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Abstract: Physically based zigzag models have the merit of giving accurate stress predictions 

for laminates and sandwiches keeping fixed the functional degrees of freedom, though at 

the expense of the introduction of their derivatives. In the present paper, a technique that 

enables deleting these derivatives is developed. The objective is finding a priori corrections 

of displacements, which make the energy of the model with all the derivatives neglected 

equivalent to that of its initial counterpart model containing all the derivatives. Numerical 

applications show that this technique can obtain accurate results, even for strongly 

asymmetrical lay-ups, keeping low the computational cost. 

Keywords: zigzag model; fixed degrees of freedom (d.o.f.); technique for converting 

derivatives; stress analysis 
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1. Introduction 

Laminates and sandwiches increasingly find use as primary structural components in many 

engineering fields, owing to their excellent specific strength and stiffness. A further increased use of 

these materials could be registered in the next years thanks to the spread of composites with variable 

stiffness properties allowed by manufacturing technologies such as automated fiber-placement [1,2]. 

In fact, spatially variable property composites offer the possibility of designing and constructing 

structures that achieve the target design requirements with a lower mass than their counterparts with 

uniform stiffness, as shown by recent studies [3–7]. 

These results pave the way to the development of variable stiffness composites, either in the form of 

curvilinear paths of fibers, or optimized lay-ups where appropriate patches are used in appropriate 

regions. However, in order to fully exploit all these potential advantages, structural models that 

accurately and efficiently account for the warping, shearing and straining deformations of the normal 

(the zigzag effect) and for the strong out-of-plane stresses (the layerwise effects) are required. 

As already focused on by Lekhnitskii [8] in 1935, later in 1957 by Ambartsumian [9] and 

exhaustively explained by many recent studies cited forward, the zigzag and layerwise effects are the 

direct consequence of much bigger elastic moduli and strengths in the in-plane direction compared to 

those in the thickness direction, which are inherent to the multi-layered construction. As shown, e.g., 

by Liu and Islam [10] and Vachon, Brailovski, and Terriault [11], these effects adversely affect stiffness, 

natural frequencies, vibration behavior, buckling loads, the mechanisms of local damage formation and 

growth in service, as well as the failure and the post-failure behavior, as shown by Garnich and Akula 

Venkata [12]. Their detrimental influence becomes very severe if the ratio of in-plane to transverse 

stiffness properties is high, the material properties of constituent layers abruptly change across the 

thickness, anisotropy is severe and structures are thick. Such a combination frequently occurs in primary 

structures made of advanced materials or when the variable stiffness option is considered. 

The structural models, whose unknowns are independent of the material properties, like the 

equivalent single-layer models, should not be used in the simulations of these cases because they are 

unable to provide realistic predictions of displacement and stress distributions, as shown by the 

comparison with exact three-dimensional elasticity solutions [13,14]. In order to accurately account for 

the potentially harmful implications of layerwise effects on structural performances and service life, 

the models should feature continuous the three elastic displacements and the three out-of-plane stresses 

at the layer interfaces, as prescribed by the elasticity theory. In addition, the displacements should have 

appropriate discontinuous derivatives in the thickness direction at the interfaces. 

Composite plate and shell theories having the appropriate piecewise variations of displacements and 

satisfying the interfacial stress continuity conditions for preserving equilibrium have been developed 

either in displacement-based or mixed form, using different approaches. The readers can find a complete 

list of publications with the most relevant contributions, a comprehensive discussion of their features 

and how these features reflect on their performances and computational effort in the papers by Chen and 

Wu [15], Kreja [16] and Gherlone [17]. The advantage of mixed/hybrid models over displacements-based 

ones is the possibility of more easily enforce all the necessary physical interfacial and boundary 

constraint conditions, the stresses being treated as primary variables separately from displacements.  

As stresses are assumed separately, in general they are more accurately predicted. However, stability, 
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convergence and solvability of finite elements based on mixed/hybrid models are much more complex than 

for their displacement-based counterparts. As examples of these models, the papers [18–20] and the book 

by Hoa and Feng [21], where finite elements are exhaustively overviewed, are cited. 

Hereafter, the discussion will be limited to displacement-based models, as they still remain the  

most widespread. 

The models used in the simulations of layerwise effects are here classified in a broad outline as:  

(i) three-dimensional finite element models [22] and [23]; (ii) discrete-layer models with a separate 

representation for each computational/physical layer [24] and [25]; (iii) high-order layerwise plate 

models based on a combination of global higher-order terms and local layerwise functions of various 

type (see, e.g., Frostig [26], Plagianakos and Saravanos [27], Zhen and Wanji [28]); and (iv) zigzag 

plate models with fixed d.o.f. (degrees of freedom) that a priori fulfill the stress continuity conditions 

through incorporation within an overall representation of functions that introduce the appropriate slope 

discontinuity [29–31] through the enforcement of the physical stress continuity constraints at the interfaces. 

The objective of recent studies is the development of more efficient models that require a low 

computational effort for providing accurate stress predictions. The results of a plenty of studies and 

assessments published in the literature indeed show that many models (i) to (iv) with the necessary 

accuracy are to date available, but their cost can considerably vary, depending on their number of 

unknowns. The distinctive feature is the number of d.o.f., so the discussion is hereafter focused on 

accuracy and computational costs. 

Summing up, the models (i) to (iii) that feature the appropriate slope discontinuity of displacements 

at the interfaces through a separate representation in any computational layer are usually very accurate, 

since they can be refined in the regions where step gradients rise. As a direct consequence, these 

models accurately predict stresses from constitutive equations without any post-processing operation. 

However, as they have a number of variables that increases with the number of physical/computational 

layers, they could overwhelm the computational capacity in consequence of a too large number of 

unknowns. Owing to this, they can become computationally too expensive for the analysis of structures 

of industrial complexity and they can be unpractical even for analysis of components if nonlinear and 

progressive failure analyses are carried out. Moreover, due to the excessively large number of 

variables these models cannot be used for optimization of variable stiffness composites, because the 

computational effort required to carry out the study via gradient based search techniques or genetic 

algorithms becomes unaffordable when the fiber orientation angle varies throughout the plies and the 

core properties vary across the thickness. 

As a consequence, a renewed interest have been registered in the in the recent past years to 

development of models (iii) which have a lower number of variables than models (i) and (ii), but a 

comparable accuracy, as shown by papers [26,28]. A considerable effort was reserved also to 

development of models (iv), as they combine accuracy to a low computational effort. A discussion of 

these models, which represent refined single-layer models, is given forward to put the present paper 

concerned with a model of type (iv) in the right perspective. 

The zigzag models (iv) inspired by Di Sciuva [29,30] and retaken by many other researchers,  

e.g., [31–36], represent an interesting compromise between accuracy and affordable computational 

costs since their processing time and memory storage dimension are comparable to those of equivalent 

single-layer models, but accuracy is much better. In effects, these models are based on equivalent 
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single layer models that are improved through incorporation of zigzag functions that do not introduce 

new unknown variables and whose expressions are computed once for all, making continuous a priori 

the out-of-plane stresses through appropriate discontinuous derivatives of displacements. 

Initially, just the piecewise variation of in-plane displacements across the thickness was considered, 

in order to account for the layer-wise distortion of the normal due to interlaminar shears that 

significantly influences the overall response. By using post-processing procedures for computing the 

interlaminar stresses, accurate predictions can be obtained at least when the length-to thickness is not 

extremely low and the properties of layers do not abruptly change. These models can also be 

successfully applied to analysis of sandwiches, whenever a detailed description of local phenomena in 

the cellular structure is unnecessary [37–40]. 

Sublaminate models (SBZZ) that combine the concepts of zigzag and discrete-layer models have 

been recently developed by Averill and coworkers [41,42], Icardi [43] and Gherlone and Di Sciuva [44] 

having kinematic variables at the top and bottom surfaces of computational layers as functional d.o.f., 

instead of classical mid-plane variables. With these models, the analysis can be carried out using a 

single computational layer, stacking several computational layers or even subdividing a physical layer 

into one or more computational layers. 

Because cases exist whose solution can be still not accurate enough using post-processing techniques, 

as shown by Cho, Kim and Kim [45], improved zigzag models based on a global-local superposition 

technique have been developed by Li and Liu [46] for analysis of plates and, more recently, by Zhen 

and Wanji [47] for analysis of shells considering 17 d.o.f. These models still assume a constant transverse 

displacement across the thickness, while the 6 d.o.f. global-local beam model developed by Vidal and 

Polit [48] for analysis of thermo-elastic problems considers a parabolic transverse displacement. 

