and activities. The population avoidance functionality
would determine where the vehicle needs to be to avoid the population of concern and
provide the safety executive of how to react to the given situation.

4. Communications Management

Communications Management provides the key interface between the vehicle and other
systems. The ability to send and receive both mission information and sensor data can be critical
to the success of a given mission. By managing communications separately from the primary
processes, it enables changes in communication methods without impacting the underlying
functionality of the vehicle. Communications Management will divide the data as either mission
management, mission sensor, and planning and intent. There are five primary functions within
the Communications Manager:

(a) Communications Executive:
The communications executive provides the primary interface between the mission
executive and the installed communication systems. The communication systems installed
could vary depending on the vehicle type and mission requirements. The communication
executive will provide external communications and data dissemination as required.
The system will also need to recognize when communications are not being received for
potential operations in a denied environment.

(b) Communications Systems:
The vehicle could have one or multiple communication systems installed for external
communications capabilities dependent on mission requirements and vehicle capabilities.
Communication types could include line of sight RF, satellite communications, optical/laser or
others. Dissemination of data received and to be sent will be via the communications executive.

(c) Mission Management Communications:
Mission management communications will provide mission status, priority, tasking, and
threat information for other vehicles. The communications executive will also update this
information from any received data for processing via the mission executive.

(d) Mission Sensors Communications:
The mission sensor data will be processed and sent separately from other priority tasks
(mission management, planning and intent) to provide external users with specific sensor
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data for analysis and use. By handling the mission sensor data separately from the other
data, it prevents critical data being held up by sensor data dissemination. Mission and
vehicle tasking data should take priority over data dissemination tasks. This separation
will also enable a system to have separate communication systems for data and mission tasks.

(e) Planning and Intent:

The planning and intent data will provide current information on where the vehicle is,
where it is going and the intents of its upcoming efforts. This will allow any other
vehicles or operators in the mission to monitor and understand the plans of the vehicle.
This information will enable users and vehicles to make decisions and recommendations
on mission plans and efforts.

5. Vehicle Management

The Vehicle Management system is responsible for the control of the vehicle and systems.
The flight control system, vehicle subsystems, vehicle state (via Prognostics and Health Monitoring
(PHM) and sensors) all reside within the vehicle management system. Vehicle management
is well understood and is standard in most manned and unmanned aircraft. While there is
significant research and work ongoing in this area, especially in the areas of PHM and fault
tolerant operations, the underlying requirements and architecture are not significantly different
from existing platforms. There are five primary areas within the vehicle management system.

(a) Vehicle Management Executive:

The Vehicle Management Executive (VME) manages the vehicle systems control and
processing. The mission executive provides the tasking that the vehicle must perform and
provide for processing. The data provided is then sent to the flight control systems, vehicle
systems, and any other ancillary systems installed that require control. The VME also
accepts sensor data and PHM data for processing and determination of whether degraded
systems exist and if actions need to be taken. This data is also provided to the mission
executive for mission tasking decisions.

(b) Flight Control Systems:

The Flight Control Systems (FCS) of a vehicle can include propulsion, flight control surfaces,
flight control sensors, and any other system required for vehicle control. The FCS design
and performance is unique to any given vehicle and needs to be provided to the path
planner for determination of proper, efficient, and effective path planning.

(c) Vehicle Subsystems:

Vehicle subsystems can include ancillary systems such as electrical, hydraulic, environmental
controls, and landing gear. These subsystems provide critical functionality that support
the primary flight controls and mission sensors. Subsystems are generally well understood
for existing areas but new and improved capabilities (especially in electrical power
capabilities) continue to improve the state of these systems.

(d) Prognostics and Health Monitoring:

Prognostics and Health Monitoring (PHM) can provide an estimate of current and future
health and capabilities of installed systems. Significant research has been performed and
continues to be performed in this area. Fault tolerant design and functions also continue
to be researched and can be integrated with PHM functionalities. PHM may or may not be
present on a given vehicle but can provide enhanced control and insight into current and
future performance.

(e) Vehicle Sensors:

Vehicle Sensors can be numerous and diverse across a vehicle. Depending on the size
of the vehicle and criticality of the system there may be minimal or extensive sensing.
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The sensors can include critical flight data such as vehicle speed, rates, and accelerations via
air data and/or inertial systems. Sensors can also perform pressure, temperature, voltage,
or other critical measurements to support real-time performance or prognostics of future
performance. Vehicle sensors continue to evolve and develop based upon new technology
and needs.

