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Abstract: This paper investigates the impact of trajectory predictor performance on the encounter
probability generated by an adaptive conflict detection tool and examines the flexibility of the tool
dependent on its adjustable thresholds, using historical radar track data. To achieve these objectives,
two figures of merit were proposed: System Dynamic Range and System Tuning Envelope. To exam-
ine the conflict detection’s performance variability under different uncertainty levels and predictor
types, simple multi-horizon trajectory predictors trained with two machine learning techniques of
different characteristics are assessed at various look-ahead times: extreme gradient boosting with a
discrete nature and a multi-layer perceptron regressor with a continuous nature. The results highlight
the interdependence between the performances of the trajectory predictor and the conflict detector,
and the quantification of this relationship can be represented through a sigmoid function. In addition,
the two proposed figures of merit are effective for selecting suitable operating points in an adaptive
conflict detector, based on dynamic thresholds and the performance requirements necessary for the
trajectory predictors to achieve the expected detection performance at different look-ahead time.

Keywords: adaptive conflict detection; trajectory prediction; uncertainty; encounter probability;
adjustable thresholds; machine learning; air traffic management; air traffic control

1. Introduction

The accommodation of increasing levels of air traffic has long been limited by the
insufficient capacity of the ATM (Air Traffic Management) system, leading to a significant
number of delays caused by air traffic flow and management capacity constraints. This not
only results in longer flight times but also contributes to increased fuel consumption and
emissions [1].

The COVID-19 pandemic caused a significant drop in air traffic, but as the global
situation improved, traffic now is rising once again to pre-pandemic levels [2]. To meet
the increasing demand, airspace capacity must increase. Capacity increments can be
approached from various perspectives. The main driver of capacity limits is the workload
of air traffic controllers (ATCos). The workload of ATCos is tied to the tasks they perform
during their shifts, and it varies based on the number of flights within their sector and
the level of complexity each flight presents [3]. For example, in an en-route sector, a flight
may only require minimal attention if it is simple to monitor, or it may require a significant
amount of attention if it interacts with other flights and potentially causes conflicts that
require additional clearances [4,5]. Therefore, employing additional supporting tools
for ATCos to handle potential conflicts has long stood as one of the solutions to reduce
workload and increase sector capacity.

Efforts are underway, particularly through the SESAR 3 Joint Undertaking programme
in Europe and the NextGen program in the United States, to address this challenge. In par-
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ticular, a project of the SESAR programme, PJ18-W2 4DSkyways, developed a solution
named “Improved Ground Trajectory Predictions enabling future automation tools”, which
aimed to increase the quality of separation management service. The primary objective of
the solution was to validate enhanced conflict detection and resolution (CDR) tools, rooted
in the improvement of the performance of ground trajectory predictors (TPs), thereby
enhancing the overall quality of service [6]. The present paper was developed within
this project. Therefore, this paper presents metrics to assess the interrelation between the
performance of TPs and CDs (Conflict Detectors), to facilitate establishing performance
requirements for TP services to support the separation management function.

The sections of this paper are arranged as follows: Section 1 includes a brief intro-
duction and Section 1.1 presents a literature review of the related topic; the methodology
adopted for the construction of the TP and CD tools and proposed figures of merit is
described in Section 2, including the outline of the selected use case for the analysis; the
results of the figures of merit are displayed in Section 3; and finally, the findings of this
work and the next steps are summarised in Section 4.

1.1. The State of the Art

A study carried out by EUROCONTROL Experimental Centre using fast time simula-
tion demonstrated that, when controllers are equipped with conflict detection tools such
as medium-term conflict detection (MTCD) and a tactical controller tool with a perfect
accuracy level, their task load is reduced by up to 21%, leading to a more balanced distri-
bution of task load between planner and tactical controllers [7]. Consequently, one viable
approach to reducing air traffic controller workload and increasing capacity is to provide
them with more advanced decision support tools (DSTs) for CDR [8].

However, CDR functionality is dependent on an accurate trajectory prediction. As a
result, the performance of the CDR tool and the overall ATC (Air Traffic Control) system is
directly impacted by the accuracy of the TP [8].

Trajectory prediction was defined in [9] as the process that estimates a future tra-
jectory of an aircraft through computation, and it is performed by a trajectory predictor.
The TP can adopt various methodological approaches [10]. Ref. [11] conducted a general
review of 282 papers, with a detailed examination of 20 of them. These selected studies
showcased diverse methodologies, including mathematical models such as point-mass
models with the BADA (Base of aircraft data) database [12], kinematic models, and ki-
netic models, among others. Recent studies have facilitated the integration of novel input
sources and methodologies. Regarding data, the inclusion of onboard information through
extended projected profiles enables prediction enhancement [13]. Regarding the method,
the utilisation of data-driven predictors trained using machine learning (ML) algorithms
has become widespread in present times [14,15]. These ML techniques have exhibited
superior performances to conventional methods, given an appropriate dataset and training
pipeline [16].

Predictions are always subject to error. The inaccuracies of predictions stem from
diverse sources, leading to a high level of uncertainty [17–20], and their applicability
depends on the operational context [21]. The consideration of this uncertainty is crucial
in decision-making processes within ATM. High uncertainty leads to an amplification of
the workload, due to the increasing need to monitor potential conflicts, an increase in
both false and missed alerts [19,22], and results in more drastic clearances at a small look-
ahead time (LAT) [23]. On the contrary, low uncertainty implies high reliability, enabling
anticipated resolutions.

Ehrmanntraut [22] highlighted the importance of considering the uncertainty of trajec-
tory prediction in conflict detection tools. CDR tools generally operate by identifying the
breach of minimum separation between two aircraft, indicated by a specific measure falling
below a predetermined threshold. The commonly used approach involves projecting the
trajectory over a specified look-ahead time and determining if the two aircraft will lose
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separation by evaluating the probability of their relative distance being below a previously
set threshold for each time point in the series [24].

Regarding the requirements of TP and CDR, basic metrics to evaluate TP performance
encompass longitudinal, lateral, and vertical prediction error [25]. In [26], Mondoloni
introduced a framework to define metrics, providing a list of metrics for assessing TP per-
formance and presenting the system operating characteristics (SOC) curve, which depicts
the trade-off between false alert (FA) and missed alert (MA) of a CD tool. Additionally,
Schuster et al. [8] conducted a review on the requirements of TP and CDR for each ele-
ment of the SESAR Concept of Operations and proposed performance metrics such as TP
accuracy, TP integrity, CD false alert, and CD integrity.