Another remarkable feature is represented by the use of the Murakami’s zigzag function [49] to describe 

the zigzag effects. Based on this model, a conforming finite element with Lagrange interpolation for 

the rotation and extension displacements and Hermite interpolation for the transverse displacement has 

been developed [50]. 

Thanks to these studies, the zigzag models have become an alternative to discrete-layer (ii) and 

high-order layerwise (iii) models, basically because they have a comparable accuracy and the 

advantage of a lower computational effort, having few functional d.o.f. and their processing time being 

much lower. In particular, they are suited for solving highly iterative problems (e.g., non-linear and 

low velocity impact analyses) and for optimization studies because the structural problem can 

accurately be solved with an affordable computational effort at any iteration. 

As discussed by Gherlone [17], the Murakami’s zigzag function that is just based upon kinematic 

assumptions is much easy to implement and requires a less effort than the physically consistent zigzag 

functions obtained through enforcement of physical conditions at the interfaces, but it is not always 

equally accurate. On the contrary, in the physically-based zigzag functions the slope is not forced to 

reverse at each interface, because as shown by exact solutions for undamaged and damaged sandwiches 

this neither occurs for the through-the-thickness distribution of the transverse displacement and it does not 

always necessarily occur for the in-plane displacement components. The assessments by Gherlone [17] 

carried out for thin to thick monolithic, sandwich-like, symmetric, asymmetrical and arbitrary 

multilayered beams proven that Murakami’s zigzag function leads to the same results of physically 

based functions for periodical stack-ups, while less accurate results are obtained for arbitrary stacking 
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sequences. In particular, better results are obtained by zigzag models with physically based functions 

when a weak layer is placed on the top or bottom and for asymmetrical sandwiches with high face-to-core 

stiffness ratios. Thus, to ensure always the maximal accuracy, physically-consistent zigzag functions 

should be considered. 

Because the transverse normal stress has a significant bearing for keeping equilibrium when temperature 

gradients across the thickness cause thermal stresses and when describing the core’s crushing behavior 

of sandwiches, Icardi and coworkers [43,51–59] incorporated into zigzag models a variable kinematic 

representation of displacements across the thickness that can adapt to the variation of solutions, where 

a progressively refined description of the piecewise variation of the transverse displacement was also 

considered. Accordingly, the representation can be refined like with discrete layer models, though the 

functional d.o.f. are fixed. To this purpose, either the zigzag or the higher-order contributions to 

displacements are determined by enforcing physical conditions. In particular, as conditions of interest the 

local indefinite equilibrium equations as well as the stress boundary conditions can be enforced at 

selected points across the thickness. Because the representation can be locally refined as desired,  

post-processing or staking of computational layers are no longer required for obtaining accurate 

results. As a consequence, an always correct representation of the strain energy is obtained, from 

which accurate stresses are predicted directly from constitutive equations. Because the enforcement of 

the physical constraints is satisfied without increasing the number of unknowns, accurate results are 

obtained with a computational effort not considerably larger than for equivalent single-layer models, 

thus considerably lower than for the available discrete-layer and high-order layerwise models, as shown 

in [55–59] and also by the results reported hereafter, where the processing time by the present model is 

compared to that by the first-order shear deformation theory—FSDPT. In many sample cases [43,51–56],  

a successful application to variable stiffness composites was shown, which proven the progressively 

refined “adaptive” zigzag models based on enforcement of physical conditions suited to find solutions 

in closed form of static and dynamic cases. i.e., natural frequencies, low velocity impact and blast 

pulse loading using overall trial functions, i.e., Galerkin’s and Rayleigh-Ritz’s methods. 

As the expressions of the zigzag functions and of higher-order “adaptive” contributions is obtained 

once for all in a physically consistent way enforcing differential equations like the continuity of 

interlaminar stresses, the boundary conditions and indefinite equilibrium equations, derivatives of 

various orders of the functional d.o.f. are incorporated in the displacement fields. Regrettably, derivatives 

are unwise contributions when finite elements are developed, since they should appear as nodal d.o.f. 

Consequently computationally inefficient interpolation function must be used. Techniques for eliminating 

derivatives such those proposed by Zhen and Wanji [60], Sahoo and Singh [61,62], Xiaohui et al. [63], 

Pandey and Pradyumna [64], and Mihir et al. [65] could be employed. In [61] and [62], a new Inverse 

Hyperbolic Zigzag Theory is developed. In [65], an improved higher-order zigzag theory for vibration 

of soft core sandwich plates in random environment is developed, which includes the effect of core 

transverse normal strain. The effects of different boundary conditions, length-to-thickness ratio and 

geometric shape on the geometrically nonlinear mechanical responses of functionally graded plates are 

investigated by Yu et al. [66] using a novel approach based on isogeometric analysis and first-order 

shear deformation plate theory. Isogeometric buckling and free vibration analysis of thin laminated 

composite plates with cutouts is given by Yin et al. [67]. Mesh-free methods [68–70] have recently 

been employed for analysis of composites obtaining accurate results. 
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Unfortunately, many techniques for obtaining C0 formulations result in an increase of the nodal 

d.o.f. and in algebraic difficulties. In [55] these difficulties have been overcome using symbolic calculus, 

in order to obtain closed form expressions once for all that consistently speeded up the computations. 

The aim of the present paper is to develop and assess a technique based on the idea of updating the 

strain energy expression and the work of forces, as in [53] and [54], in order to overcome the drawback 

represented by the derivatives of the d.o.f. that appear in the model [55]. The objective is finding  

a priori corrections of displacements in closed form, which make the energy of the model [55] with all 

the derivatives neglected equivalent to that of its initial counterpart model containing all the derivatives. 

This idea was already successfully applied in [53] and [54] where energy updating was developed as a 

post-processing technique to improve the predictive capability of shear deformable commercial finite 

plate elements. Here the idea is used for eliminating the derivatives of the functional d.o.f. directly 

from model [54], so to obtain a C0 equivalent model with just five d.o.f. able to account for zigzag and 

layerwise effects. Differently from [53] and [54], here Hermite’s polynomial representations of the 

d.o.f. are used over the domain, whose order depends upon the order of derivatives appearing in the 

model, instead of using the spline interpolating results of a preliminary finite element solution over a 

patch of elements. After equating strain energy and force work expressions, the obtained C0 model that is 

equivalent by the standpoint of the energy to its counterpart [55] can be used to develop a C0 finite 

element, but this is left to a future study. 

Here accuracy and efficiency of the updating technique are assessed comparing the results of the 

model [55] to its equivalent counterpart free from derivatives, considering closed form solution of 

reference sample cases with intricate through-the-thickness displacement and stress distributions,  

for which exact elasticity solutions are available for comparisons. They are chosen because many 

models give poor predictions for such extreme test cases, or require a large number of variables across 

the thickness in order to be accurate. Extremely thick cases, which do not find applications are 

considered in order to enhance the zigzag and layerwise effects. 

2. Structural Model 

The middle surface Ω is assumed as the plate reference surface and a rectangular Cartesian 
reference frame ),,( zyx  with ),( yx  in Ω and z  normal to Ω is assumed as reference system.  

The position of the upper+ and lower− surfaces of the kth layer are indicated as (k)z+ and (k)z−; the 

quantities that belong to a generic layer k are denoted with the superscript(k). The elastic displacements 
in the directions yx,  and z  are indicated with symbols wvu ,, , respectively. 

The through-the-thickness variation of displacements across the thickness is postulated as the sum 

of four separated contributions [55]: 

( ) ( ) ( ) ( )zyxUzyxUzyxUzyxUzyxu ipcci ,,,,,,,,),,( _0 +++=  

(1)( ) ( ) ( ) ( )zyxVzyxVzyxVzyxVzyxv ipcci ,,,,,,,,),,( _0 +++=  

( ) ( ) ( ) ( )zyxWzyxWzyxWzyxWzyxw ipcci ,,,,,,,,),,( _0 +++=  

In order to make clearer the terms of Equation (1) their qualitative through-the-thickness variation 

for composite beams are reported in Figure 1. 
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Figure 1. (a) Through-the thickness variation of displacement contributions; (b) geometry 

considered to enforce in-plane continuity. 

2.1. Basic Contribution Δ0 

The contributions with superscript 0 that are indicated in compact form as Δ0, contain just a linear 

expansion in z  that repeats the kinematics of the FSDPT model: 

[ ]),(),(),(),,( ,
0000 yxwyxzyxuzyxU xx −+= γ  

(2)[ ]),(),(),(),,( ,
0000 yxwyxzyxvzyxV yy −+= γ

),(),,( 00 yxwzyxW =  

Having been used in so many applications, this part does not need further explanations.  
The displacements ),(0 yxu , ),(0 yxv , 0 ( , )w x y  and the transverse shear rotations at the middle plane 

represent the functional d.o.f. of the zigzag model, in order to solve the structural problems with the 

minimal number of unknowns. 

