
Citation: Qiao, G.; Zhuang, Y.; Ye, T.;

Qiao, Y. A Digital-Twin-Based

Detection and Protection Framework

for SDC-Induced Sinkhole and

Grayhole Nodes in Satellite

Networks. Aerospace 2023, 10, 788.

https://doi.org/10.3390/aerospace

10090788

Academic Editors: Roberto Sabatini

and Alessandro Gardi

Received: 17 June 2023

Revised: 4 September 2023

Accepted: 6 September 2023

Published: 7 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

A Digital-Twin-Based Detection and Protection Framework for
SDC-Induced Sinkhole and Grayhole Nodes in
Satellite Networks
Gongzhe Qiao 1, Yi Zhuang 1,* , Tong Ye 1 and Yuan Qiao 2

1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 211100, China

2 Harbin Electric Power Bureau, STATE GRID Corporation of China, Harbin 150050, China
* Correspondence: zy16@nuaa.edu.cn

Abstract: In the space environment, cosmic rays and high-energy particles may cause a single-event
upset (SEU) during program execution, and further cause silent data corruption (SDC) errors in
program outputs. After extensive research on SEU and SDC errors, it has been found that SDC errors
in the routing program in satellite networks may lead to the emergence of Sinkhole (SH) and Grayhole
(GH) nodes in the network, which may cause damage to satellite networks. To find and solve the
problems in time, a digital-twin-based detection and protection framework for SDC-induced SH and
GH nodes in satellite networks is proposed. First, the satellite network fault model under SEU and
the generation mechanism of SH and GH nodes induced by SDC errors are described. Then, the data
structure based on digital twins required by the proposed detection and protection framework is
designed, and the detection methods of SH and GH nodes induced by SDC errors are proposed. SKT
and LLFI simulation tools are used to build a simulated Iridium satellite network and carry out fault
injection experiments. Experiment results show that the accuracy of the proposed detection method
is 98–100%, and the additional time cost of routing convergence caused by the proposed framework
is 3.1–28.2%. Compared with existing SH and GH detection methods, the proposed methods can
timely and accurately detect faults during the routing update stage.

Keywords: satellite network; routing mechanism; SDC error; digital twin; sinkhole; grayhole;
detection and protection

1. Introduction

According to data from the National Oceanic and Atmospheric Administration (NOAA)
Space Environmental Service Center, single-event upset (SEU) events caused by high-energy
particles occur every year on average [1]. SEU refers to the reaction caused by a single
high-energy particle entering the sensitive area of semiconductor devices (such as micro-
processors, semiconductor memories, or power transistors), resulting in a single-bit upset
of memory cells [2]. In the complex space environment, cosmic rays or high-energy parti-
cles can cause SEU in satellite systems and cause errors in program outputs. Silent Data
Corruption (SDC) is a type of SEU error that is hard to detect [3]. SDC errors in satellite
routing programs may spread to the satellite network during the routing update process,
causing the satellite network to be subject to various threats. Among them, Sinkhole (SH)
and Grayhole (GH) nodes are among the most serious threats in the network layer.

In this study, we find that in the route discovery phase, a satellite affected by SDC
errors may claim to have a false inter-satellite link, and the data packets passing through
the link will be discarded, resulting in a SH node. In the routing planning stage, SEU may
cause data loss, destination node change, and next hop node change in the routing table,
which will make the affected satellite unable to find the next hop and discard the data

Aerospace 2023, 10, 788. https://doi.org/10.3390/aerospace10090788 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10090788
https://doi.org/10.3390/aerospace10090788
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-0706-0148
https://orcid.org/0000-0003-3812-3105
https://doi.org/10.3390/aerospace10090788
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10090788?type=check_update&version=1

Aerospace 2023, 10, 788 2 of 29

packets, thus generating a GH node. In this paper, we regard the nodes that discard all
packets passing through themselves (Blackhole nodes) as a special case of GH nodes.