Concerning the link between TP and CDR, ref. [27] proposed a methodology for the
functional verification and performance validation of TPs. The proposed process categorises
TP requirements into two groups: direct and indirect. Direct requirements are directly
related to the TP itself, such as prediction accuracy, while indirect requirements relate to
the impact on the overall system performance, like meeting the required CDR performance.
Ref. [27] highlighted the difficulty in validating indirect TP requirements using recorded
radar track data, primarily due to controller-issued clearances for deconfliction, which
complicate the computation of false alerts and positive alerts. Therefore, ref. [27] proposed
a validation approach relying on simulations that have a high level of fidelity, although the
cost is expensive.

Many studies have used simulations to assess the impact of TP accuracy on CD
performance. Ref. [28] evaluated the relationship between different levels of longitudinal
error and the performance of a conflict probe using Monte Carlo simulations, and ref. [29]
used simulations with a time shift from [30] to emulate conflict events, evaluating several
scenarios of different TP accuracy levels using the hit rate and the FA rate. The latter
study led to the conclusion that the conflict probe performance depends on TP accuracy,
showcasing reduced false alarm rates and increased true positive rates as TP accuracy
improves. Furthermore, the CD performance was estimated using a linear regression
function based on TP accuracy.

Based on the SOC curve [26] and the conflict probability [24], this study proposes
quantitative figures of merit using historical traffic data to evaluate the influence of TP
performance on the encounter probability of a dynamic CD tool, without the need for
expensive simulation effort. Apart from revealing their relation, these metrics inform
the selection of the operating point of the CD for different LATs, based on the trade-off
between false alerts and missed alerts, establishing requirements for TP performance and
CD settings.

In this context, an encounter is considered to be a state which may develop into a
loss of separation between two flights in the absence of ATCos intervention, and dynamic
CD refers to a detection tool with dynamic variables in the setting capable of adjusting its
operational performance to meet task-specific requirements.

Two TPs trained with different ML algorithms are selected for comparative evaluation
regarding TP accuracy and prediction stability: extreme gradient boosting (XGB), a member
of boosting algorithm family, and a multi-layer perceptron regressor (MLP), a type of
artificial neural network.

This paper focuses on analysing the dependency between the performance of TPs
and CDs, considering performance in terms of their accuracy and stability. The impact of
accuracy is quantitatively assessed with two figures of merit, each supporting the selection
of operating points in adaptive CD and defining performance requirements.

2. Methodology

This section provides an overview of the trajectory predictor and conflict detector
tools developed for the analysis, including the corresponding figures of merit to assess
their performance and their relationships. As the analysis focuses on the horizontal plane,
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the predictor is referred to as the horizontal trajectory predictor (HTP). To facilitate compre-
hension, the nomenclature used in this paper is summarised in Tables 1–4.

Table 1. Nomenclature—Relevant Abbreviations.

Abbreviation Definition Abbreviation Definition

ANN Artificial Neural Network MLP Multi-Layer Perceptron Regressor
AoI/R Area of Interest/Responsibility NM Nautical Miles
ATCo Air Traffic Controller OSED Operational Service and Environment Definition
CA/P Critical Area/Point RP Real positive
CDR Conflict Detection and Resolution s Seconds
DCB Demand and Capacity Balancing SDR System Dynamic Range
DST Decision Support Tool STE System Tuning Envelope

FA/MA False Alert/Missed Alert TA True Alert
FL Flight Level TN True negative

HTP Horizontal Trajectory Predictor TP Trajectory Predictor
LAT Look-Ahead Time WV Wake Vortex
ML Machine Learning XGB eXtreme Gradient Boosting regressor

Table 2. Notation—Indexes.

Index Definition Index Definition

i Recurrent pattern of flow 1 k Critical point within a critical area
j Recurrent pattern of flow 2 p Present or current

Table 3. Notation—Trajectory Predictor.

Notation Definition Notation Definition

γ Arc-length along the trajectory of each flow pattern [NM] te Elapsed time at sector entry [s]

γp
Current position of the flight, measured as elapsed distance γ of the flight

from the entry point [NM] tp Elapsed time from entry to γp [s]

δγ Target distance from the current location to make prediction [NM] FLp Flight level at γp [FL]

t̂γ,γp
Predicted required time to reach the target point δγ from the current

position γp [s] vp Ground speed at γp [knots (kts)]

Table 4. Notation—Conflict Detector.

Notation Definition Notation Definition

f1 Flight 1 of an interacting flight pair γp Arc-length of evaluation, indicating γp2

f2 Flight 2 of an interacting flight pair γ
i, f1
CPk

(γ
j, f2
CPk

)
γ of pattern i (j) of f1 ( f2) to reach the critical

point k [NM]

dTHR Horizontal distance threshold to identify CP [NM] CAi,j

Critical point k between patterns [i, j], composed
of the location of f1 and f2 along patterns i and j,

respectively, [NM]

∆tTHR
Time difference threshold to obtain real conflict

and encounter probability [s] CPi,j
k

Critical point k between patterns [i, j], composed
of the location of f1 and f2 along patterns i and j,

respectively, [NM]

PTHR
Probability threshold and operation threshold to

decide whether notify an alert t̂i, f1
γp ,γCPk

(t̂j, f2
γp ,γCPk

)
Time predicted to reach γ

i, f1
CPk

(γ
j, f2
CPk

) at γp

through pattern i (j) [s]

∆tmin Real-time difference [s] ∆t̂i,j
res,γp ,CPk

Difference between the predicted time to reach
CPi,j

k of both flights for the patterns [i, j] [s]

∆dmin Real minimum horizontal separation [NM] σ
i, f1
γp ,γCPk

(σ
j, f2
γp ,γC Pk

)
Standard deviation of HTP to predict γ

i, f1
CPk

(γ
j, f2
CPk

)

at γp through pattern i (j) [s]

∆hmin Real minimum vertical separation [ft] σ
i,j
res,γp ,CPk

Combined standard deviation of the predictions
of both flights for CPk [s]
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Table 4. Cont.

Notation Definition Notation Definition

µ Mean Pi,j,∆tTHR
γp ,CPk

Encounter probability at CPk of the patterns [i, j]
at γp

σ Standard deviation Pi,j,∆tTHR
γp ,CA

Encounter probability of the patterns [i, j] of the
flight pair

γp1(γp2) Current position of f1 ( f2) [NM] P∆tTHR
γp

Encounter probability of the flight pair

In this study, the measures are derived from the time separation at a specified location
where minimum separation will be violated if both aircraft arrive concurrently, based on one
of the cognitive abstractions of air traffic control operators (ATCOs) [4], who concentrate
on critical points in an air traffic sector. Consequently, the probabilistic definition of that
metric between two aircraft also considers uncertainty in the temporal dimension instead
of the spatial dimension. This perspective was explored in [23].

Hence, the primary reference variable for the models is γ, which represents the arc-
length along the trajectory of each pattern [23].

2.1. Horizontal Trajectory Predictor

The HTPs trained in this study are termed multi-horizon HTPs; this term refers to
trajectory predictors that can update the prediction in accordance with variations in current
position information by updating the inputs accordingly. This unique characteristic enables
the assessment of performance at various positions without requiring the training of
multiple individual predictors.