2.2. Variable Kinematics Contribution Δi 

The contributions with superscript i and symbol Δi are terms whose representation can vary from 

point to point across the thickness: 
2 3 4

1 2 3 4( , , ) ...i n
x x x x xnU x y z A z A z A z A z A z= + + + + +  

(3)
2 3 4

1 2 3 4( , , ) ...i n
y y y y ynV x y z A z A z A z A z A z= + + + + +  

2 3 4
1 2 3 4( , , ) ...i n

z z z z znW x y z A z A z A z A z A z= + + + + +  

These variable kinematics contributions are aimed at enabling a refinement across the thickness, in 

order to allow the model having the appropriate expansion order at any point, thus adapting to the local 

variation of solutions with the aim of accurately predict the stresses from constitutive equations. 

Owing to the correct representation of the strain energy achieved in this way, also accurate predictions 

of displacements are obtained. 
The expressions of 1xA … znA  are determined as functions of the functional d.o.f. and of their spatial 

derivatives by enforcing the conditions: 

0|0| == lxz
u

xz σσ  (4)
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0|0| == lyz
u

yz σσ  (5)

llzz
uu

zz pp |||| 00 == σσ  (6)

0|0| ,, == lzzz
u

zzz σσ  (7)

Please notice that in this paper a comma is used to indicate differentiation, therefore for instance 

zzz ,σ  represents the stress gradient zzσ  across the thickness. Likewise, the symbols (),x and (),y 

represent derivatives in x and y. 

In addition, the equilibrium condition is imposed at discrete points across the thickness: 

, , ,

, , ,

, , ,

0

0

0

xx x xy y xz z

xy x yy y yz z

xz x yz y zz z

σ σ σ
σ σ σ
σ σ σ

+ + =

+ + =

+ + =

 (8)

Thanks to these contributions and to the ones discussed forward, the transverse displacement is 

approximated with a high-order piecewise representation similar to that of in-plane displacements, 

determining the advantages discussed in the introductory section. As mentioned in the Introduction 

Section, this non-classical feature improves the predictive capability of the model since the transverse 

normal stress can play a primary role in keeping equilibrium in many cases. 

The number of points at which indefinite equilibrium conditions Equation (8) are enforced depends 

on the expansion order considered. Indeed, a number of points np = Nlay ord_u − 2 have to be 

considered, Nlay being the number of computational layers and ord_u being the order of the expansion 

of displacements across the thickness. The position of the np points is chosen arbitrarily, paying 

attention to not consider points excessively near to the interfaces in order to avoid numerical problems 

(e.g., singular or badly scaled matrix). Indeed, as explained next, stress continuity conditions  

Equations (10) and (11) directly derive from equilibrium. Thus, imposing Equation (8) near to the 

interfaces could mean solving system with linearly dependent equations. 

Numerical tests have shown that accurate results can always be obtained with just a third order 

expansion of the in-plane displacements, a fourth-order expansion of the transverse displacement and  

a number of computational layers across the thickness coincident with the number of physical layers. 

Accordingly, all the numerical results proposed in the paper will be obtained in this way. 
Symbolic calculus is used to compute the expressions of 1xA … znA  through enforcement of physical 

constraints because the algebraic manipulations involved are rather cumbersome. In this paper all 

computation are carried out using MATLAB® symbolic software package. 

No new displacement d.o.f. are incorporated during these operations, since symbolic calculus  
finds all expressions of 1xA … znA  in terms of the initially chosen d.o.f. 0u , 0v , 0w , 0

xγ , 0
yγ  and of their 

derivatives. 

2.3. Zigzag Piecewise Contribution Δc 

The expressions of the piecewise terms Δc, which constitutes the zigzag contributions, are chosen  

as follows: 
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These terms are aimed at a priori fulfilling the continuity of interlaminar stresses at the material 

interfaces, since they make the displacements continuous and with appropriate discontinuous 

derivatives in the thickness direction at the interfaces of physical and computational layers. In details, 

the two zigzag contributions Φx
k, Φy

k are incorporated in order to satisfy: 

( ) ( )

( ) ( )

| |

| |

k k

k k

xz xzz z

yz yzz z

σ σ

σ σ
+ −

+ −

=

=
 (10)

The two zigzag contributions Ψk, Ωk are computed by enforcing: 

( ) ( )

( ) ( ), ,

| |

| |

k k

k k

z zz z

z z z zz z

σ σ

σ σ
+ −

+ −

=

=
 (11)

which directly derive from the local equilibrium equations as a consequence of the continuity of 

transverse shear stresses. 

The functions Cu
k, Cv

k and Cw
k are incorporated for making continuous the displacements at the 

points across the thickness where the representation is varied. Thus, their expressions in terms of the 

d.o.f. and of their derivatives are obtained at each interface of computational layers enforcing: 

( ) ( )     −+ =
zz kk

uu  

(12)( ) ( )  −+ =
zz kk

vv  

( ) ( )  −+ =
zz kk

ww  

Like for Δi, in this case all the expressions of the continuity functions appearing in  

Equation (12) are also derived at each interface once for all using symbolic calculus, still being  

rather intricate expressions to manipulate. 

2.4. Variable In-Plane Representation Δc_ip 

In order to treat cases with material properties and/or lay-up that suddenly change moving along  

x or y, as it occurs using patches of different materials and across adherends and overlap of bonded 

joints, in this paper differently to [55] it is supposed that the in-plane representation of displacements 

can vary. Such a variable representation is also necessary for treating different boundary conditions at 

different edges under the same analytical model. 

The piecewise contributions Δc_ip are incorporated in order to make continuous the stresses and their 

gradients up the desired order at the interfaces of the regions where the in-plane representation is 
changed, which are here indicated as Θm. Notice that the d.o.f. 0u , 0v , 0w , 0

xγ , 0
yγ  formerly 
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incorporated as the basic terms in Equation (2) already serve the purpose of making continuous the 

displacements u, v, w at Θm. 

Because, in general, a different number of layers with different thickness and material properties 

could be found at Θm, the stress continuity should be enforced layer by layer at the right interfaces  

S subdividing each physical layer in the right number of computational layers till the subdivisions 

match at the two sides of Θm (see, e.g., Figure 1b). 

Contributions Δc_ip to the displacements of the following type are incorporated in this paper: 

_

1 1 1 1

2 2

1 1 1 1

_

1 1 1 1

1

( , )( ) ( , )( )

( , )( ) ( , )( ) ...

( , )( ) ( , )( )

S T S T
c ip j k j k

u x k k u y k k
j k j k

S T S T
j k j k

u x k k u y k k
j k j k

S T S T
c ip j k j k

v x k k v y k k
j k j k

T
j

v x
k

U x y x x H x y y y H

x y x x H x y y y H

V x y x x H x y y y H

θ θ

λ λ

θ θ

λ

= = = =

= = = =

= = = =

=

= − + − +

− + − +

= − + − +

 

 

 

 2 2

1 1 1

( , )( ) ( , )( ) ...
S S T

k j k
k k v y k k

j j k

x y x x H x y y y Hλ
= = =

− + − + 

 

(13)

where the summations are carried out at the S interfaces mentioned above and the exponent of 
n

kxx )( − , n
kyy )( −  is chosen in order to make continuous the stress gradient of order n. For example, 

the continuity conditions ( ) ( )| |k kxx xxx x
σ σ

+ −
= , ( ) ( )| |k kyy yyx x

σ σ
+ −
= , ( ) ( )| |k kzz zzx x

σ σ
+ −
=  require just terms 

)( kxx − , while the continuity of gradients −+ = xx k
xxx

k
xxx

)(
,

)(
, || σσ , −+ = xx k

xyy
k

xyy
)(

,

)(

,
|| σσ , 

−+ = xx k
xzz

k
xzz

)(
,

)(
, || σσ  requires 2)( kxx −  and so on for higher-order gradients. Here the case of 

properties varying along x  is treated because just terms ( )kx x− … n
kxx )( −  are considered.  

Of course, when properties contemporaneously vary along y, terms )( kyy − … n
kyy )( −  should also 

be considered. 

Thanks to its region-to-region variable representation, the present model can treat problems usually 

treatable only by a finite element scheme, becoming much more versatile than standard analytical 

models with a fixed representation. 

As examples of the physical constraints that could be enforced, it is mentioned the case of clamped 

edges, for which equivalent single-layer models predict poor results because they are unable to account 

for a non-vanishing transverse shear while the three mid-plane displacements and the two shear 

rotations must vanish. In addition, of practical interest is the case of adhesively bonded joints with 

laminated adherends, which can be studied with the present displacement-based model, obtaining 

results as accurate as those obtained by the stress based models customarily used. 