3.3. System Needs

Critical work continues to be performed in all areas of autonomous vehicle systems. The following
discussions will provide details on current and ongoing work in selected areas. In the area of vehicle
controls there continues to be significant work being performed on flight control systems based upon
new and changing vehicle types and control schema. Fault-tolerant systems and PHM continue
to be researched and system capabilities need to be improved for future autonomous system use.
Sensor capabilities, sensor fusion, and sensor identification capabilities are areas that continue to
be researched and will be critical for future use in autonomous systems. Mission management and
path planning areas are seeing significant current research and will be required to be developed and
become more effective for autonomous system use. Communication system capabilities continue to
be researched for improved methods and needs, especially as the available frequency spectrum for
communications is reduced for UAS applications. Safety management will continue to see research
and growth as autonomy grows in order to improve and ensure trust of these autonomous systems.

4. Review of Existing Methods and Capabilities

There are significant efforts ongoing in all areas of UAS autonomous control. This section will
provide a review of the current state of path-planning and critical safety control as they relate to UAS
autonomous controls. Section 4.1 provides a review of the current state of path planning algorithms
that directly support the mission management capabilities defined in Section 3.2. Section 4.2 examines
the state of critical safety control features that ensure safe flight, which directly support the safety
management capabilities defined in Section 3.2.

4.1. Path Planning

Path planning requires knowledge of target or mission needs in order to properly complete the
planning algorithms. We will define three primary types of path planning: Fixed Target, Moving
Target, and Target Search and Surveillance. Additionally, a system that can complete multiple
scenarios within the three primary areas is valuable. An extension to multiple scenarios would be
multiple aircraft supporting either the same type of mission or multiple scenarios.

4.1.1. Fixed Target

Fixed target path planning deals with the algorithms utilized with visiting fixed locations for
information gathering or support. UASs are currently being used in missions that require the vehicle
to visit a set of targets and maintain an optimum flight path to complete their tasks.

Many of the fixed target path planning problems can be considered similar to the traveling
salesman problem (TSP) that has been evaluated significantly in numerous ways for decades since
Dantzig et al., developed a solution as an integer linear program [16]. The TSP type problem has
been approached with multiple solutions. Many of the evolutionary algorithms used to solve these
NP-hard (short for non-deterministic polynomial-time hard, widely taken to imply that the problem is
computationally intractable [17]) problems provide acceptable results, although many of them have
constrained the problems to some level.

Early approaches in solving the path planning problem included the use of a Tabu Search
(TS) heuristic algorithm [18,19]. The TS can provide a solution that allows for progression without
becoming trapped in local optima. Ryan, et al. [20] used a Reactive Tabu Search method to solve UAS
routing in the construct of a multiple Traveling Salesman Problem with time windows. Their objective
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was to maximize expected target coverage while incorporating weather and a survival probability
at each target as random inputs. Wang et al. [21] proposed a Tabu (Taboo in their paper) Search
algorithm for multiple task planning for multiple UASs that showed better performance than genetic
algorithms or ant colony optimizations. Zhao and Zhao [22] utilized a Tabu search algorithm to
develop their path and time. Numerous methods have been developed more recently that provide
better results to the path-planning problem than the Tabu Search, although it still is valuable for
certain processes. Additionally, TS algorithms are only useful for small problems that do not consider
vehicle availability or tasks that require constraints beyond simple time ordering.

In 1956, Edsger Dijkstra proposed an algorithm for finding the shortest path between two points [23].
This algorithm is a key method for finding shortest paths for robots and unmanned vehicles and
is used for numerous applications. The use of Dijkstra’s algorithm can be found in countless
applications to UAS path-planning applications [24–29].

Tong et al. [30] proposed a method of path planning that utilized Voronoi Diagrams and Discrete
Particle Swarm Optimization (DPSO). A Voronoi diagram depicts lines that are equidistant to the
closest neighboring points of interest, resulting in areas that define all points closest to the points of
interest. A Voronoi diagram works similarly to and in conjunction with Dijkstra’s algorithm. The lines
from the Voronoi were used as an initial path, with the points of interest being threats to be avoided.
A DPSO algorithm was then used for simultaneous target attacks by multiple vehicles.

Receding horizon control (RHC) [31] is a feedback control technique, also referred to as model
predictive control, which is used across a large variety of applications. Receding horizon control
is used as part of numerous algorithm types for UAS path planning. The advantage of RHCs
is that it enables control of systems with a large number of inputs and outputs, especially for
systems with complex objectives and strong nonlinear dynamics and constraints. The use of future
considerations and predictions while optimizing the current time requirements is the key feature of
RHC. Multiple path-planning algorithms utilize a form of RHC as part of their planning processes.
The RHC control scheme has become useful for UAS algorithms due to the limited requirements
for computational resources when compared to algorithms that perform global planning methods.
Kuwata et al., developed a decentralized RHC for multi-vehicle guidance [32,33]. Xiao et al. [34] used
an RHC method in conjunction with a virtual force method to improve the performance of the RHC.
Peng et al. [35] developed a cooperative search algorithm utilizing RHC with a rapidly exploring
random-tree path-planning algorithm. Schouwenaars et al. proposed a multiple aircraft trajectory
planning algorithm utilizing a RHC strategy with a mixed integer linear programming basis [36].
There have been multiple efforts utilizing RHC methods in conjunction with Partially Observable
Markov Decision Processes [27,37–39].