The objective of the HTP is to predict the time a flight requires (t̂γ,γp ) to reach a given
distance γ from the current position γp. The inputs include the following:

• aircraft characteristics: wake vortex (WV);
• information collected at the current position: current position (γp), current flight level

(FLp), current speed (vp) and elapsed time from the entry (tp);
• target point: distance from current location to the target distance for prediction (δγ).

Regarding training, each identified traffic flow possesses its own predictor. As pointed
out in [31], each flow exhibits recurring patterns—with the most commonly flown trajecto-
ries within it—with the planned route being one of them. Hence, it is worth noting that the
same γ can refer to different geographic coordinates, depending on the specific pattern and
flow that are being considered, as shown in Figure 1. However, for each recurrent pattern,
the relation between the coordinates and γ is bijective.

The left-hand side of Figure 1 illustrates the concept of traffic flow, with two recurrent
patterns for a single flow, and depicts the bijective relation between γ and the geographical
coordinates, varying according to the pattern. The right hand side of Figure 1 shows the
concept of multi-horizon HTP, which depends on the current position and the target point.

The entry to the sector is considered to be the starting point of the trajectory of analysis.
When a flight reaches its entry point at instance Te, its current position or elapsed distance
within the sector γp is 0 NM, and its associated elapsed time of entry te is also 0 s. As the
flight progresses, its position γp changes accordingly, along with the associated elapsed
time tp.

To present performance differences and their implications, two multi-horizon HTPs
were trained using different types of ML algorithms that used the same features:

• Extreme gradient boosting regressor: a tree-based algorithm capable of providing
reasonable performance with a small training sample. This HTP is referred to as
XGB-HTP.

• Multi-layer perceptron regressor: a feed-forward artificial neural network (ANN).
This HTP is referred to as MLP-HTP.



Aerospace 2024, 11, 155 6 of 24

 = 0 NM

 = 60 NM

 = 130 NM

 = 60 NM

 = 130 NM

Recurrent patterns(A)

0 NM  Te

p = 60 NM

 = 140 NM
¤ ¤

t p

t p

t = 140, p = 60 t = 140, p = 60

Current time Tp (> te)(B)

FL

FLp = FLp

Figure 1. (A) Example of differences between patterns of the same flow. The same γ represents
different geographical locations depending on the pattern. (B) Prediction when the flight has flown
60 NM (γp is 60 NM) and the target point is at 140 NM.

2.2. Conflict Detector

The aim of the CD tool is to detect flight pairs that could evolve into an encounter
without ATCo intervention. Each identified flight pair is considered as potential conflict.
This paper only considers flight pairs that belong to different traffic flows, excluding
potential conflicts within the same flow.

The CD used for the study has three user-defined thresholds, namely distance (dTHR),
time (tTHR), and probability (PTHR), for its functioning. The latter two parameters are
always modifiable, while dTHR is immutable during the functioning of the tool; it can only
be set at the configuration phase. The incorporation of the two dynamic variables within
the system architecture endows the CD tool with adaptive capabilities, enabling it to adjust
its responses to meet different operational needs.

The CD tool identifies potential conflicts by calculating the time separation between
two flights at their critical area (CA), a specific spatial location where an infringement
in horizontal separation occurs if two aircraft arrive simultaneously or with small time
separation. This is inherent information for the CD tool that is calculated based on the
recurrent patterns of flow pairs. Thus, a critical area between the pattern i of a flow and
the pattern j of another flow (CAi,j) is an area that contains a set of tuples of two values
of γ - one for each flow - where the horizontal separation is below the selected distance
threshold (dTHR). Each tuple is a critical point (CP), CPi,j

k , and the number of CPs depends
on the convergence between the two pattern trajectories.

Let us consider two flights: Flight 1 ( f1) as the first flight entering the sector of analysis,
and Flight 2 ( f2) as the second. The mathematical representation of the critical area is
provided as follows in Equation (1):

CAi,j =

CP1
i,j

CP2
i,j

. . .

 =

(γ
i, f1
CP1

, γ
j, f2
CP1

)

(γ
i, f1
CP2

, γ
j, f2
CP2

)

. . .

 (1)

The identification of the potential conflicts relies on comparing between the time
separation estimated at CA and the minimum time separation (∆tTHR).

As the estimated time separation is the difference between the two predictions—which
has an associated uncertainty—the output of the CD tool is also a probabilistic variable.
The formula for estimating the probability of conflict, presented in Equations (2)–(4), was
demonstrated in [23], which resembles those demonstrated in [24] for distance-based
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thresholds. The probability, as estimated using Equation (2) as follows, is derived by
applying the error function, denoted as erf.

P(x ≤ ∆tTHR) =
1
2

[
er f

(
∆tTHR + µ√

2σ

)
+ er f

(
∆tTHR − µ√

2σ

)]
(2)

Based on the previous work of [23,24], when the prediction data follows a normal
distribution centred around the prediction µ with its corresponding standard deviation
σ, the encounter probability is defined as the probability of the time separation falling
below ∆tTHR.

Due to the probabilistic nature of the output, a probability threshold (PTHR) is set to
select the sample of infringement notifications; flight pairs whose encounter probability
is below PTHR will be notified and require attention. Therefore, given the same encounter
probability, the notifications vary according to PTHR.

Conflict Detection Process

Given two flights, the evaluation of their encounter probability begins when the
second flight enters the sector. Hence, the arc-length of evaluation depends on the location
of f2 (γp2). For facilitation, the location of the evaluation is named γp in the sections of CD
(γp = γp2).

The detection process at the arc-length of evaluation γp encompasses the selection of
potential interacting flight pairs and the calculation of the encounter probability.

The steps to identify the flights that potentially interact with f2 are as follows (see
Figure 2A):

1. Select the concurrent flights of f2; these are the flights that are also in the sector at γp.
Figure 2A shows an example of the instant when f2 enters the sector. The triangles
represent the flights and the three coloured lines represent the recurrent patterns
of f2’s flow; these are possible trajectories that the flight might take. f2 has five
concurrent flights at the entry (A, B, D, E, and F), and flight C is discarded because it
is still out of the sector.

2. Select from the concurrent flights those that belong to flows that interact with f2’s
flow and do not belong to the same flow as f2. In the example of Figure 2A, A and F
are discarded because A belongs to f2’s flow and F does not interact with f2.

3. Estimate the present location of the concurrent flights: γp1.
4. Select those flights that have not reached any of their CA with f2’s flow, i.e., flights

whose γp1 < min(γi, f1
CP1

, γ
i, f1
CP2

, . . .). The flights that have already overflown the critical
areas will not lose separation with f2. In the example of Figure 2A, B has already
overflown CA.