Applications to test cases (see, e.g., [53,55–58,71]) have proven that the present model can be used 

elsewhere, no special models being required for treating local geometry, loading and material 

variations. An applications to bonded joints having already been presented in [71], in the numerical 

applications a sample case with clamped edges (Tessler, Di Sciuva and Gherlone [72]) will be 

considered in order to show how non-classical boundary conditions can be easily satisfied. 

However, the enforcement of all the physical constraints discussed above brings derivatives of the 

d.o.f. that are unwise for developing a finite element model, as discussed in the introductory section. 

Accordingly, a technique able to convert derivatives of any degree is developed and numerically 

assessed in the next sections, in order to give rise to a C0 equivalent model. 
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2.5. Equivalent C0 Model 

The structural model of the former section is referred hereafter as the original model (OM), while its 

equivalent C0 counterpart here developed as a refinement of the strain energy updating technique [53,54] 

is referred as the equivalent model (EM). 

All the quantities that refer to OM are indicated with the superscript OM, while those referring to EM 

with the superscript EM. Therefore throughout this section the displacements appearing in Equation (1) 
are indicated as OMzyxu ),,( , OMzyxv ),,( , ( , , )OMw x y z  (in compact form OM∀ ), while their counterparts 

obtained by the updating technique, which represent the equivalent C0 model, are indicated as 
EMzyxu ),,( , EMzyxv ),,( , ( , , )EMw x y z  (in compact form EM∀ ). In a similar way, the strain energy of 

the model OM is indicated as SEOM, that of model EM as SEEM, and so on for all the other quantities. 

The purpose of the strain energy updating technique (SEUPT) is to derive a modified expression 
EM∀  of displacements free from derivative of the d.o.f. through the energy balance, which makes 

equal strain energy, work of inertial forces and work of external forces of models OM and EM.  

The present refined version of SEUPT, whose peculiar features are discussed forward in this section, is 

developed with the purpose to be employed to construct computationally efficient finite elements with 

just the nodal d.o.f. of conventional shear-deformable plate elements and the predictive capability of 

layerwise plate elements. 

It is postulated that the displacement field OM∀ , can be expressed in a rearranged form 

),,(),,(),,( zyxzyxzyxEM ∪∅ ∀+=∀∀  (14)

as the sum of expressions ∅∀  that are just functions of the d.o.f. and expressions ∪∀  containing the 

derivatives of the d.o.f. 

The steps for obtaining the model EM from the model OM are the following ones (see the flow 

chart of Figure 2 for a synthesis). 

1) First, it is postulated that each derivative of the d.o.f appearing in ∪∀  can be replaced by 

incorporating corrective terms 0uΔ , 0vΔ , 0wΔ , 0
xγΔ , 0

yγΔ  in ∅∀ , whose appropriate 

expressions will be derived from the energy balance. These corrective terms summed to each 
d.o.f. 0u , 0v , 0w , 0

xγ , 0
yγ , represent the variables of the equivalent model * 0u , * 0v , * 0w , 

* 0
xγ , * 0

yγ  free from derivatives: 

000* uuu Δ+= ; 

(15)

000* vvv Δ+= ; 

000* www Δ+= ; 

000*
xxx γγγ Δ+= ; 

000*
yyy γγγ Δ+=  
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Figure 2. Stages of the procedure employed to obtain the equivalent C0 model. 

The appropriate expressions of the corrective terms will be obtained through the energy 

balance δ E|(.)  = 0, which consists of the following contributions: 

(.) | (.) | (.) | (.) | 0E Λi Λ f Λmδ δ δ δ= − + =     (16)

which represent respectively the strain energy 

{ } { }1
(.) |

2

T

Λi ij ij

V

dVσ ε=   (16)i

the work of external forces 

(.) |Λ f i i i i

V S

b u dV t u dS= +    
(16)ii

and the work of inertial forces 

..

(.) | iΛm i

V

u u dVρ= −   (16)iii

as described forward. The symbols { }ijσ  and { }ijε  represent the strain and stress vectors, 

respectively, ib  represents the body forces, it  the surface forces, ρ  is the density and iu  are the 

displacements given by Equation (1) that are work conjugated to these forces of the OM model, 

or their counterparts of the EM model. 
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The previous equations giving the energy contributions are written in implicit form because 

their explicit form, which can be obtained in a straightforward, standard way substituting the 

expression of displacements of the model, cannot be reported being too lengthy. 

The expressions of the energy contributions Equations (16)i to (16)iii contain derivatives of 

the displacement field variables that can be removed integrating by parts. Thus the energy 

balance Equation (16) can be split into five independent balance equations, one for each 

primary variable: 
0

(.) | 0
u

Eδ  =  ; 

(16)iv

0

(.) | 0
v

Eδ  =  ; 

0

(.) | 0
w

Eδ  =  ; 

0

(.) | 0
x

E

γ
δ  =  ; 

0

(.) | 0
y

E

γ
δ  =   

The previous symbols represent the energy contributions of the OM model. Their 
counterparts of the model EM are obtained substituting 0u , 0v , 0w , 0

xγ , 0
yγ  with 0u , * 0v , * 0w , 

* 0
xγ , * 0

yγ . 

2) Once these five balance equations are written, they are used for obtaining the expressions of the 

five corrective terms 0uΔ , 0vΔ , 0wΔ , 0
xγΔ , 0

yγΔ  in a straightforward way. Indeed, each 

balance Equation (16)iv should be either satisfied separately by the OM and EM models, or be 

used in order to equate separately the energy of each of the five contributions of the two models 

given by Equation (16)iv under spatial distributions of the functional d.o.f. for the  
two problems, i.e., 0u , 0v , 0w , 0

xγ , 0
yγ  and 0u , * 0v , * 0

xw , * 0
xγ , * 0

yγ , respectively, under the 

same loading and boundary conditions. This constitutes the basic idea of SEUPT introduced  

in [51–54]. The difference is that the current version obtains once for all a closed form solution, 

thus it is no longer confined to the role of being a post-processing tool for improving the results 

of a finite element analysis carried out by standard shear-deformable elements, as the former 

version. The reason is that instead of using a spline interpolation of the nodal results, here  

an analytical general expression of the d.o.f. is used, as discussed forward, that enables 

obtainment of a solution in closed form, which can be used for developing C0 finite elements. 

Each of the five expressions obtained equating the energy contributions Equation (16)iv of the 

two models is here represented in implicit form as: 

mΛfΛiΛEmΛfΛiΛE |)(|)(|)(|)(|)(|)(|)(|)( ****  Ψ−Ψ−Ψ=Ψ=Ψ−Ψ−Ψ=Ψ  (17)

The five independent Equations (17) obtained from the energy balance can be used to 

compute the five unknowns 0uΔ , 0vΔ , 0wΔ , 0
xγΔ , 0

yγΔ  that define the updated displacement 

fields * 0u , * 0v , * 0
xw , * 0

xγ , * 0
yγ  of the C0 model equivalent model EM. 
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• The current version of SEUPT just requires to determine the expressions of the unknowns 
0uΔ , 0vΔ , 0wΔ , 0

xγΔ , 0
yγΔ  once for all in closed form, instead of the numerical form 

used in [51–54]. As a result, the solution can be obtained in closed form and automatically 

using symbolic calculus. Since a direct solution instead of an iterative one is obtained, the 

processing time is speeded up with respect to the former version of SEUPT, which already 

appeared quite computationally efficient. 

In order to find a solution from Equation (17), it is necessary to postulate how the d.o.f. 

vary in (x, y). Of course, when the solution of the structural problem can be found in closed 

form using trial functions defined over the whole domain, these functions can also be used 

for solving the updating problem. By this viewpoint, the trigonometric expansions 

considered in the sample cases reported in the numerical applications could be used. 

However it should be considered that in this case there is no need of removing the 

derivatives of the d.o.f., as they do not affect efficiency of the solving system. On the 

contrary, when the solution is found using a finite element scheme, the equivalent model 

EM is necessary to avoid use of inefficient high-order interpolation functions and displacement 

derivatives as nodal d.o.f. The present version of SEUPT is developed with the aim of 

being employed to create finite elements with just the nodal d.o.f. of classical efficient C0 

shear deformable plate elements and the predictive capability of layerwise models. 