In 1995, Kennedy and Eberhart [40] proposed a methodology of nonlinear function optimization
using particle swarm optimization (PSO). This method provides a simple and computationally useful
algorithm for optimizing a wide range of functions. The use of PSOs as part of a UAS path-planning
algorithm has been employed successfully by numerous researchers [30,35,41–44]. Roberge et al. [45]
provided a comparison of GAs and PSOs for UAS path planning. The resultant of the comparison
shows that the GA produces superior trajectories to the PSO.

An approach that has shown good results is the use of Genetic Algorithms (GA). A GA provides
a heuristic method based on natural evolution by defining the decision variable as a chromosome.
The chromosomes defined by the problem give the resultant population and an algorithm is utilized
that generates an evolution process until a satisfactory solution results. Sahingoz [46,47] and
colleagues [48,49] have performed significant work in using GAs for both single and multiple
UAS path planning which has shown satisfactory results. Cheng et al. [50] developed an immune
genetic algorithm that provided an ”immune operator and concentration mechanism” that improved
convergence of existing GA algorithms. GAs can, under certain circumstances, suffer from premature
convergence. Price and Lamont [51] used a GA design for self-organized search and attack of UAS
swarms. Pehlivanoglu [52] proposed a vibrational GA algorithm enhanced with a Voronoi Diagram
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in an effort to improve the convergence problem. Research is continuing in the use of GAs for path
planning of UASs [53,54].

An algorithm based upon the annealing of metal [55,56] can be utilized to find global minimum
of an objective. Drawing upon the annealing process, a Simulated Annealing (SA) algorithm will search
randomly in the area of an initial guess. If an improvement is found, the new value is kept. If deterioration
is noted, the result may be discarded or kept depending upon a temperature-dependent probability.
A cooling schedule is used to determine when the temperature has been sufficiently cooled from the
initial value. Turker et al. [57] presented a method for 2D path planning in a radar threat constrained
environment using a simulated annealing algorithm. Leary et al. [26] evaluated five algorithms
including SA, Consensus Based Bundle Algorithm (CBBA), greedy allocation, optimal Mixed Integer
Linear Programming (MILP), and suboptimal MILP. The results showed that the SA algorithm
provided the best solutions for path generation but required the longest computation time of the
five algorithms; however, the growth in computation time with increased parameters was the lowest.

In 1992, Marco Doringo proposed an approach for finding an optimal path that drew upon the
behavior of a colony of ants [58]. The ant colony optimization (ACO) approach has been adopted
as a method to optimize UAS path planning. Fallahi et al. [59] proposed a method that integrated
ACO and an analytic hierarchy process that showed good results for path planning using the
ACO algorithm. An adaptive ant colony optimization approach for multiple UASs for coordinated
trajectory re-planning was proposed by Duan et al. [60]. An extension of ACO looks more generically
at digital pheromone responses and has been used to improve target search methods [61–63]. Shang et al. [64]
proposed a hybrid algorithm that utilized GA and ACO algorithms for Multi-UAS mission planning
which provided performance improvement over the two independent methods.

4.1.2. Moving Target

Moving Target path planning deals with the algorithms utilized to find and follow moving
targets. Less work has been performed in the area of moving target tracking as compared to fixed
target tracking. However, several similar algorithms to fixed target tracking, including Partially
Observable Markov Decision Processes (POMDPs) and Genetic Algorithms (GAs), have been used
with some success for finding and tracking moving targets.

Krishnamoorthy et al. [65,66] developed a method of searching and tracking a moving target
traveling with a known speed and direction on a road network while utilizing unattended ground
sensors for target detection. This work was later developed and demonstrated with multiple-vehicles,
multiple-targets, and a large series of ground sensors by Rasmussen and Kingston [67]. This approach
relies upon unattended ground sensors to trigger when a moving target passes it’s location.
The sensor then informs the UAS of an intrusion and the associated information required to search
and track the intruder. The system has shown some limitations due to sensor false alarms and
delay in sending information due to limited line of sight data transmission capability. However,
the functionality shows promise in supporting a network of ground sensors and vehicles to monitor
roads or perimeters for intrusion.