For each remaining flight f1, the encounter probability (Pi,j,∆tTHR
γp ,CA ) is evaluated for each

pattern combination [i, j], because the pattern is unknown in advance.

1. For each CPi,j
k of the CAi,j (see Figure 2B):

(a) Predict the time each flight crosses CPi,j
k for both flights: t̂i, f1

γp ,γCPk
and t̂j, f2

γp ,γCPk
.

Figure 2B takes the pattern 1 (blue lines) of flight D and f2, as an example.
The HTP of each flow will predict the time each flight crosses the corresponding
γ

i, f1
CPk

(γj, f2
CPk

) of each CPi,j
k .

(b) Determine the standard deviation of the following predictions: σ
i, f1
γp ,γCPk

and

σ
j, f2
γp ,γCPk

.

(c) Obtain ∆t̂i,j
res,γp ,CPk

and the corresponding prediction error σ
i,j
res,γp ,CPk

(see
Equations (3) and (4), as follows).

µ = ∆t̂i,j
res,γp ,CPk

= t̂i, f1
γp ,γCPk

− t̂j, f2
γp ,γCPk

(3)
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σ = σ
i,j
res,γp ,CPk

=

√
(σ

i, f1
γp ,γCPk

)2 + (σ
j, f2
γp ,γCPk

)2 (4)

(d) Based on the selected ∆tTHR, evaluate Pi,j,∆tTHR
γp ,CPk

using Equation (2).

Pi,j,∆tTHR
γp ,CPk

= P(x ≤ ∆tTHR) (5)

2. The final encounter probability between patterns [i,j] (Pi,j,∆tTHR
γp ,CA ) is calculated using

the mean of the probabilities obtained from each CPi,j
k (see Figure 2C).

Finally, flight pairs whose Pi,j,∆tTHR
γp2,CA exceeds PTHR are considered to be detected poten-

tial conflicts that could lead to horizontal infringement if the flights continue to follow their
patterns [i,j].
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Figure 2. (A) An example of an instantaneous capture of the situation when f2 enters the sector
featuring candidate interacting flights (E and D) and non-interacting flights (the rest). The red
triangle symbolizes f2, while the black ones indicate other flights; those marked with a cross are
non-interacting flights. (B) Each red line connects a pair of points, representing a critical point.
Alongside each red line, the associated predicted time of the corresponding γ

1, f1or f2
CPk

of each CP1,1
k

between pattern combination [1,1] is shown. (C) Encounter probability between f2 and f1 (P1,1
CA), if

they follow their planned trajectory.

2.3. Evaluation Metrics and Figures of Merits

For the assessment of HTP accuracy, the prediction errors are used. The target point
for prediction is always a critical point, enabling the analysis of the encounter probability
between flights.

Once evaluated, the impact of different HTP accuracies on the CD functioning is
presented by two figures of merit. Beyond the quantification of the impact, each exhibits a
specialised application.

The figures of merits are both defined in the Operational Service and Environment
Definition (OSED) document of the project PJ18-W2 4DSkyways:

• System dynamic range (SDR): an element to support the possible encounter classifica-
tion and to prioritise resolution, as well as evaluating the performance of the CD tool.
It mainly represents the impact of the HTP accuracy on the outputs of the CD tool.

• System tuning envelope (STE): an element to facilitate the tuning of the CD tool
using the parameters ∆tTHR and PTHR. It assesses the performance of the CD tool,
supporting the selection of operating points.

These metrics are further detailed in Sections 2.3.1–2.3.3.

2.3.1. Horizontal Trajectory Predictor Performance Metrics

The performance of the HTP considered in this paper includes mainly the prediction
accuracy, but the stability of the prediction is also analysed, with stability defined as the
tendency to maintain the predictions’ consistencies over time.
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The performance of the trajectory predictors is assessed by analysing the residuals of
the test sample, which are the differences between the prediction (t̂γp ,γ) and the real value
(tγp ,γ), as follows:

res = t̂γp ,γ − tγp ,γ (6)

Based on the residuals obtained from the test sample, the metrics that facilitate the
visualisation of the performance are as follows:

• Heatmap of residuals’ mean (µres,γp ,γ), which represents the residual mean for each
current position and possible target point. Ideally the mean is zero for every combina-
tion of γ and γp.

• Heatmap of residuals’ standard deviation (σres,γp ,γ): ideally the deviation is zero for
every combination of γ and γp.

2.3.2. System Dynamic Range

Quoting the definition from the OSED: “. . . the dynamic range can be considered as
the rates at which the conflict probability decreases as the predicted minimum separation
increases. . .”. Hence, the SDR shows the relationship between the outputs of the TP and the
CD, which are the predictions and the encounter probability, respectively. It is an extension
of the system operating characteristic curves [26].

The graphical representation of the SDR is the encounter probability Pi,j,∆tTHR
γp ,CA versus

the peak probability-predicted time separation ∆t̂i,j
γp ,CPmaxP

.
Figure 3 shows a draft of possible SDR behaviours, adapted from the OSED. Each

curve represents a SDR curve using predictors of a given accuracy, from the perfect TP
in red to the green curve with a large TP error. The coloured area from the highest to the
lowest probability of the SDR is named transition area.
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Figure 3. Unsafe probability with given predicted minimum separation—draft.

If the trajectory prediction error is large—indicating large uncertainty—the CD perfor-
mance shows a slow transition from high to low encounter probabilities with a broader
transition area, suggesting a low dynamic range and a shallow curve. On the contrary,
high-performance predictors will exhibit steep curves and consequently, a large dynamic
range and a quick transition. In the case of a perfect detection tool without error, the curve
will resemble a step function, with an encounter probability equal to 100% for predictions
below the "safe" time-over-difference threshold, and an abrupt drop to zero thereafter.

When the uncertainty follows a normal distribution and when considering the absolute
predicted time difference, the resulting probability has a folded normal distribution [24].
Hence, the representation of the SDR should follow a S-shaped function. Based on this
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theoretical property, the shape of the SDR distribution can be approximated with the
following logistic function:

f (x) =
L

1 + e−k(x−x0)
+ b (7)

The parameters that define the logistic functions are as follows:

• L: the maximum value of the curve (b = 0) when the logistic curve is increasing, or the
minimum value when it is decreasing.

• k: the steepness of the curve.
• b: the displacement of the curve over the y-axis.
• x0: the x-axis value of the midpoint.

2.3.3. System Tuning Envelope

Due to the presence of uncertainty, conflict detection also has associated errors. Hence,
a notification from the tool can be genuine or a false alert (FA), and a hidden instance can be
correctly hidden or a missed alert (MA). These elements reflect the accuracy and reliability
of the CD tool. STE, as a figure of merit, enables the assessment of CD accuracy using the
proportion of FAs and MAs.