Digital twins (DTs) are virtual reflections of physical objects, which can make full use
of the physical model, sensor update data, history data, and other information to map
the real physical object in the virtual digital space [4]. The combination of digital twins
and satellite networks is still in the exploration stage. The US Air Force has used a digital
twin of the Lockheed Martin GPS IIR satellite to detect cybersecurity issues by performing
penetration testing on the digital replica of the satellite. The satellite network topology is
time-varying, and the satellite movement in orbit is predictable [5]. Therefore, most satellite
network routing update mechanisms consist of two main stages: the route discovery phase
and the route planning phase. Network threats have always been a research hotspot. The
existing attack detection methods are mainly based on machine learning [6,7] and rules [8,9].
However, as shown in Figure 1, most of the above methods detect the traffic during the
satellites’ data forwarding process, after the routing update, and cannot effectively detect
the fault node when the traffic does not pass through the problem node [10]. The proposed
method works at the routing update stage. By dividing the routing update process into
a route discovery phase and a route planning phase, a routing information base (RIB)
generated during the route discovery phase could be completed before data forwarding,
and the detection of routing tables may be completed before the satellite queries the routing
table (data forwarding stage). For SHs and GHs induced by SDC errors, it is worthwhile to
design a detection and protection framework that could complete the detection as soon as
possible and occupy a small amount of satellite computing resources.

Aerospace 2023, 10, x FOR PEER REVIEW 2 of 31

cause data loss, destination node change, and next hop node change in the routing table,
which will make the affected satellite unable to find the next hop and discard the data
packets, thus generating a GH node. In this paper, we regard the nodes that discard all
packets passing through themselves (Blackhole nodes) as a special case of GH nodes.

Digital twins (DTs) are virtual reflections of physical objects, which can make full use
of the physical model, sensor update data, history data, and other information to map the
real physical object in the virtual digital space [4]. The combination of digital twins and
satellite networks is still in the exploration stage. The US Air Force has used a digital twin
of the Lockheed Martin GPS IIR satellite to detect cybersecurity issues by performing
penetration testing on the digital replica of the satellite. The satellite network topology is
time-varying, and the satellite movement in orbit is predictable [5]. Therefore, most
satellite network routing update mechanisms consist of two main stages: the route
discovery phase and the route planning phase. Network threats have always been a
research hotspot. The existing attack detection methods are mainly based on machine
learning [6,7] and rules [8,9]. However, as shown in Figure 1, most of the above methods
detect the traffic during the satellites’ data forwarding process, after the routing update,
and cannot effectively detect the fault node when the traffic does not pass through the
problem node [10]. The proposed method works at the routing update stage. By dividing
the routing update process into a route discovery phase and a route planning phase, a
routing information base (RIB) generated during the route discovery phase could be
completed before data forwarding, and the detection of routing tables may be completed
before the satellite queries the routing table (data forwarding stage). For SHs and GHs
induced by SDC errors, it is worthwhile to design a detection and protection framework
that could complete the detection as soon as possible and occupy a small amount of
satellite computing resources.

Figure 1. Comparison between the method proposed in this article and existing methods. (a) The
proposed method works at this stage, which uses DT and process files to detect occurrences of SHs
or GHs. (b) The existing SH or GH detection method usually works at this stage, which uses node
behavior and network traffic.

The main challenges facing any detection and protection technology of SH and GH
nodes induced by SDC errors are: (1) SHs and GHs are relatively serious threats on the
network layer, and current research mainly focuses on SHs and GHs caused by malicious
nodes. SEU can cause SDC errors in the satellite network routing programs, and further
cause SHs and GHs. At present, few studies analyze the generation mechanism of the SH
and GH nodes induced by SDC errors. (2) The existing research determines whether SH
nodes and GH nodes exist in the satellite network by establishing a model based on rules
or machine learning and analyzing the forwarding behavior or traffic of the satellites. For
SH and GH nodes induced by SDC errors, such methods fail to detect whether SDC errors
can cause SH and GH nodes promptly after SDC errors occur. (3) Digital twin technology
can enable ground stations to obtain satellite network status information. At the same
time, the ground station can judge whether the satellite network has problems through a

Figure 1. Comparison between the method proposed in this article and existing methods. (a) The
proposed method works at this stage, which uses DT and process files to detect occurrences of SHs
or GHs. (b) The existing SH or GH detection method usually works at this stage, which uses node
behavior and network traffic.