Moon et al. [68] proposed the use of probability density functions in coordination with a negotiation
task assignment framework for UAS tasking. The algorithm uses information gathering-based task
assignment with a two-layer framework. An information-gathering layer uses the probability
density functions to generate minimized value future trajectories. The task assignment layer utilizes
a negotiation-based task allocation to assign tasks to the UASs in the network. Results showed
promising results to search an area with minimal overlapping while finding all targets being searched.

Xiao et al. [34] proposed a virtual force and receding horizon method that enabled multiple-UAS
cooperative search in a fixed region for unknown moving targets. Virtual force algorithm alone can
be limited by being trapped at local minima while the receding horizon has large computational
requirements that limits the length it can look ahead. The algorithm presented combined the
two methods in order to alleviate the limitations of each method.
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Sun and Liu [69] proposed a modified diffusion-based algorithm to manage target uncertainty
while controlling multiple UASs with a hybrid receding horizon/potential method algorithm for
a coordinated search for a moving target. The search area was divided into cells and the algorithm
coordinated vehicle search tasks based upon weighting of cells of the search region. The cells not
searched that were closer to a given UAS were given a higher weighting than ones closer to a different
UAS. A hybrid method that combined potential and receding horizon methods was used to reduce
the computational burden.

Frew et al. [70] and Summers et al. [71,72] proposed similar control algorithms for multiple
UAS coordinated standoff tracking of moving targets by utilizing Lyapunov guidance vector fields.
Both approaches utilized Lyapunov guidance vector fields to generate stable paths for the UASs to
fly while tracking a moving target. Multiple-UASs could be used by phasing them around the vector
field solution. Both approaches showed acceptable results for multiple vehicles orbiting and tracking
a moving target.

Geyer [73] proposed a method for urban searching of a moving target that considered complex
geometry from buildings that can impact the ability of the sensor to see the target. The method
utilizes search trees and particle filters to evaluate path options and provides efficient filtering along
with a method of compressing the visibility function.

Bertuccelli and How [74] propose a Markov chain-like model for target motion estimation
approach similar to particle filtering in order to account for the uncertainties in the target location
estimates. Stochastic simulations of realizations of the transition matrix with posterior distribution
approximation enable easy re-sampling of the posterior distribution. This method is valuable for
searching for moving targets where the models of the target motion are poorly known.

Ragi and Chong [39,75] proposed a method of UAS control utilizing POMDPs for tracking
moving targets including evasive targets and threat avoidance. The resulting algorithm enabled
a vehicle, or multiple vehicles, to be able to track moving targets. The design was robust enough
to be able to track an evasive ground vehicle as well as avoid threats, obstacles, and other friendly
vehicles while maintaining tracking of the target. Wind compensation and variable speed and altitude
capabilities were integrated as well.

4.1.3. Target Search and Surveillance

Target search path planning deals with searching for targets with no or minimal information on
the target of concern. Surveillance deals with repeated coverage and search of a specified area to
obtain the desired information. Search problems are generally defined by generating a grid of cells
over an environment. Poor information about target locations and noisy sensors can increase the
difficulty of quickly and easily finding targets.

One regional surveillance method to ensure maximum coverage is the lawnmower path
definition, sometimes referred to as a boustrophedon pattern. The pattern is efficient for ensuring
maximum coverage of an area. However, it is very time consuming, and depending on the
requirement of the mission, may be ineffective for the needs of the operator. Similarly, a spiral pattern
that slowly spirals in either smaller or larger radius could provide similar results.

One challenge is determining how long or how many times a vehicle must survey a point before
a satisfactory level of confidence that a target exists in a given area. Bertuccelli and How [76] proposed
a robust UAS search method for determining target existence with the consideration that the prior
probabilities for a given cell are poorly known. The use of Beta distribution enabled a prediction of
the number of searches required in a given cell to achieve the desired confidence that a target exists
in a given area.

Qu et al. [61] proposed a pheromone-based algorithm with an artificial potential field to perform
regional surveillance with multiple UASs. A region would be separated into multiple units and
a pheromone model would be applied to each unit. Pheromones have a diffusion feature that results
in a portion of its information being translated to the units around it, using either an attractive or



Aerospace 2016, 3, 1 14 of 26

repulsive factor. This information then results in a gradient of pheromones being formed providing
a path for the UAS to follow. An artificial potential field was then used to aid in obstacle avoidance,
collision avoidance, and optimal search.

A planning algorithm by Song et al. [77] for optimal monitoring of spatial environmental
phenomena based on Gaussian process priors showed improvement at finding global maximum
conditions. This algorithm would be valuable for surveying unknown spatio-temporal fields such
as gas plumes and humidity. Lee and Morrison [78] propose a search algorithm for multiple-vehicle
maritime search and rescue that accounts for target drift using a mixed integer linear program, relying
on a model over multiple periods to account for object location over time.