The adaptive conflict detector provides conflict alerts based on the estimation of the
encounter probability, which depends on ∆tTHR and dTHR, and the operation threshold
PTHR. Every possible interaction with an estimated probability higher than PTHR will be
notified, while those with an estimated probability lower than PTHR will be filtered out.

However, PTHR is a dynamic threshold. Therefore, a low PTHR will result in a large
number of notifications, including most of the genuine infringements, in exchange for over-
loading the controller with excessive nuisance notifications. This increases the workload
and diminishes user confidence in the tool. Conversely, a high PTHR implies fewer false
alerts, but risks missing critical notifications.

The conditions to detect the nuisances and missed notifications are visualised in
Figure 4. The horizontal and vertical grey lines indicate the ∆tTHR. All instances falling
into the green area represent real infringements, and those in the red area do not. Those on
the left side of the vertical line are notified alerts, and the rest are hidden. Based on Figure 4,
the following variables related to CD accuracy are derived and used for the representation
of STE:

• False alerts or nuisance: incorrectly notified alerts. Flight pairs whose real mini-
mum separation is above the threshold (|∆tmin| > ∆tTHR) but are notified as po-
tential conflicts because the estimated probability is above the decision threshold
(Pi,j

γp ,CPmaxP
> PTHR).

• Missed alerts or missed: incorrectly hidden alerts. Flight pairs whose real minimum
separation is below the threshold (|∆tmin| < ∆tTHR) but the estimated probability is
below the decision threshold (Pi,j

γp ,CPmaxP
≤ PTHR).

• True alerts (TA): correctly notified alerts. Flight pairs whose real minimum separation
is below the threshold (|∆tmin| < ∆tTHR) and estimated probability is above the
decision threshold (Pi,j

γp ,CPmaxP
> PTHR).

• True negative (TN): correctly filtered-out alerts. Flight pairs whose real minimum
separation is above the threshold (|∆tmin| > ∆tTHR) and estimated probability is
below the decision threshold (Pi,j

γp ,CPmaxP
≤ PTHR).

• Real positive (RP) or real conflict: flight pairs whose real minimum separation is below
the threshold (|∆tmin| < ∆tTHR).
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Figure 4. Conditions to detect nuisance and missed alerts based on predicted and real time separation.
The grey lines represent the ∆tTHR set at 90 s.

The proportions of nuisance and missed alerts used in STE are calculated using the
following equations:

Nuisance % =
FA

TN + FA
(8)

Missed % =
MA

TA + MA
(9)

The graphical representation of STE illustrates the trade-off between nuisance and
missed alerts for every PTHR. These are reflected as proportions of FAs and MAs, respec-
tively. Changes in the output notifications resulting from adjustments to PTHR are captured
in the STE, which helps balance the trade-off between nuisance and missed alerts. Conse-
quently, STE supports the selection of the most suitable operating point for the CD tool at
different LATs to align with specific operational needs.

2.4. Use Cases

To demonstrate the applicability of the proposed methodology, we have selected a use
case that includes a complex crossing point. This use case has been chosen based on its
relevance and adequacy to highlight our methodology.

The selected use case is located in the Spanish airspace. The area of responsibility
(AoR) for the analysis is LECMPAU (Pamplona Upper Sector), where the interactions
between flows take place. For the planning controller of LECMPAU, adjacent sectors
should also be considered. Therefore, the collapsed sector LECMBDP is selected as the area
of interest (AoI) for the analysis to anticipate possible encounters. LECMBDP comprises
LECMPAU, LECMBLU (Bilbao Upper Sector), and LECMDGU (Domingo Upper Sector).

Two cruising flows are considered, named F4 and F24 (see Figure 5). F4 is a northward
flow with 2890 flights, and F24 is eastbound with 1432 flights. F24 interacts with F4 within
the AoR, close to the boundary.

This use case was selected because the traffic densities are significant and the critical
points between the flows are close to the sector boundary. Clearances issued to the flights
during their crossing through BLU or DGU could induce a conflict at PAU. An incident
between a similar pair of flows occurred in 2018 [32].
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Figure 5. Recurrent patterns of the two flows of analysis (pattern 1 refers to the planned route).
The two flows interact in LECMPAU.

Evaluation Contextual Parameters

The following four parameters are considered to analyse the adaptiveness and corre-
sponding variability in performance: the independent variable γp and the three adjustable
parameters dTHR, ∆tTHR, and PTHR.

For the analysis, the following values are selected:

• dTHR: context threshold that influences the resulting critical area.

– 1 NM.

• ∆tTHR: internal parameter of CD that impacts the encounter probability.

– 10 s, 30 s, 60 s, 90 s, and 120 s.

• PTHR: internal parameter of CD that affects the notified alerts.

– from 0.1 to 0.99, incremented by 0.1.

• γp: independent variable that indicates LAT and consequently, the level of predic-
tion error.

– 0, 20, 40, 60, 80, 100, and 120 NM from the entry point in the sector of analysis.

Due to the characteristics of the two flows, flight pairs with the second flight belonging
to F24 are more likely to evolve into a conflict. Therefore, the analysis is focused on these
instances and along the trajectory of F24. The arc-length of evaluation (γp) is referred to
LECMPAU’s boundary; that is, the entry at LECMPAU is considered to be γp = 0 NM.
The planned trajectory of F24 from entry at LECMBDP to LECMPAU is 108 NM long, which
equates to approximately 15 min, considering the mean required time of the traffic sample
(see Figure 6).
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Figure 6. Selected arc-length of evaluation γp.
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3. Results

This section presents the results of the study, which are divided into two subsections.
Section 3.1 analyses and compares the performance of the two HTPs, and Section 3.2 details
the analysis of the metrics SDR and STE.

3.1. Horizontal Trajectory Predictor Performance

This subsection presents the performance comparison between the four trained HTPs
for the flows F4 and F24.

For both flows, the data were partitioned, with 75% reserved for training and the
remaining 25% designated as the test sample, to assess the models’ performance on unseen
data. The XGB-HTPs were trained by fine-tuning their parameters, setting the depth of
trees to five for F24 and six for F4, with the learning rate set to 0.055 in both cases. On the
other hand, the network architecture of the MLP-HTPs consisted of two hidden layers, each
with 12 neurons, and used the ReLU (Rectified Linear Unit) activation function.

Regarding the HTP accuracy, it is dependent on the current position of the flight and
the prediction point; a smaller δγ implies reduced uncertainty and increased predictability.
Details of the prediction errors of the MLP and XGB-HTPs are shown in Figures 7 and 8.

In each figure, columns represent flows; the top row illustrates the mean of the
residuals, and the second row shows the standard deviation. Each heatmap displays a
matrix containing the corresponding value for each pair of γp and γ. As the target point γ
should be larger than γp, only values in the upper triangular area are available.
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Figure 7. Residual statistics of MLP models for the flows of analysis.