• Assume that the domain Ω is decomposed into subdomains, irrespectively of whether the 

problem will be solved by an analytic approach or via finite elements. In order to obtain 

from SEUPT a closed form solution once for all, an appropriate expression of the d.o.f. 

variation over a generic subdomain Ω* should be postulated, which allow a general 

solution in closed form. Though the numerical assessments will concern sample cases 

taken from the literature for which the solution can be found in closed form, in order to 

have the possibility to compare the solution of the OM and EM models free from errors 

inherent to the finite element scheme, here higher-order Hermite polynomials are 

considered. The order of these polynomials, which constitute the interpolation scheme 

employed to develop a conforming element from the model OM is determined by the order 

of derivation of each d.o.f. that is contained in the strain energy integral, which depends on 

the physical constraints enforced. Using these polynomials enables the continuity of the 

d.o.f. and of their derivatives till to the desired order at the bounds of the subdomains Ω*, 

so a regular solution is obtained in Ω by superposition. For example, a third-order 

expansion of the in-plane displacements and a fourth-order one for the transverse displacement 

give rise to third-order derivatives of the d.o.f. by the present model Equation (1) which 

requires a C2 continuity. Thus the d.o.f. should be expressed as the product of 5th order 

Hermite polynomials in x and y. Higher-order polynomials are required to ensure the 

continuity of stress gradients at the interfaces when an in-plane variable representation of 

the d.o.f. is assumed. The representation through Hermite polynomials constitutes the 

indefinite general solution of OM and EM irrespectively of the loading and boundary 

conditions, and it replaces the spline interpolation of finite element results for each specific 



Aerospace 2015, 2 651 

 

 

case employed in the former version of SEUPT. Each d.o.f., represented by the symbol ℘, 

is expanded as the sum of Hermite’s polynomials iΗρ  in x and y as follows: 

4 4 4
, ,

, ,
1 1 1

4 4 4
, , ,

, , ,
1 1 1

.....

x y
i i i i x i i y

i i i

xx xy yy
i i xx i i xy i i yy

i i i

℘ ℘ ℘

= = =

℘ ℘ ℘

= = =

℘= Η ℘ + Η ℘ + Η ℘ +

+ Η ℘ + Η ℘ + Η ℘ +

  

  
 (18)

the index i  having been used to indicate the nodal values of ℘, i.e., the values assumed at 

the vertices of the square sub-region Ω*, while the symbol ρ  has been used to indicate the 

specific polynomial related to a specific derivative of the d.o.f. xi,℘ , yi,℘ , xxi,℘ . Thus, the 

representation is continuous and has continuous derivatives inside Ω* and on its bound. 

Explicit terms have been reported only up to the second order of derivation, but additional 

similar terms can be included for obtaining the continuity also of higher-order derivatives. 

• Equating the energy of the OM model to that of the EM model corresponding to the 

representation Equation (18), the final expression of 0uΔ , 0vΔ , 0wΔ , 0
xγΔ , 0

yγΔ  is 

obtained in closed form using symbolic calculus. This solution represents the C0 version of 
the model OM, since the arbitrary nodal values i℘ , xi,℘ , yi,℘ , xxi,℘    of the d.o.f. (i.e.,  

the values assumed at the vertices of the square sub-region Ω*) are converted into the 
equivalent ones form the standpoint of energy i*℘  that do not contain derivatives. 

As concluding observations, it is remarked that: (i) instead of defining each derivative of the d.o.f. 

itself as a new d.o.f., like it occurs with available techniques developed for achieving a C0 formulation, 

with the present technique the number of d.o.f. is kept fixed to five; (ii) being based on the search of an 

updated version of the functional d.o.f. free from derivatives that is equivalent by the energy 

standpoint to its consistent counterpart with derivatives, the current version of SEUPT can be used not 

only with the present structural model, but instead it can be used for updating any other model; and  

(iii) it is a useful technique in particular when the physical constraints concern stress gradients, since 

high order derivatives of the d.o.f are involved, that give rise to a large number of additional functional 

d.o.f. for achieving a C0 formulation with the other techniques. 

3. Numerical Applications and Discussion 

Numerical assessments will be presented with the aim of showing whether the present version of 

SEUPT provides an effective way for obtaining the EM C0 equivalent version of the zigzag model  

OM [55], without losing accuracy. It is reminded that in [55] this model has been already proven to be 

accurate and computationally efficient when closed form solutions are considered, since it achieves the 

accuracy of layerwise models with just five d.o.f. Therefore, the aim of present numerical results is 

neither that of: 

a) discussing the advantages of the zigzag modeling approach here used, nor discussing the 

advantages offered by its variable kinematics, as both aspects have been already 

comprehensively overviewed in [43,51–56]; 
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b) nor discussing the relative merits of a physically-based zigzag representation like the present 

one over the Murakami’s zigzag function just based upon kinematic assumptions, because both 

modeling options have been already compared and extensively discussed in [17]; 

c) finally, nor comparing the available displacement-based and mixed theories incorporating  

zigzag functions to other existing models and nor to discuss their fidelity to 3D exact elasticity 

or finite element solutions, since assessments were already given among many others in the 

references quoted in [17] that have shown their value. 

Instead, the aim is just: 

d) to assess the accuracy of the C0 equivalent EM model comparing its predictions to those of the 

OM model. 

To reach this goal, as benchmark test cases multi-layered beams with simply-supported edges in 

cylindrical bending under sinusoidal transverse distributed loading are considered, which simulate 

laminated and sandwich beams with laminated faces. These apparently quite unrealistic test cases, 

owing to their loading and boundary conditions, are considered because the exact 3D elasticity solution 

is available, then it can be used as a reliable reference solution for comparing the predictions of EM 

and OM models. To this reason, these test cases are often considered in literature by researchers who 

assess the accuracy of available theories. Thus, in addition to exact results, also a large amount of 

approximate results by a variety of models is available for comparisons. Interest to these cases is also 

due to the possibility of obtaining results in closed form by the EM and OM models as Navier’s 

solutions, which do not suffer from round-off and discretization errors intrinsic of numerical solutions 

like finite elements. It could be observed that when analytical solutions can be found, as for the test 

cases here considered, there is no need of C0 models because the derivatives of the d.o.f. do not 

represent a drawback for this type of solution, while they are for finite elements. Thereby, analytical 

results by the EM model seam apparently meaningless, but instead they represent a necessary 

preliminary stage because before developing finite elements, the capability of the EM equivalent C0 

model of preserving features and advantages of the OM model should be assessed. 

The comparison between EM and OM models is extended also to damaged sandwich beams. The damage 

is simulated reducing the elastic moduli, according to the ply discount theory. Simply-supported, 

sandwich beams with damaged faces and/or core, undergoing sinusoidal transverse loading are 

considered and, in addition, the damage is assumed to be distributed over the entire length, because in 

this case the exact elasticity solution can be still found [43] and used for comparisons. Owing to the 

reduction of elastic moduli used for simulating the damage rise, intricate through-the-thickness 

distributions of out-of-plane stresses take place as a consequence of asymmetric, distinctly different 

properties, which make the samples considered a very severe test case for the models. 

Further objective is to assess whether the EM model preserves the accuracy of his counterpart OM 

model when variables stiffness properties are treated. Previous studies (see, e.g., [53,55–58,71]) have 

proven that the OM model is able to accurately and efficiently treat local geometry, loading and material 

variations. In particular, a successful application to adhesively bonded joints was presented in [71]  

that demonstrated its capability of satisfying the quite complex stress-boundary conditions at the end 

of the overlap. 
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In order to show that the model EM preserves the capabilities of the OM model, an application will 

be presented to a laminate made of different constituent materials that requires a variable representation 

of the displacements. This case will show how the EM model can be used to efficiently convert all the 

d.o.f. derivatives consequent to the enforcement of the stress boundary conditions that are necessary 

for obtaining smooth solutions. As a further application, laminates incorporating curvilinear paths of 

fibers are considered. The sample cases presented in [56] and [58] using the OM model, which were 

obtained as the result of an optimization process aimed at finding the orientation at any point that 

minimizes the out-of-plane stresses at the critical interfaces, while maximizing the bending stiffness, are 

retaken in order to show the effectiveness of the equivalent EM model also in this case of practical interest. 

As further assessment, the case of a cantilever beam will be considered in order to show  

how the EM model likewise the OM model can treat boundary conditions of practical interest that are 

difficult to satisfy. 

3.1. Simply-Supported Edges and Sinusoidal Loading 

As a preliminary assessment it is considered the simply supported <0°/90°/0°> laminated square 

plate analyzed in [14,61] and customarily considered as benchmark by many researchers. The constituent 

material has the following mechanical properties: EL/ET = 25; GLT/ET = 0.5; GTT/ET = 0.2; υLT = 0.25 

each layer has the thickness equal to h/3. Different length to thickness ratios are considered in Table 1 

where the stress field and the transverse displacement are reported normalized as follows: 
2 2 2

0 2 0 2 0

3

0 0 4 0

L LL L
, , , , 0,0,

2 2 2 L 2 2 6 L 2 L

L LL L 100
0, ,0 ,0,0 , ,0
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y yx x
xx yy xyxx yy xy

x x x

y yx x T
xz yzxz yz

x x x

h h h h h h

p p p

E hh h
w w

p p L p

σ σ σ σ σ σ

σ σ σ σ

     = = =     
    

    = = =    
    

 (19)

The numerical results of Table 1 show that the EM model is accurate and it does not suffer  

from locking. 