Zhang and Pei [79] developed a method to track the boundary of an oil spill using model
predictive control and universal kriging. Universal kriging is an interpolation technique closely
related to regression analysis. By combining universal kriging and model predictive control they
proposed a method to search the environment with a sensor and, based upon the initial samplings,
develop a means to track the boundary of the oil spill.

Hu et al. [80] provided a multi-agent information fusion and control scheme for target searching.
An individual probability map for target location(s) was maintained by each vehicle and updated,
based on measurements made by the vehicle, using Bayes’ rule. A consensus-like distribution fusion
scheme, updated with asynchronous information, was used to create a multi-agent probability map
for target existence. A distributed multi-agent coverage control method for path planning, using
a Voroni partition, that ensured a sufficient number of visits to each cell was performed.

Hirsch and Schroeder [81,82] proposed a method of decentralized cooperative control of
multiple-UASs performing multiple tasks in an urban environment. The construct assumed limited
communication between the vehicles and considered potential line of sight impacts from buildings.
The method required each UAS to perform independent receding horizon feedback control that relied
on its own information along with any received remote information from neighbor vehicles to plan
the required search path.

4.1.4. Multiple Objective

As a vehicles mission progresses, the need to adapt to new information or to change objectives
may be required. Additionally, balancing multiple internal objectives such as path length, endurance,
and safety present challenges to the algorithm development and usage for UAS control. The ability of
a system to perform mission re-tasking and path re-planning is needed to enable multiple-objective
scenario use. Numerous path planning algorithms discussed earlier integrate object avoidance
algorithms. Other safety considerations (such as air collision avoidance) would require unique
algorithms that are discussed separately.

Multiple-objective path planning deals with integrating multiple path-planning algorithms into
one framework to enable a vehicle to perform multiple missions, either in a hierarchical fashion
or simultaneously. Multiple-scenario response can be due to the need to respond to changing
environments, as seen in Meng et al. [24]. They proposed a hierarchical approach that removed
and replaced mission objectives as the mission requirements are changed or canceled. The approach
developed an initial path generation for each vehicle and then, as requirements changed, re-allocation
of objectives was performed with each UAS receiving a unique tasking and path generation.

Hirsch and Schroeder [81,82] defined a solution for vehicles performing tasks of searching for
targets while also tracking targets already found with a hybrid heuristic algorithm that combined
a greedy randomized adaptive search procedure with simulated annealing (GRASP-SA). The UASs
were provided no knowledge of where or how many targets were present in the environment.
At each decision point, the UAS was required to determine whether to continue searching for
new targets or track the targets already detected. The approach was performed in an urban
environment model, incorporating object avoidance and line-of-sight obstructions into the decision
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process. The GRASP-SA algorithm was successfully applied to the problem set and provides a unique
approach to the multiple-objective problem for search and tracking of multiple targets.

The use of Tabu search as a method for multiple-objective planning was proposed by Wang [21].
This early evaluation of the problem requires additional work but showed promise as a way to
plan missions for multiple-task planning with goals of maximizing number of completed tasks with
a minimization of range and time. The Tabu search algorithm is used to optimize the task allocation
scheme after a planning model is built. The problem set evaluated was simple, and requires a more
complex and practical environment to be evaluated in order to determine the overall value of this approach.

An algorithm utilizing multi-criteria decision making cost functions and multi-attribute utility
theory to make complex decisions for vehicle path planning was designed by Wu et al. [83] with
a focus on UAS delivery of medical supplies while flying in a complex airspace. The approach focused
on flying a vehicle under existing visual flight rules in the national airspace, which continues to be
a critical concern. For en-route planning, multiple criteria were considered within the cost construct
of the algorithm: time, fuel, airspace classes, aircraft separation risk, storm cell risk, cruising levels,
and population risk. These concerns, while more tactically focused on completing a singular mission
type (medical delivery), could be transformed into other objectives in a similar construct for more
complex efforts.

Ilaya [84] proposed the use of a decentralized control scheme involving multiple vehicles
performing a multi-objective trajectory tracking and consensus problem using particle swarm
optimization. The approach incorporated a two-level decision process: a high-level supervisory
level and a local vehicle control level. Decentralized model predictive control was utilized for the
vehicle-level synthesis of cooperative and self behaviors. A Lie group of flocks approach was used
for the high-level supervisory control decision making. In related work, Ilaya et al. [85] provided
an approach for distributed and cooperative decision making for collaborative electronic warfare.
Similar algorithms were utilized with a focus on radar deception, ensemble tracking, and collision
avoidance among the vehicles.

Optimizing resources for multi-criteria decision making using ant colony optimization (ACO)
and analytic hierarchy process (AHP) was proposed by Fallahi et al. [59]. Unlike other approaches that
rank a finite set of alternatives in a multi-criteria decision making problem, this approach utilizes the
ACO to obtain optimal solutions satisfying some of the path-planning criteria. The AHP is then used
to select the best UASs to perform each portion of the mission, optimizing the results of the overall
mission. This approach could be extended to numerous UAS problems and objective constructs.