For both flows, σres,γp ,γ escalates with an increase in the distance between γp and γ
because the uncertainty increases with γ, whereas µres,γp ,γ predominantly fluctuates around
zero. Statistically, the maximum value of σres,γp ,γ across the four HTPs is comparable,
approximately 28 s, while µres,γp ,γ varies within a range of −6 s to 6 s.
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Figure 8. Residual statistics of XGB models for the flows of analysis.

In comparison, the difference in σres,γp ,γ for F4’s HTPs is minimal. However, for F24’s
HTPs, particularly when the γp of F24 is high, σγp ,γ is notably lower in the XGB than in the
MLP model. Additionally, the deviation of µres,γp ,γ from zero is more pronounced in F4.

Diverse regions are discernible in the µres,γp ,γ heatmaps of the four HTPs. These areas
are related to trajectory patterns and common manoeuvres of the aircraft. A contributing
factor to the formation of these regions is the speed variation. Figure 9 illustrates these
speed variations from the entry point to the subsequent points (Vγp − Vγp = 0 NM) for each
flight of the test sample.
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Figure 9. Speed variation in relation to the entry speed-test sample. The vertical lines indicate the
positions of region splits in the performance heatmaps.

Regarding the prediction stability, a clear difference between the XGB-HTPs and MLP-
HTPs is evidenced by the presence of diagonal bands in XGB-HTPs heatmaps (see Figure 8),
indicating prediction instability over γ. This phenomenon stems from the discrete nature of
decision tree algorithms, where similar inputs ranges lead to identical prediction allocation,
despite differences in the actual input values.
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However, when analysing the prediction stability of particular flights, predictions of
MLP-HTPs also exhibit fluctuation over γ, despite the continuous nature of the algorithm.
The cause of the fluctuation could be due to various reasons, such as the non-linearity of
the problem.

Figure 10 shows two flight pairs selected as examples, which present the predictions
of the total time from the entry to their corresponding CP1,1

1 at each γp.
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Figure 10. Comparison of t̂γp ,CP1
1,1 variation by γp of the flights between MLP and XGB models—

examples 1 and 2.

In most cases, the predictions for XGB-HTPs exhibit more variation, although MLP-
HTPs also show fluctuation.

3.2. Conflict Detection

One derivation from Equation (2) is that the performance of the CD is impacted
by the uncertainty of the associated predictors, which increases over γ. Consequently,
the performance tendency of the CD varies for each pair of patterns.

This subsection is focused on the horizontal potential conflicts between the pattern
pair 1–1 of the flow pair F4–F24, where the second flight belongs to F24 (i.e., the flight of F4
is already within LECMBDP).

The CD performance is evaluated from two perspectives. Firstly, the HTP performance
impact assessment considers the two differently modeled HTPs, alongside a selection of
γp, which are selected as they represent different levels of uncertainty. Secondly, the exami-
nation of the effects of dynamic thresholds involves the PTHR, which sets the notification
threshold, and ∆tTHR, which influences the estimation of encounter probability.

The analyses of the metrics SDR and STE are detailed in Sections 3.2.1 and 3.2.2.

3.2.1. System Dynamic Range

The estimated probability, and consequently the CD performance, are intimately re-
lated to the performance of the trajectory predictors used in the detection process. This
dependency can be observed in the SDR graphs, which compare the predicted time separa-
tion and the estimated encounter probability.

Figure 11 presents the SDR graphs of the pair F4–F24 using different HTPs, time
difference thresholds, and evaluation arc-lengths. It contains four graphs. The figures of
column A are obtained using MLP-HTPs whereas those for column B are obtained using
XGB-HTPs. The two upper graphs show the SDR curves across γp when ∆tTHR = 60 s, and
the lower two show the variation in ∆tTHR when γp = −108 NM (entry point at LECMBDP).
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Figure 11. (A) The SDR and logistic curve fit variation by γp when ∆tTHR = 60 s and variation by
∆tTHR when γp = −108 NM. The grey step line represents the ideal performance of the CD tool for
the selected ∆tTHR—MLP-HTPs for F4–F24. (B) The same graphs using XGB-HTPs for F4–F24.

In the four graphs, each point represents a flight pair whose encounter probability
P1,1,∆tTHR

γp ,CPmaxP
is greater than zero. Points of the same colour form the SDR distribution of the

same evaluation arc-length γp or threshold ∆tTHR. Each distribution has its corresponding
logistic fit in the same colour.

Regarding the variation by γp, all logistic fits intersect with the black step function,
which represents the ideal CD performance, around a midpoint. At this intersection,
the |∆t̂1,1

γp ,CPmaxP
| is approximately ∆tTHR and the encounter probability is about 0.5. Due

to the characteristic of the probability estimation formula, Equation (2) simplifies when
|∆t̂1,1

γp ,CPmaxP
| = ∆tTHR, as shown in Equation (10), as follows:

P(x ≤ ∆tTHR) =
1
2

[
er f (0) + er f

(
2∆tTHR√

2σ

)]
=

1
2

er f
(

2∆tTHR√
2σ

)
(10)

As error function is bounded within the range of −1 and 1 and ∆tTHR is positive,
the resulting probability is 0.5 at this point in the distribution. Therefore, the transition
area is centred around this midpoint; as |∆t1,1

γp ,CPmaxP
| increasingly deviates from ∆tTHR,

the resulting probabilities asymptotically approach the extremities of zero and one.
In addition, the prediction uncertainty diminishes as γp increases, because the flights

are approaching the critical point. Consequently, the SDR distribution progressively ap-
proximates ideal behaviour, characterised by a steeper slope.

Regarding the variation by ∆tTHR, it is noteworthy that the maximum probability of
the SDR escalates with increasing ∆tTHR until it reaches 1. The maximum encounter proba-
bility occurs when |∆t̂| = 0 s, where the probability estimation (Equation (2)) simplifies to
the following form:

P(x ≤ ∆tTHR) =
1
2

[
er f

(
∆tTHR√

2σ

)
+ er f

(
∆tTHR√

2σ

)]
= er f

(
∆tTHR√

2σ

)
(11)
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As result, the encounter probability will equal the error function of ∆tTHR√
2σ

. The ideal

result will be P = 1 for |∆t̂| = 0 s. Given the characteristics of the error function, the larger
∆tTHR√

2σ
is, the closer to one the output of the error function will be. Therefore, the maximum

probability achievable is determined by the selected threshold and the performance of the
predictor and ∆tTHR >

√
2σ is a necessary condition to approach optimum performance.