Table 1. Non-dimensional deflection and stresses of simply supported laminated 

<0°/90°/0°> plate under bi-sinusoidal loading. 

Lx
Ly

h

x

yz

Lx/h Model w  xxσ  yyσ  xyσ  xzσ  yzσ  

4 

Exact [14] 2.006 0.755 0.556 0.0505 0.282 0.217 

Ref. [61] 1.9597 0.7819 0.5195 0.051 0.2335 0.1885 

EM present 1.9988 0.761 0.549 0.0508 0.275 0.212 

10 

Exact [14] 0.7405 0.59 0.288 0.0289 0.357 0.123 

Ref. [61] 0.7316 0.596 0.2792 0.0288 0.3094 0.107 

EM present 0.7402 0.591 0.285 0.0289 0.359 0.120 
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Table 1. Cont. 

Lx/h Model w  xxσ  yyσ  xyσ  xzσ  yzσ  

20 

Exact [14] – 0.552 0.2115 0.0234 0.385 0.094 

Ref. [61] 0.5098 0.558 0.2088 0.0234 0.3286 0.084 

EM present 0.5105 0.553 0.2110 0.0234 0.382 0.090 

50 

Exact [14] – 0.541 0.185 0.0216 0.393 0.084 

Ref. [61] 0.4439 0.5465 0.186 0.0218 0.3347 0.0766 

EM present 0.4451 0.542 0.185 0.0216 0.390 0.085 

100 

Exact [14] 0.4347 0.539 0.181 0.0213 0.3947 0.083 

Ref. [61] 0.4343 0.5448 0.182 0.0215 0.3355 0.0755 

EM present 0.4346 0.538 0.181 0.0213 0.3949 0.083 

3.2. Asymmetrical Cross-Ply Beam 

As a subsequent test, it is considered the <0°/90°/0°/90°> asymmetrical cross-ply beam formerly 

analyzed in [43,60] having layers of equal thickness (0.25h/0.25h/0.25h/0.25h) and the mechanical 

properties of the constituent material equal to those of the previous case. Because the lay-up is 

asymmetrical, this sample case is suited to investigate whether the EM model provides accurate 

results, the stress fields being strongly asymmetrical too. 

A length-to-thickness ratio of four being considered, which give rise to strong layerwise effects, 

several points should be considered across the thickness, in order to obtain accurate stress prediction 

from constitutive equations. This means that high-order terms should be considered in order to allow 

their coefficients to be determined by enforcing the indefinite equilibrium equations at some points 

across the thickness. 

As already mentioned above, these results refer to an extremely thick case with a length-to-thickness 

ratio (Lx/h = S) of 4 and simply-supported edges, undergoing a sinusoidal distributed transverse loading 









=

=

x
L

m
Pxp

x

M

m
m

π
sin)(

1

0  (20)

Like in [43] and [60], in the present case, just a single component of the load, i.e., M = 1 in  

Equation (20); is considered. Solution to this case is assumed as a series expansion as follow: 

0 0 0

1 1 1

( , ) cos ( , ) sin ( , ) cos
M M M

m m x m
m m mx x x

m m m
u x y A x w x y C x x y D x

L L L

π π πγ
= = =

     
= = =     

     
    (21)
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Figure 3. Exact solution and through-the-thickness distribution of: (a) normalized 

transverse shear stress; and (b) normalized in-plane displacement by the OM Model [55] 

and by the present EM Model for a laminated beam. 
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The trigonometric functions Equation (21) are chosen because they satisfy the simply-supported 
kinematic boundary constraint conditions 00

,
0 == xww , whereas Am, Cm and Dm constitute the unknown 

amplitudes. Once substituted in the governing equations, obtained applying the Rayleigh-Ritz method in 

standard form, the unknown amplitudes are computed in a straightforward way solving an algebraic 

problem. The results of Figure 3 have been computed considering M = 6 in Equation (21) and choosing 

a third order expansion of the in-plane displacement, a fourth-order expansion of the transverse 

displacement and a single computational layer for discretizing each physical layer. However, 

satisfactory results could even be obtained with M = 1, as shown by the results of numerical test here 

not reported. For what concerns the computational time, the analysis with the model [55] takes 3.96 s, 

while 4.01 s are required if the analysis is performed using the present EM model and 3.8 s are required 

when carrying out the analysis with FSDPT. It could be observed that the memory storage dimension 

is minimal, being almost the same of the FSDPT model, and that the processing time is also 

comparable, though an accurate 3D solution is obtained. It is reminded that nevertheless four different 

computational layers are considered, the number of functional d.o.f of the model does not increase.  

In the present case they are just three, like for the FSDPT model, since no variation rise in the y 

direction. Of course, the overall number of d.o.f., i.e., the dimension of the algebraic system depends 

upon the expansion order chosen in Equation (21). In the present case it corresponds to a 18 × 18 

system, having chosen M = 6, while with M = 1 it corresponds just to a 3 × 3 system. 

The results of Figure 3 are reported in the following normalized form: 

( ) ( )
0 0 0 0 0

L L L
, , ,

0, 0,2 2 2
x x x

xx xx
xz

xz xx zz

z z w z
z u z

u w
p p p hp p

σ σσ
σ σ σ

     
     
     = = = = =  (22)

Figure 3a represents the through-the-thickness variation of the shear stress xzσ  predicted by the OM 

model [55] and by its equivalent C0 counterpart EM, compared to the exact solution found in [43] and [60] 

applying the Pagano’s method [13]. While Figure 3b represents the through-the-thickness variation of 

the in-plane displacement u  by the OM and the EM models and by [43] and [60]. These results show 

that the predictions of models OM and EM are in good agreement each and with the exact solution, 

thus demonstrating the effectiveness of the present technique in obtaining an equivalent C0 model.  

It should be observed that the results of Figure 3a are obtained directly from constitutive equations, 

thus as already shown in [55], no post-processing techniques are required to obtain accurate results, as 

confirmed by the correct variation of the displacements of Figure 3b. Note that the deviation between 

EM, OM and exact solution are more evident in the second layer, where the layerwise effects are 

stronger. This error could be reduced by further refining the representation of EM and OM through 

terms Equation (3). However, since deviations are lower than 5%, no refinements are adopted here, in 

order to keep lower computational effort. 

3.3. Sandwich Beam 

Now the sample case of a sandwich beam with asymmetrical properties is considered, in order to 

assess the quality of results provided by the EM model when the properties of the constituent layers are 

distinctly different. 



Aerospace 2015, 2 657 

 

 

It is here retaken the same sample case already considered in [43], for which the exact 3D elasticity 

solution was obtained again applying the technique [13]. Four constituent materials are considered, 

that are here indicated as MAT1 to MAT4, whose properties are reported hereafter. The face layers are 

made of materials MAT1 to MAT3, while the core is made of material MAT4. Thus, the sandwich 

beam is viewed as a 11-layer beam, having each face made of five layers, the lay-up sequence being 

chosen as (MAT 1/2/3/1/3/4)s, with the following thickness ratios of the constituent layers 

(0.010/0.025/0.015/0.020/0.030/0.4)s. 

According to [43], the following mechanical properties are chosen: E1 = E3 = 1 GPa, G13 = 0.2 GPa, 

υ13 = 0.25; MAT 2: E1 = 33 GPa, E3 = 1 GPa, G13 = 0.8 GPa, υ13 = 0.25; MAT 3: E1 = 25 GPa,  

E3 = 1 GPa, G13 = 0.5 GPa, υ13 = 0.25; MAT 4: E1 = E3 = 0.05 GPa, G13 = 0.0217 GPa, υ13 = 0.15.  

As it can be seen from these data, MAT1 is a rather compliant material, as compared to others, having 

weak properties in tension, compression and shear, MAT2 has high stiffness properties, MAT3 is stiff 

in tension and compression, but rather compliant in shear, while MAT4 as usual for core is very 

compliant. In this case, a length-to-thickness ratio (Lx/h = S) of 4 is also considered. 

The loading and boundary conditions, the series expansion used for representing the displacements 

Equation (21) and the normalization Equation (22) are still used. 