The main challenges facing any detection and protection technology of SH and GH
nodes induced by SDC errors are: (1) SHs and GHs are relatively serious threats on the
network layer, and current research mainly focuses on SHs and GHs caused by malicious
nodes. SEU can cause SDC errors in the satellite network routing programs, and further
cause SHs and GHs. At present, few studies analyze the generation mechanism of the SH
and GH nodes induced by SDC errors. (2) The existing research determines whether SH
nodes and GH nodes exist in the satellite network by establishing a model based on rules or
machine learning and analyzing the forwarding behavior or traffic of the satellites. For SH
and GH nodes induced by SDC errors, such methods fail to detect whether SDC errors can
cause SH and GH nodes promptly after SDC errors occur. (3) Digital twin technology can
enable ground stations to obtain satellite network status information. At the same time, the
ground station can judge whether the satellite network has problems through a detection
algorithm. However, the above methods will also increase the additional computing and
communication time costs of the satellite system. Therefore, a satellite system based on
digital twins needs to consider the balance between detection efficiency and additional
costs after the implementation of a detection and protection framework.

To solve the above problems, we propose a digital-twin-based detection and protection
framework for SDC-induced SH and GH nodes in satellite networks. The contributions of
this paper are as follows:

Aerospace 2023, 10, 788 3 of 29

1. By carrying out fault injection experiments and SDC error analysis for each pro-
gram, we establish a satellite network fault model under SEU. Also, we discuss
the generation mechanism of SH and GH nodes induced by SDC errors by ana-
lyzing a typical satellite network routing mechanism and the behavior of satellites
in each routing phase, providing theoretical support for subsequent detection and
protection methods.

2. We propose a digital-twin-based detection and protection framework for SH and
GH nodes induced by SDC errors. Before the actual data transmission, the proposed
framework does all that it can to detect the SH and GH nodes induced by SDC errors
in the satellite network and recovers the fault nodes, which provides technical support
for the availability and reliability of the satellite network.

3. We propose a detection algorithm of SH and GH nodes based on digital twin routing
data, which can complete the detection before data forwarding. In the simulated
Iridium network environment, the experiment results show that the accuracy of
the proposed detection method is 98–100%, and the additional time cost of routing
convergence caused by the proposed framework is 3.1–28.2%.

The rest of this paper is organized as follows. The literature is reviewed in Section 2. The
satellite network fault model under SEU and the generation mechanism of SH and GH nodes
are presented in Section 3. The detection and protection framework for SDC-induced SH and
GH nodes in satellite networks is proposed in Section 4. Section 5 shows the experimental
evaluation results of the proposed method. And Section 6 concludes this paper.

2. Related Work

A number of research studies have applied digital twin technology to the design of
satellite network protection frameworks and methods. For satellite security monitoring and
verification, Hou et al. [4] present a framework that combines digital twins with runtime
verification and propose a state synchronization method to ensure secure and efficient
long-distance communication between satellites and digital twins. To monitor the satel-
lite’s behavior in real time and ensure the reliability of the satellite systems, Shangguan
et al. [11] present a fault diagnosis and health monitoring (FD-HM) approach based on
digital twins. For satellite–terrestrial networks, the satellite moving speed is faster than
the ground station, which can cause inconsistent service and frequent satellite handover.
To solve these problems, Zhao et al. [12] propose a digital-twin-assisted storage strategy
for satellite–terrestrial networks (INTERLINK) and a satellite-storage-oriented handover
scheme. The Iridium constellation is widely used as a satellite network simulation sce-
nario. For example, Liu et al. [13] propose an intelligent energy-aware routing protocol
for satellite networks and use the Iridium constellation as an experimental scenario for
performance evaluation. At the same time, some scholars try to combine digital twins with
industrial facilities [14–16].