Peng et al. [86] proposed using a linkage and prediction dynamic multi-objective evolutionary
algorithm in conjunction with a Bayesian network and fuzzy logic decision making process.
Historical Pareto sets are collected and analyzed for the online path planning. A Bayesian network
and fuzzy logic are then utilized for bias calculations for each objective. Results of using this
method shows improved performance over completely restarting the path-planning algorithm at each
objective change.

4.1.5. Multiple Aircraft

Multiple aircraft path planning deals with both centralized and decentralized coordinated
mission efforts of multiple vehicles. Significant research is currently being performed in this area
and could constitute a full survey paper on its own. The goal of this section is to highlight some
of the primary methods being proposed for single and multiple task allocation that show significant
capabilities of interest. Many of the previously discussed methods incorporated multiple vehicle
controls into their algorithms, and are not repeated here. Specifically, the algorithms discussed in
Section 4.1.4 also supported multiple-aircraft control.

Swarming is not considered in detail for this review as the controls for swarming have been
extensively reviewed [87,88] and are generally focused on multiple vehicles working towards a single
task while acting in a more biological-system manner. The term swarm is used in multiple ways
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currently to describe different operations. For this paper, a swarm is a group of vehicles working
towards a common task in a group manner. This section focuses on multiple-UASs performing unique
cooperative single and multiple-tasks in a controlled but decentralized environment.

One significant area of research has been at MIT under Professor Jonathan How. An unbiased
Kalman consensus algorithm was proposed by Alighanbari and How [89]. Consensus-based
algorithms proposed by How and associates consider both a decentralized consensus-based auction algorithm
(CBAA) and the consensus-based bundle algorithm (CBBA). The CBAA is used for single-assignment
tasking of single agents using an auction with greedy heuristics and a conflict-resolution protocol
for consensus on winning bids for allocation [90]. The CBBA algorithm allows each agent to
bundle assignments awarded as with CBAA but enables the system to collect and perform multiple
assignments [91,92]. Both algorithms show significant value in allocation of tasks and the overall
performance of the system of UASs to complete missions in complex environments.

A survey of early consensus problems for multi-agent coordination and development of
consensus seeking algorithms was completed by Ren and Beard [93–95]. Extensions of some of this
work have included forest fire monitoring using multiple UASs [96] and perimeter surveillance using
teams of UASs [97].

Zhao and Zhao [22] propose task clustering as a means to divide a large portion of tasks
among multiple UASs. Ou et al. [98] propose a chaos optimization algorithm for task assignment
to multiple-UASs. Zhang et al. [99] propose a cooperative and geometric learning path-planning
algorithm for single and multiple UASs that attempts to minimize both the risk and length of the
path flown by the vehicle(s).

4.2. Safety Controls

Safe control of UASs is a critical area of concern. Manned aircraft have the unique advantage
of having a pilot in the loop directly at the vehicle with the ability to react to safety concerns
immediately. UASs require either automated response capabilities or the ability to quickly provide
critical information to an operator for response. The notion of run-time assurance to provide
confidence in autonomous decisions is a critical area of concern. Collision control is a huge concern
for UASs, which has resulted in work on air, ground, and object avoidance. Boundary and population
control work has focused on keeping UASs in controlled areas and out of the area of risk to
populations. Weather avoidance enables a vehicle to evaluate the weather and determine whether
the flight path should be modified autonomously. Fault tolerance, isolation, and prognostics is a large
research area focused on enabling vehicles to continue to operate under less than ideal functionality.
Flight termination is a major concern for how to manage vehicles that are not operating properly and
must immediately cease flight operations. Test safety is a unique area of concern focused on how to
properly test vehicles prior to release to normal operations where the likelihood of failure is higher
and risks can be increased.

4.2.1. Run-Time Assurance

A critical safety concern for autonomous systems is trust in decision making. As the ability of
autonomy to make decisions, the state space of the system grows so large that it is impossible to verify
and validate all possible decisions made by an autonomous system. As a result, a way to ensure that
the system does not make decisions outside an acceptable region is required. The concept of run-time
assurance has been investigated by the Air Force Research Lab [100,101] and is supported by
research by Barron Associates [102]. Mark Skoog at NASA Armstrong has proposed an Expandable
Variable-Autonomy Architecture (EVAA) system architecture that would enable confidence in
UAS decision making by bounding the decision making to prevent a system from operating in
unsafe manners [103]. Research continues to be performed in trust of autonomous systems, including
in manned systems, such as autonomous ground collision avoidance systems on fighter aircraft [104–107].
Extending the confidence in autonomous unmanned systems will be critical in the future.
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Ensuring that the system architecture enables safety, including implementing a run-time assurance
concept as in the EVAA architecture, will be critical to ensure safe operations.