Exact solution [43] demonstrated that if the elastic moduli E3 of the core and of the upper face 

layers are reduced by a factor 10−2, strong layerwise effects rise due to asymmetry of properties and 

different moduli of adjacent constituent layers, thus making the out-of-plane stresses of this sample 

case difficult to capture. In particular, xzσ  shows an opposite behavior at the upper and lower face, 

which can be captured only if the models can be locally refined, e.g., by changing their representation 

across the thickness. Reduction of E3 implies a relevant increase of xzσ  in the upper face and in  

a region of the core close to it, while it decreases and changes sign at the lower face. Thus in order to 

treat this case, the models should be able to capture sudden variations. The results for this case 

obtained using the present structural model are reported in Figure 4 along with the exact solution. 
The results of Figure 4d, showing a strong variation across the thickness of w , point out that 

sandwiches require an accurate modeling of the transverse normal stress and deformation through  

a detailed description of the piecewise variation of the transverse displacement. The displacement of 

Figure 4c also shows that the Murakami’s zigzag function [49] based upon kinematic assumptions 

cannot appropriately represent the solution for this case, as the slope does not necessarily reverse at 

each interface, as shown by the exact solution. Thus, this could represent a further case where  

a physically based zigzag function should give better estimates, in addition to those discussed in [44]. 

Note that deviations between EM, OM and exact solution are more evident in the core of the in-plane 

displacement, where the relatively poor mechanical properties of MAT4 enhance the deformability of 

the structure. As discussed above for Figure 3a, this error could be reduced by further refining the 

representation of EM and OM through terms Equation (3). However, also for this case, no refinements 

are adopted here, in order to keep lower the computational effort, considering that deviations are still 

lower than 5%. 



Aerospace 2015, 2 658 

 

 

 

 

Figure 4. Cont. 



Aerospace 2015, 2 659 

 

 

 

 

Figure 4. Exact solution and through-the-thickness distribution of: (a) normalized 

transverse shear stress; (b) normalized transverse stress; (c) normalized in-plane 

displacement; and (d) normalized transverse displacement by the OM Model [55] and by 

the present EM model for a sandwich beam with damaged upper face. 
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It can be seen from the results of Figure 4 that the equivalent C0 EM model gives as accurate results 

as the OM model also when the elastic modulus E3 is reduced and, as a consequence, strong layerwise 

effects rise. In particular both models are shown to accurately predict the interlaminar stresses directly 

from constitutive equations even when the variations are rather intricate. The success of the EM model 

of this paper shows that a C0 equivalent formulation can be obtained by SEUPT in order to overcome 

the derivatives of the d.o.f. that follows from the enforcements of the physical constraints inside any 

zigzag model. 

3.4. Kinematics and Physically-Based Zigzag Functions 

The test carried out in the previous section using a reduced E3 shows how the distributions of 

displacements and stresses can vary changing the properties of layers. This fact suggests that it could 

be quite hard to find appropriate a priori kinematic assumptions of general validity for the zigzag 

functions, while an always appropriate representation can be obtained with physically based zigzag 

functions like those employed for the OM and EM models. A further comparison among 

kinematically-based or physically-based zigzag functions is given next studying another test case. 

Consider the sample case analyzed by Brischetto, Carrera and Demasi in [73] dealing with a simply 

supported rectangular sandwich plate with a length to thickness ratio Lx/h = 4 and a length-side ratio 

Ly/Lx = 3 undergoing bi-sinusoidal loading. The two skins, which have a different thickness the ratios 

of upper (symbol us) and lower (symbol ls) faces and core (symbol c) being respectively hls = h/10;  

hus = 2h/10; hc = 7h/10 with respect to the thickness h of the plate, are made of different material. The 

constituent materials have the following mechanical properties: Els/Eus = 5/4, Els/Ec = 105, νls = νus = νc 

= ν = 0.34. Owing to these asymmetrical, distinctly different geometric and material properties and to the 

high thickness ratio as well, strong layerwise effects rise making this sample case another severe test 

for the EM model. In addition, this model is of interest because the behavior of the physically based 

zigzag functions of the EM model can be compared with that of kinematic-based zigzag functions. 

Figure 5 shows the comparison between the exact solutions for this test case presented in [73] and 

the numerical results for this case predicted by the EM model and the model considered in [73], which 

on the contrary of the EM model is based on use of Murakami’s zigzag function and a seventh order 

through-the-thickness representation. In Figure 5a the variation of the transverse shear stress across the 

thickness is reported, while in Figure 5b the variation of the in-plane displacement is given. According 

to [73], these physical quantities are normalized as follows: 
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It can be seen that also for this case the EM model gives results always in a very good agreement 

with the exact 3D solution at any point, with the right gradients at the interfaces. Therefore it is 

confirmed that an accurate, equivalent C0 model can be constructed via SEUPT. As a measure of its 

efficiency, the processing time should be considered. To this regard it is reported that the entire 

process for the construction of the model, the computation of all coefficients and of continuity 

functions and for solution required just 6.028 s on a laptop computer. 
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As a reference result, the overall processing time required by the FSDT standard shear deformable 

model of 3.1 s on the same computer is reported. However it should be considered that the FSDT 

model that required a half of the time obtains totally wrong results, as it predicts a linear variation of 

the in-plane displacement and a piecewise linear, e.g., discontinuous and thus wrong transverse shear 

stress. No considerably better results are obtained for this stress when it is computed by integrating the 

local differential equilibrium equations. In this latter case the processing time was 4.06 s, thus close to 

that of the EM that on the contrary of the FSDT model always provides accurate results. 

Lx
Ly

h

x

yz

 

Figure 5. Exact solution and through-the-thickness distribution of: (a) normalized 

transverse shear stress and (b) normalized in-plane displacement by the model [73] and by 

the present EM model for a sandwich plate. 
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It is seen by the comparison with the reference solution [73] obtained using the Murakami’s zigzag 

function, that the physically-based zigzag function by the EM model provides much more accurate 

results for the variation of the in-plane displacement across the thickness and only a little more 

accurate prediction of the shear stress, the reference model being already accurate for this quantity. 

This result confirms that in some cases physically-based zigzag functions can be much accurate 

than their kinematics-based counterparts, as already focused in [44], though the operations for 

developing models are much laborious and involve unwise derivatives of the displacements d.o.f. 

Because the EM model was shown to be accurate and efficient, SEUPT can be seen as a reliable tool 

for obtaining a C0 model with physically-based zigzag functions suited for development of finite elements. 

3.5. Clamped Edges 

Because a distinctive feature of the OM model consists in the possibility of enforcing a non-vanishing 

transverse shear at clamped edges, where the mid-plane displacements and shear rotations must vanish, 

it should be tested whether this capability is preserved by the EM equivalent model. It could be noticed 

that once displacements and shear rotations are enforced to vanish within conventional models having 

the mid-plane displacements and shear rotations as functional d.o.f., a vanishing transverse shear is 

obtained that gives rise to poor results. On the contrary, the OM model can correctly enforce these 

boundary conditions because contributions Δi and Δc_ip can be determined by enforcing any desired set 

of boundary conditions, the coefficients appearing in these terms being computed through the 

enforcement of the desired conditions. 

It is worthwhile to mention that the accuracy of the OM model in treating non-classical boundary 

conditions was already shown in [71], considering a plate with a length to thickness ratio (Lx/h) of 5, 

that is simply supported on two opposite edges, clamped on the other two and it is undergoing  

a bi-sinusoidal normal load with intensity p0 on the upper face, whereas the bottom one is traction free. 

In order to assess whether the equivalent C0 EM model can accurately describe the stress field with 

clamped edges, the cantilevered sandwich beam subjected to a uniform transverse loading of [72] is 

considered. It has the faces made of unidirectional Carbon-Epoxy laminates (E1 = 157.9 GPa,  

E2 = E3 = 9.584 GPa, G12 = G13 = 5.930 GPa, G23 = 3.277 GPa, ν12 = ν13 = 0.32, ν23 = 0.49) and a PVC 

foam core (E = 0.1040 GPa, ν = 0.3) and a length-to-thickness ratio of 10, the thickness ratios of the 

constituent layers being 0.1h/0.8h/0.1h. 

According to [72] the trial functions for the displacement d.o.f. are represented as products of 

orthogonal one-dimensional Gram–Schmidt polynomial in the x and y directions: 

1 1

d( , ) ( ) (y)
M N

mn m n
m n

x y xχ
= =

= ℘ ℵ  (24)

where d is the generic d.o.f. (i.e., {d} = {u0, v0, w0, γx
0, γy

0}), mn℘  are the unknown amplitude 

coefficients to be determined using the Rayleigh–Ritz method. According to [72], the summations are 

truncated at M = 7. The polynomials are as follow: 
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Figure 6 reports the through-the-thickness distribution of the transverse shear stress, which is 

normalized as follows: 

0

2
, ,

5 2
yx

xz xz
x

LLh
z

L p
σ σ  

=  
 

 (27)

 

Figure 6. Normalized transverse shear stress by the present EM Model and by the 3D  

FEM [72] for a cantilever beam. 
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Please notice that the results by the EM model are obtained employing three computational layers 

and enforcing the local equilibrium conditions at (−0.43h; −0.22h; −0.14h; 0; 0.09h; 0.23h; 0.44h). 