To check the condition, the highest σres,γp ,γ of both flows for the first critical point
are selected, which correspond to the prediction errors at their corresponding entry point
(see Table 5). The σres,γp ,γ of MLP-HTPs for F4 and F24 are 20.78 and 17.73 s, respectively,
resulting in a σ (using Equation (4)) of 27.31 and

√
2σ ≈ 38.63. On the other side, the σres,γp ,γ

of XGB-HTPs are 21.15 and 15.56 s, respectively, resulting in
√

2σ ≈ 37.13. Thus, the results
of both predictors reached a probability of one when the time separation equals 60 s.
However, for a ∆tTHR of 10 and 30 s, the maximum probability achievable is less than one,
because

√
2σ > ∆tTHR, resulting in a distribution with a reduced maximum value.

Table 5. Variation of σ in both HTPs for different γp.

γp1, γp2
f1 MLP
σres,γp1,γ

f2 MLP
σres,γp2,γ

f1 XGB
σres,γp1,γ

f2 XGB
σres,γp2,γ

MLP σ XGB σ MLP σ–XGB σ

0, 0 20.78 17.73 21.15 15.56 38.63 37.13 1.50
20, 20 17.35 14.27 17.74 11.47 31.77 29.88 1.89
40, 40 14.06 12.91 14.30 9.69 27.00 24.42 2.57
60, 60 11.48 12.08 11.54 6.64 23.57 18.82 4.74
80, 80 9.07 11.41 9.05 5.34 20.61 14.86 5.75
100, 100 4.18 10.65 3.87 1.64 16.18 6 10.23

Although the overall deviation of the predictors is slightly lower in MLP-HTPs for F4
for low γp1 and γp2, the low σres,γp ,γ in XGB-HTPs for F24 compensates for the error and
leads to a set of lower σ, as reflected in Table 5. As a result, the XGB-HTPs’ distributions
exhibit a more pronounced slope than those of the MLP-HTPs.

The analysis of the SDR graphs is further detailed by examining the parameters of the
logistic functions (see Figure 12). The values that lead to a optimum SDR are:

• L: −1. The negative sign indicates the direction of the function.
• x0: ∆tTHR.
• k: the higher the better.
• b: 1.

In Figure 12, the optimal values of L, k, and b are achieved in the CD tool for the
∆tTHR values of 60, 90, and 120 s, and they remain constant. This constancy is because they
all satisfy the condition of ∆tTHR >

√
2σ for any given γp, whereas for ∆tTHR values of

10 s and 30 s, the parameters are far away from optimal. As uncertainty decreases with
increasing γp, the parameters of these curves approach the optimal. Specifically, for 30 s,
the SDR curve meets the optimal values for L, k, and b at −28 NM. For the same reason,
the logistic parameters of CD using XGB-HTPs reach the optimal values earlier than those
using MLP-HTPs.

As result, the SDR and its associated logistic parameters facilitate setting the perfor-
mance requirements for the trajectory predictors used in the detection process. By selecting
the appropriate logistic parameters, the SDR curve that aligns with the expected CD output
distribution and performance (to be analysed in Section 3.2.2) can be constructed, and the
key points of the SDR will delineate the required TP accuracy. In the adaptive CD tool,
where the dynamic parameters are adjustable during operation, the TP requirements may
vary accordingly, to sustain CD performance across various CD configurations. This ap-
proach ensures flexibility in selecting the CD configuration while consistently upholding
CD performance.
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Figure 12. Variation of the four parameters of the sigmoid function by ∆tTHR and γp.

3.2.2. System Tuning Envelope

For the variable STE, the CD performance variations, mainly the accuracy, arising
from HTP performance and dynamic thresholds are examined.

The resulting STE curves are presented in Figure 13. Each curve is composed of several
points, which represent the proportion of nuisances and missed alerts for a given PTHR.
The two graphs on the first row present the variation of the STE curves by γp for a fixed
∆tTHR = 30 s, and the other two illustrate the variation by ∆tTHR for a fixed γp = −108 NM.
In this subsection, the selected ∆tTHR is 30 s to visualise distinct variations, because it is the
closest value to the maximum σ, as presented in Section 3.2.1.
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Figure 13. (A) STE variation by ∆tTHR when γp = −108 NM, and STE variation by γp when
∆tTHR = 30 s for MLP-HTPs. (B) Same graphs for XGB-HTPs.
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In general, despite the fluctuations in the curves, the STE curves exhibit a clear trend
across γp, where the proportion of nuisances and missed alerts decreases as γp increases,
approaching the critical point. This phenomenon is due to the reduction in the size of the
sample of potential conflicts; as γp increases, many flights have already flown over the
critical point, and the potential interaction is cleared.

Regarding the HTP-induced variation, XGB-HTPs generally exhibit a higher propor-
tion of FAs, whereas MLP-HTPs show a greater proportion of MAs. This phenomenon,
taking into account the smaller standard deviation of XGB-HTPs’ residuals, is caused by the
use of the error function (er f

(
∆tTHR+µ√

2σ

)
and er f

(
∆tTHR−µ√

2σ

)
) in the probability estimation,

using Equation (2). The error function is a sigmoid function in nature, whose slope depends
on σ. A lower σ in XGB-HTPs causes the function to have a steep slope, leading to a
rapid transition to extreme values as the predicted time separation deviates from ∆tTHR,
resulting in a sharp probability transition and thereby an increase in notified positives and
FAs. In contrast, MLP-HTPs, with higher σ values, induce a gradual slope in the error
function, manifesting a slower probability transition over the predicted separation range
and a tendency towards more MAs due to a less pronounced probability change.

The CD performance variation due to the larger disparity of the predictors’ accuracy
is assessed by comparing results at different evaluation points. As presented in Figure 13,
the FA and MA proportions both decrease with an increase in γp. This reduction is
caused by two factors. Firstly, a higher γp leads many flights to overfly the critical point,
making the interaction impossible and consequently reducing the interaction sample size.
Second, the uncertainty diminishes as γp increases, enhancing the accuracy of probability
estimations and resulting in higher rates of True Positive (TP) and True Negative (TN).
Figure 14 provides two flight pair examples, showcasing significant probability variation
over γp, converting what initially appear as FAs and MAs into TNs and TAs, respectively.
In the blue one, although it is a conflict-free flight pair, whose ∆tmin lies above ∆tTHR = 30 s,
the estimated probability at γp = −108 NM is relatively high at 0.61, making it possible
to be notified and then classified as an FA. However, as the uncertainty decreases, this
probability decreases to zero when γp reaches −28 NM, allowing the tool to accurately
identify this case as conflict-free. The second flight pair presents the opposite case: a RP
with an initial low estimated probability of 0.2 that escalates to 0.84 at γp = −8 NM, close
to the sector boundary of PAU.
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Figure 14. Examples of flight pairs with probability variation by γp.