4.2.2. Collision Avoidance

Collision control has been a key concern for all aircraft, but is more difficult on a UAS
due to the lack of onboard pilots. The vehicle must be able to avoid collision with the ground,
with other vehicles, and any objects it may encounter. Developing algorithms to perform vehicle
maneuvering for collision avoidance can be performed by methods previously discussed in Section 4.1.
The difficulty in collision avoidance is identification of the risk and determining what mitigation
must be performed. The challenge is identifying what sensor or model is required to determine the
risk and what mitigations can be implemented.

Ground collision avoidance and recovery systems were originally developed for manned
aircraft. In 1990 a patent was granted for an ”Aircraft ground collision avoidance and autorecovery
systems device” [108] which provided a system design for calculating aircraft flyups to prevent
ground collision. Automatic Ground Collision research efforts [109–112] continued in the USAF and
NASA for years. In early 2015, an Automatic Ground Collision Avoidance System installed on the
F-16, which was based upon the earlier research by the USAF and NASA, saved the pilot and aircraft
during operations against the Islamic State in Syria [113]. Recently, NASA [114] integrated a similar
system on a small UAS with a smart-phone interface for ground collision avoidance capabilities.
These systems rely upon an onboard digital terrain elevation model of the earth to calculate threat and
recovery, nullifying the need for additional sensors on the vehicle. Avoiding colliding with stationary
objects is an additional consideration in the ground collision avoidance area. Scherer et al. [115]
proposed implementation of Laplace’s equation to develop a potential field solution. Kobilarov [116]
utilized a cross-entropy method in conjunction with rapidly expanding random trees for object
avoidance path generation. Hrabar [117] proposed using an expanding elliptical search method to
determine paths for object avoidance.

Air collision avoidance of both aircraft and stationary objects is a more difficult problem to solve.
A patent was filed in 2001 [118] that provided the initial concept of a safety zone sphere around
a vehicle that required both passive and active sensors to monitor the safety zone. Once incursion
was detected, the system would inform an onboard sense-and-avoid computer for corrective action
response. This underlying philosophy has been utilized in numerous research efforts. One of
the critical issues for air collision avoidance is awareness of air traffic within the local airspace.
For vehicles that do not have sufficient sensors or capabilities, a ground-based sense-and-avoid
system (GBSAA) has been proposed for numerous aircraft types [119]. The Department of Defense,
under an Army program, is in the process of developing and deploying several GBSAA systems
in specific areas around the US [120]. However, there are challenges to using GBSAA for UAS
operations, including the potential that they may not be able to actually support collision avoidance
between vehicles [121]. The additional disadvantage of a GBSAA system is that it still requires
integration with the UAS or have a pilot in control of the vehicle to make avoidance decisions.
Maneuver algorithms are rather straightforward to implement depending on the path requirements;
however, integration of GBSAA sensor data is more difficult. Most sensors installed on vehicles or the
ground are only sensing other vehicles that may threaten the vehicle of concern. The integration of
that information along with vehicle path planning and control for collision avoidance is required.
One approach for being able to identify where all traffic is for collision avoidance sensing is the
requirement by the FAA to have Automatic Dependent Surveillance-Broadcast (ADS-B) on all aircraft
by the year 2020 [122]. Lin and Saripalli [123] proposed a method of collision avoidance utilizing
ADS-B with a greedy rapidly exploring random tree.

Numerous methods have been proposed and explored as ways to prevent collisions between
UASs and other aircraft. Considering collision avoidance an optimization problem and implementing
geometry-based solutions has been proposed by multiple sources [124–126]. Lin and Saripalli [127]
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proposed using reachable sets, a collection of locations that can be reached at a given instant in
time, for collision avoidance. Lin and Saripalli [128] also proposed using a variation of a rapidly
expanding random trees approach with 3D Dubins Curves to avoid both stationary and moving
targets. Optimal control methods were proposed by Shim and Sastry [129] and Bareiss and van
den Berg [130] that require accurate system models to be implemented. Methods utilizing Markov
decision processes were proposed in [131–133] but can be limiting due to the large state space
requirements. Jackson et al. [134] propose a sensor suite of both onboard and offboard sensors with
sensor fusion as a method to detect threats. Numerous methods of integrated sensor solutions exist
for identifying air collision threats including Traffic-alert and Collision Avoidance System (TCAS) [135],
mobile radar [136], electro-optical/infrared [137], and Laser & Light Detection and Ranging (LIDAR) [138].
Angelov [139] provides a significant review of the work being performed in this area. In 2009, the US
Office of Naval Research performed a detailed study of sensor solutions for sense and avoid [140].