The results show the OM model accurately predicts the through-the-thickness variation of the 

transverse shear stress at clamped edges. Being in a very good agreement with the results given in [72], 

the equivalent EM model is still shown successful. 

3.6. Variable Properties 

Test cases with in-plane variable properties are here considered in order to assess whether the EM 

equivalent model preserves the capability of the OM model to treat these cases. Either a smooth 

continuous variation or a step variation are considered. The former case offers the possibility of 

showing how curvilinear paths of fibers can recover critical stresses. Many additional results are 

presented in [56] and [58] which show how this result can be achieved preserving a high bending 

stiffness. The latter case is considered in order to show how coefficients Δc_ip can make continuous the 

stresses and their gradients up the desired order at the interfaces of the regions where properties 

suddenly change. 

3.7. Smooth Variation 

The curvilinear paths of fibers considered were obtained in [58] as the solution of the  

Euler–Lagrange equations obtained by enforcing the contemporaneous extremization of the strain 

energy in bending and transverse shear under variation of the stiffness properties. The goal was to find 

a proper distribution of the stiffness properties that minimizes the energy absorbed through unwanted 

modes involving interlaminar strengths and maximizes that absorbed by modes involving membrane 

strengths. As a result, this process transfers energy from bending and shear to membrane modes 

through a suited distribution of stiffness properties that constitute the curvilinear paths of fibers. 

Coupling plies with opposite properties, the out-of-plane stress concentrations can be recovered at the 

critical interfaces without any stiffness loss. These plies, here referred to as Min Bending (MB) and 

Min Shear (MS) plies, are represented in Figure 7. MB is characterized by a significant increase of Q11 

at the center of the ply, and a reduction at its edges. The local in-plane shear stiffness Q12 is 

significantly higher at bounds of the ply than at the center, where it is equal to that of the straight-fiber 

case. This trend is also the same of the stiffness coefficient Q22. As a result, plies MB contribute to 

give an increase of the bending stiffness at the center of a laminate and a decrease at the bounds, where 

the shear stiffness in the in-plane direction grows. The opposite occurs with MS. It could be observed 

that curvilinear paths of fibers similar to MB and MS from [58] have been obtained by other 

researchers using different optimizations techniques (see, e.g., Khani et al. [4] and Nik et al. [7]). 
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Figure 7. Lay-ups and fiber orientation considered. 

In the numerical applications it is considered the case of a double-core sandwich beam undergoing  

a sinusoidal loading, with a length-to-thickness ratio of 4. It is made of the same constituent materials 

as in the former case, i.e., materials MAT 1 to MAT 4 are considered. The stacking sequence is a 

(MAT 1/2/3/1/3/4/2)s and the following thickness ratios of the constituent layers (0.010/0.025/0.015/ 

0.020/0.030/0.4/0.01)s is considered. Like in the former case, the sandwich beam is simulated as a 

multilayered beam. The results for this reference case are referred as Un-Opt in Figure 8, where the 

through-the-thickness variation of transverse shear stress, normalized according to Equation (22),  

is reported. The results by the EM model are indicated as OPTI 1 SEUPT and OPTI 2 SEUPT.  

Of course, the aim being to assess the behavior of the EM model with curvilinear paths of fibers, the 

result with straight-fibers by the EM model is omitted. Lay-ups OPTI 1 and OPTI 2 are obtained from 

the straight-fiber case Un-Opt by incorporating a layer of type MB or MS having a thickness that is a 

half of the thickness of layer in MAT2. As an inset, the comparison with a single-core sandwich beam 

with the same outer faces is reported showing that the core is a little less stressed than its counterpart, 

while faces are a little more stressed (straight-fibers case). As shown in [59], the advantage of  

double-core sandwiches over their single-core counterparts is that they can bear the stresses due to 

loading also when failed because the intermediate face inhibits the deleterious spreading of failure and 

damage. Thus, although the intermediate face does not contribute to the bending stiffness, it does not 

necessarily increase the weight, because the single-core needs to be over-sized in order to tolerate the 

damage. Figure 8 shows that the EM model obtains results always in a good agreement with those  

by the OM model also when variable-stiffness faces are considered (results are normalized as in 

Equation (22)). As a further test, next a sudden variation of properties is considered. 
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Figure 8. Normalized transverse shear stress by the OM Model and by the present EM Model 

for a simply-supported double core sandwich beam with spatially variable stiffness faces. 

3.8. In-Plane Step Variation of Properties 

The sample case now considered is again that of a sandwich beam undergoing distributed sinusoidal 

loading. The structure is simulated as a three-layer beam, the faces being the outer layers, which are 

assumed to be made of an homogenous, orthotropic material with elastic moduli E1 = 25 GPa,  

E3 = 1 GPa, G13 = 0.5 GPa, υ13 = 0.25, and the core being the inner layer, which is assumed as  

an homogeneous isotropic material with E1 = E3 = 0.05 GPa, G13 = 0.0217 GPa, υ13 = 0.15. 

Because the purpose is to show the capability of the EM model to achieve continuous in-plane 

stress distributions across the interfaces of regions where the elastic properties suddenly change, e.g., 

when patches are used for repairing damage, or as a result of optimization studies aimed at achieving 

specific local properties without use of curvilinear paths of fibers, a length-to-thickness ratio of 10 is 

considered that gives rise to sufficiently large bending deformations. Thus, in this case, attention is 
focused on the bending stress, i.e., the in-plane stress xxσ  at / 0.4z h = . The faces are assumed to be  

2 mm thick, while the core is 6 mm thick. Figure 9 shows how the principal material orientation 1 is 

assumed to vary along the span. It can be seen that such orientation angle suddenly changes at the  

two interfaces x/Lx = 1/3 and x/Lx = 2/3, while it smoothly varies elsewhere. Three regions are 

considered where face plies of type MB or MS are used, then at the interfaces of these regions the 

material orientation angle suddenly changes. 
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Figure 9. Sandwich beam with step variation of fiber orientation: non-dimensional in-plane 

variation of (a) in-plane stress and (b) in-plane stress gradient. 

If one carries out the analysis with the OM model not properly setting the continuity functions k
x

j
uθ  

to k
y

j
v λ  in Equation (13), i.e., not enforcing the continuity of the stress xxσ  and of its gradients in x,  

a discontinuous wrong stress distribution of xxσ  is obtained by the equivalent EM model at the 

interfaces along the span, as shown in Figure 9, while setting these functions in the proper way the 
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right smooth variation is obtained. It is worthwhile to mention that in this case, in order to restore the 

in-plane continuity of the membrane stress gradient, it is sufficient to consider continuity functions up 

to the third order in x. This is due to the fact that the difference between the stiffness coefficients at the 

interfaces is rather mild. 

Thus, the results of Figure 9 show the capability of the C0 equivalent model EM to correctly predict 

the stresses even when the material properties suddenly vary in the in-plane directions. This is a direct 

consequence of the capability of the OM model to treat in-plane discontinuities, as shown in [71]. 

Again the results have shown that the EM model preserves features and advantages of the OM model. 

4. Concluding Remarks 

In the present paper, a technique was developed in order to obtain a C0 model from a variable 

kinematics zigzag model, which contains derivatives of the d.o.f. as a result of the enforcement of 

physical constraints, such as the stress continuity at the interfaces and the boundary conditions.  

The objective is finding a priori corrections of displacements in closed form, which make the energy 

of the C0 model with all the derivatives neglected equivalent to that of the initial model containing all 

the derivatives of the d.o.f. In order to describe the in-plane variation of displacements, Hermite’s 

polynomial representations of the d.o.f. are used, whose order depends upon the order of derivatives 

appearing in the model. From these polynomials, which constitute the interpolation functions whether 

a finite element is derived from the zigzag model, the modified expression of displacements are 

obtained a priori in closed form using symbolic calculus. The capability of the developed technique to 

accurately evaluate the through-the-thickness distributions of displacements and stresses was investigated 

considering closed form solution of reference sample cases with intricate through-the-thickness 

displacement and stress distributions, for which 3D exact elasticity or approximate solutions are 

available in the literature for comparisons. Numerical results confirmed the validity of the updating 

technique, as it preserves the accuracy of the zigzag model with derivatives from which the equivalent 

C0 model is derived, though requiring a low computational effort very low for being derived. 
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