Concerning the variation by ∆tTHR at γp = −108 NM, the observed trend is incon-
sistent. The FA and MA proportions initially decrease with increasing ∆tTHR up to 60 s,
followed by a slight increase at 90 s and 120 s. The sample sizes and the error function again
influence the results. RP and CD notifications are both dependent on ∆tTHR; the size of both
samples increases with less strict ∆tTHR. In terms of the error function, unlike the variation
by γp, changing the ∆tTHR does not affect the overall steepness of the curve; it changes
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the point along the existing sigmoid curve. Given the same σ and predicted separation,
the difference between ∆tTHR and the predicted separation increases with ∆tTHR, where
the estimated point is likely to be located at the extreme steep regions. Table 6 shows an
example, illustrating changes in analysis sample size with different ∆tTHR.

Table 6. Number of flight pairs with ∆tmin < ∆tTHR at γp = −108 NM and PTHR = 0.5.

∆tT HR No. RP No. FA No. MA

10 35 0 35
30 92 26 21
60 173 12 15
90 226 21 23

120 325 18 28

These graphs could assist the user in selecting the most appropriate CD operating
point for the operation, depending on LAT, by choosing suitable dynamic thresholds. First,
this involves selecting the most appropriate ∆tTHR that exhibits the lowest proportions of
FAs and MAs.

Secondly, the selection of PTHR determines the notification of predicted alerts, rep-
resenting the trade-off between FAs and MAs. The dynamic nature of PTHR is beneficial
during the operation. A low PTHR implies a higher proportion of nuisances and fewer
missed alerts, while a high PTHR implies fewer nuisances and more missed alerts. The trade-
off is tailored to the specific roles and tasks of the executive and planner controller, as well
as to the look-ahead time.

On one hand, a large LAT allows for the consideration of a low rate of MAs and a
reduction in the number of missed alerts. This is considering the greater TP prediction
error and more available time for the controller to further evaluate the situation at a large
LAT. Consequently, this implies selecting a low PTHR.

On the other hand, as flights approach the critical point, a higher operating point that
prioritises highly probable encounters becomes more appropriate. This is aimed at short
LATs, to reduce false alerts by notifying interactions that require immediate actions and
thus avoiding overwhelming the controllers.

Hence, the STE facilitates the selection of different operating points for the adaptive
CD tool, depending on the corresponding LAT.

CD Stability

The stability of the estimated probability cannot be directly discerned from the previ-
ous figures of merit; it requires the examination of specific instances. The analysis, based
on the two flight pairs selected in Section 3.1, demonstrates that CD stability is influenced
by the stability of the predictions, as depicted in Figure 15. Moderate fluctuations in the
predictions result in smooth variation in the estimated probability with γp, while large
irregularities result in high-frequency fluctuations.
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Figure 15. Stability of estimated encounter probability—examples.
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4. Discussion

In this paper, the primary objectives included assessing the impact of trajectory predic-
tor performance on the encounter probability generated by an adaptive conflict detection
tool and examining the flexibility of the CD tool dependent on its adjustable thresholds.
Two figures of merit were proposed to address these objectives, which also assist in select-
ing the most suitable trajectory predictors and dynamic CD thresholds. These selections
ultimately determine the operating point necessary to meet operational requirements.

For the analysis conducted, trajectory predictors were used to compute the time
separation at critical points where minimum separation might be infringed. The conflict
detection tool then evaluated the difference between the predicted time and the actual time
to compute the encounter probability.

Two simple machine-learning-based horizontal trajectory predictors were employed
for each flow of analysis: one trained using extreme gradient boosting, and the other using
a multi-layer perceptron regressor. By leveraging these predictors and multiple evaluation
points with varying uncertainty, changes in the figures of merit due to the prediction error
could be visualised.

Flexibility was attributed to the conflict detection tool through its three adjustable
thresholds: the distance threshold, defining the critical point; the time difference threshold,
influencing the resulting encounter probability; and the probability threshold, determining
the notification of alerts. The latter two thresholds were examined with various values
to illustrate their effects on alert notifications and the implications for different operat-
ing points.

To assess the impact, predictor performance was quantified using the mean and
standard deviation of prediction errors, evaluated at each location and for every subsequent
segment. Distinct regions were identified in the metrics’ heatmaps, with locations of splits
typically corresponding to ground speed variations.

Furthermore, the relationship between trajectory predictors and the CD tool was
demonstrated using two figures of merit: system dynamic range and system tuning en-
velope. System dynamic range illustrates the variation of encounter probability with
predicted time separation. It demonstrates that the rate at which the encounter probability
decreases with increasing predicted separation is higher for high-performance predictors,
and it declines with the deterioration of TP performance. The distribution of the system dy-
namic range follows a logistic function, and the analysis of its parameters aids in selecting
appropriate horizontal trajectory predictors.

The remaining figure of merit, system tuning envelope, illustrates the trade-off be-
tween the proportion of nuisances and missed alerts. It demonstrated that high-performance
predictors provide a smaller proportion of nuisances and missed alerts. However, its main
utility lies in the selection of operating points, allowing for the fine-tuning of the system to
better align with specific requirements for managing the airspace safely. The notifications
are mainly impacted by the probability threshold; lower thresholds result in a larger propor-
tion of nuisances and a lower proportion of missed alerts, while higher thresholds enhance
the reliability of notified alerts at the expense of increased missed alerts. The trade-off
decision rests with the controllers and depends on their specific tasks.

The selection of the time difference threshold depends on the performance of the
trajectory predictors. It has been observed that when the ratio of the time separation
threshold for conflict detection to the prediction errors exceeds

√
2, the behaviour of the

conflict detector converges towards the ideal, following a stepped function.
In conclusion, this study demonstrated that the performance of the trajectory predictor

and the conflict detector are intrinsically related, and the figures of merit are useful in
selecting appropriate trajectory predictors and operating points for an adaptive conflict
detection tool. Additionally, given a specified operating point, these figures of merit
facilitate the specification of prediction performance requirements and conflict detection
configurations to achieve the desired operational outcomes.
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Building upon the findings of this study, the next stages can be divided into three
primary blocks. The first block encompasses further research and development to enhance
trajectory predictors, aligned with operational requirements that may be elicited from
the application of this study. This part can involve extending investigations to vertical
predictors, as well as assessing other impacts on the proposed figures of merit, such as
flight Intent variations. To achieve this, it may entail the exploration of advanced machine
learning algorithms and the integration of additional input sources, such as airborne
information through extended projected profiles.

The second block focuses on the further development of the conflict detector, expand-
ing the detection process to encompass not only interactions between flights within the
same flow but also those between singular flights that do not belong to any standard flows,
and between singular flights.

Following this, the third block will focus on integrating the figures of merit into the
decision making process within the existing separation management workflow. The results
of this study can contribute to the evolution of human–machine interactions of air traffic
controllers, enabling the dynamic selection of operating points of conflict detectors, based
on their operational needs. Additionally, incorporating uncertainty management and
improving trajectory predictors could enhance the controller’s trust in these tools, thus
underpinning the deployment of future concepts such as a reduction of the separation
minima, which would bring significant performance benefits [33].
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