The detection of SH and GH nodes has been a hot research topic with great concern.
Many detection algorithms have recently been proposed in this area. To protect the EIoT
environment against SH attacks, Pundir et al. [8] propose an intrusion detection scheme
called SAD-EIoT, in which edge servers perform SH attack detection by exchanging mes-
sages. Prathapchandran et al. [17] propose a lightweight SH detection scheme RFTrust,
which uses Random Forest (RF) and Subjective Logic (SL) to improve the efficiency of
SH detection. Zaminkar et al. [18] propose a SH detection method SoS-RPL, which ranks
the nodes in the network and allows child nodes to detect the malicious parent by using
the routing graph information. Machine Learning (ML) can also be effective in detecting
Blackhole attacks. Gao et al. [6] constructed a behavior classifier to detect Blackhole attacks
in opportunistic networks. They also designed a collusion filtering strategy to improve
detection accuracy. In another study [7], three supervised ML algorithms are trained and
evaluated for detecting rank and Blackhole attacks in IoT networks. At the same time, there
are also studies to improve network security by strengthening routing strategies [19–21].
Considering the periodic topology changes of satellite networks, Pan et al. [19] propose

Aerospace 2023, 10, 788 4 of 29

OPSPF, which makes use of the regularity of constellation and performs periodic routing
calculations for the generation of instantaneous routing tables.

In the process of routing update, the error output of the program may bring disas-
trous consequences to the satellite network. Therefore, there are some error detection and
program protection methods [22–24]. To provide flexible and effective error protection,
Didehban et al. [22] propose an instruction duplication error protection scheme gZDC,
which can enhance protection capabilities by using coarse-grained scheduling and asymmet-
ric control-flow signatures. So et al. [23] propose a compiler-level redundant multithreading
scheme EXPERT, which can detect the manifestation of transient and permanent faults in
hardware components. By adding redundant threads, they propose a software-level triply
redundant multithreading scheme FISHER [24], which can improve error detection and
recovery. However, the above error detection and program protection methods do not
take into account the specific characteristics of satellite networks such as latency, limited
bandwidth, and constrained resources. These constraints result in such methods not being
well adapted to satellite networks. Especially under resource constraints, the redundancy
mechanism of the above methods will greatly increase the computational burden and
energy consumption of satellites. In the framework proposed in this article, detection and
protection are carried out by ground stations, which greatly reduces the computational and
storage pressure on satellites.

A comparison of the existing detection and protection methods is shown in Table 1.
As far as we know, there are few methods for detecting SH and GH nodes caused by SDC
during routing updates. Therefore, this article analyzes and compares traffic- and behavior-
based SH or GH detection methods (TBDMs) and SDC error detection methods (SEDMs).
TBDMs can determine the presence of SH or GH nodes based on the behavior of nodes or
traffic information in the network. However, these methods work in the forwarding stage,
and, therefore, they cannot detect SH or GH nodes caused by SDC (during the routing
update stage) in time. In addition, TBDMs require satellites to run additional detection
programs, which increases the computational burden and energy consumption of satellites.
SEDMs can detect possible SDC errors through redundancy during program execution.
However, these methods increase program execution time, satellite computational burden,
and satellite energy consumption, and do not meet the high-efficiency requirements of
routing programs. Also, SEDMs are prone to overprotection, namely the introduction of
false alarms by detecting benign faults (faults that are going to be masked).

Table 1. Comparison of the existing detection and protection methods.

Methods Description Disadvantages

Traffic- and
behavior-based detection

and protection
method
(TBDM)

SAD-EIoT [8]

1. Nodes perceive network status by
exchanging messages.
2. Detect SH nodes in the network
through assumptions and assertions.

1. Working in the forwarding
stage, and, therefore, cannot SH or
GH nodes caused by SDC (during
the routing update stage) in time.
2. Requiring one or more satellites
with strong computing power.
3. Increasing computational
burden and energy consumption
of satellites.

RFTrust [17]

1. Nodes perceive network status by
exchanging messages.
2. Random forest and subjective logic are
used to detect SHs.

SoS-RPL [18]

1. Nodes can exchange information with
each other.
2. Child nodes can only detect the
malicious parent by using the routing
graph information.