4.2.3. Boundary Control

Geofence is a general concept of providing boundary control of where a vehicle can operate.
For UASs this can include ceilings and floors as well as walls of operation. Geofencing is seen as
one means of aiding in the sense and avoid issue of UASs, especially small UASs. Stevens et al. [141]
proposed a geofence system that was platform independent. Many of the small UAS flight controls
systems, such as Arduino [142], include a geofence capability inherent in its system that can be
utilized for safe operations. Hayhurst et al. [143] propose that standards be developed for assured
containment that provides an independent capability separate from the geofence algorithms that are
generally resident internal to system software.

4.2.4. Test Safety

The Range Safety Group of the Range Commanders Council has provided guidelines for Flight
Safety Systems for UAS Operations within defined range locations [144]. This standard provides
guidelines for safe recovery of UASs that are recommendations for flying on these ranges. Johns Hopkins
Advanced Physics Laboratory has proposed a framework for safe testing, Safe Testing of Autonomy
in Complex, Interactive Environments (TACE), that can provide both safety features and complex
interactive environments in a virtual fashion enabling improved safety and testability [145].
Emergency recovery and flight termination requirements are a necessary capability of UASs,
especially larger class UASs that can cause danger to property or personnel. A technology survey
of these systems by Stansbury et al. [146] provide a good overview of the recovery and termination
systems. The need to terminate or provide emergency recovery is critical, especially when testing
unproven systems. Integrating emergency recovery and/or flight termination capabilities with
systems such as TACE for testing of vehicles will be a critical enabler to safety of the system and any
property and personnel close to the test area. Including enabling features like geofencing/boundary
control, collision avoidance techniques, reversionary modes to disable autonomy algorithms, and
the ability to take over the vehicle during undesirable operations will be critical for safe testing of
these systems. The size and level of implementation of recovery and termination systems along with
systems like TACE and EVAA along with considerations of run time assurance will be dependent
upon vehicle size and risk.

5. Improvement Areas

The use of UASs will continue to grow in the future. To be able to address growing and
changing needs in the future, a system will need to be able to adapt and change to new and
emerging requirements. A significant amount of work has been performed to develop algorithms
that will enable path planning for multiple mission types. As discussed, the majority of this work has
been performed with key assumptions about vehicle capability and simplified performance metrics.
In order to improve the capabilities of these systems, the integration of system capabilities and
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performance must be included in the algorithms. Development of controls for UASs that include
estimates of vehicle performance and capabilities will be key to improving the usefulness of the
algorithms in actual systems. To date, limited evaluation of existing algorithms with multiple
vehicle types and their associated dynamics has been performed. Additionally, integrating vehicle
performance capabilities and limitations into the algorithms will result in a better understanding of
the capabilities and value of the different algorithms in realistic implementations.

The ability to integrate multiple mission types in a single vehicle will be critical as development
costs and time lines continue to challenge the market. Developing system designs and algorithms
to account for multiple-scenario missions will enable the growth of UASs with reduced delay and
costs. Development of a hierarchical scheme for both single and multiple UASs needs to continue
in order to enable future systems. The integration of key system safety requirements, especially in
the area of collision avoidance and boundary control, will help ensure that these vehicles are safe
and trustworthy to operate. Developing overarching safety architectures that ensure safe operations
will be critical to building trust in autonomy and enabling run-time assurance. Ground collision
avoidance is becoming standard with new capabilities in operation, but air collision and object
avoidance still has development work to be performed to ensure safe and trusted operations.

While not discussed in detail in this paper, sensors and sensor data fusion will be critical areas
that need to be addressed to truly enable autonomous control methods. Until the UAS can self
evaluate the data that it has received and make the appropriate decisions on that data, the usefulness
of the vehicles will be mostly limited to man-in-the-loop operations. The size and capability of
sensors, and the vehicles they will be integrated in, will be critical to the growth and development of
UASs for future use.

6. Conclusions

The development of autonomous UASs and subsystems will continue to expand in the future.
The systems being developed will need to be safe, reliable, and effective across multiple operational
environments and tasks. Development of systems that can perform multiple scenarios and be
adaptable to new capabilities and responsive to changes in environments and missions will be key
to future success. Significant research and development in capabilities has been performed and continues.
A modular system architecture was proposed in this paper that will enable safe and trustworthy
performance of multiple-scenario missions. Critical path-planning and safety controls which
will provide underlying system capabilities for future development were reviewed. Future integration
of actual UAS performance capabilities, including costs for vehicle dynamics, into the proposed
architecture and evaluation of numerous path-planning algorithms will enable a better understanding
of existing methods and future capabilities on actual systems.
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