CEBD [6]/
AutoML [7]

1. Collect and analyze data exchanged
between nodes.
2. Construct behavior classifiers to
distinguish the blackhole behaviors from
rational ones.

Aerospace 2023, 10, 788 5 of 29

Table 1. Cont.

Methods Description Disadvantages

Error detection and
protection

method
(SEDM)

EXPERT [23]

1. Duplicate application main thread.
2. Main thread updates memory, while
the other loads values from memory and
detects errors.

1. Increasing program execution
time, which does not meet the
high-efficiency requirements of
routing programs.
2. Increasing computational
burden and energy consumption
of satellites.
3. Overprotection problem,
namely introducing false alarms
by detecting benign faults (faults
that are going to be masked).

FISHER [24]

1. Triplicate application main thread.
2. Main thread updates memory and the
redundant threads perform
error detection.

gZDC [22]

1. Duplicate arithmetic and logical
operations.
2. Replicate the execution of critical
instructions and check for errors by
comparing the values of redundant
register operands.

DT-based
detection and protection

method
Our method

1. Virtual satellite network updates
according to the actual satellite network.
2. Check the routing update process file
to determine if a soft error has occurred
and could cause a SH or GH.

1. Increasing satellite
communication overhead.

3. Fault Model and SH and GH Node Generation Mechanism

Transient faults or soft errors are usually caused by high-energy protons, electromag-
netic interference, or galactic cosmic rays, and they are considered one of the most daunting
reliability challenges for microprocessors [22]. Transient faults can lead to random bit flips
in hardware devices such as registers, and may further cause application crashes, hangs,
and incorrect running results [25]. Although a soft error will not cause hardware damage
or loss, the application errors caused by it may also lead to catastrophic failure [26]. At
present, the closest approach to the actual situation is to conduct irradiation experiments
using a particle accelerator. However, this method is expensive and difficult to schedule.
Software-based simulation fault injection methods (such as LLFI) are more flexible and
cost-effective and the effectiveness of LLFI has been demonstrated in [27]. Therefore, we
use LLFI for the fault injection campaign in this paper. Based on LLVM, LLFI is able
to perform static analysis and inject faults in selected locations in the program. At the
same time, LLFI can inject faults into the routing programs by modifying the source or
destination register values of the targeted instruction, potentially leading to the generation
of SDC. This capability aligns with the requirements of this article. LLFI allows users to
select the instructions to be injected in the configuration file, and its default injection option
is all instructions that can be injected. In this paper, we use the default injection option.

The main research object of this paper is the routing mechanism based on the Walker
constellation architecture [28] and the time slot mechanism [29]. Through extensive research
on SEU and SDC errors, we find that SEU may cause SDC errors in routing programs,
and further cause SH and GH nodes in satellite networks, which will have a serious
impact on the availability and reliability of satellite networks. Therefore, we conducted
information collection and fault injection experiments on satellite routing programs at
different phases. By analyzing the experimental data, we obtain the impact mode of SEU
on routing programs, construct the fault model, and present the generation mechanism of
SH and GH nodes.

3.1. Satellite Network Fault Model under SEU

Generally, most satellite network routing mechanisms include two main phases: the
route discovery phase and the route planning phase. The main function of the route
discovery phase is to collect a link-state advertisement (LSA), update the local network link-

Aerospace 2023, 10, 788 6 of 29

state information, and generate a routing information base (RIB) for subsequent routing
planning. In the routing planning phase, satellite nodes obtain all the link-state information
of the satellite network from the RIB, use the path planning algorithm to plan the paths to
other nodes in the satellite network, and generate routing tables.

SEU may cause four results in program execution: Masked, SW Detected, OS/HW
Detected, and SDCs [22]. Masked means that the running result of the affected program
is equal to the golden run result of the program. That is, the SEU has no impact on
the output of the program. SW Detected represents cases where the protection scheme
detects the manifestation of an error and raises the error detection flag. OS/HW Detected
represents cases where fault injection simulation runs terminate permanently by generating
an exception (i.e., segmentation faults or unknown instruction exception) or cause a time-
out error. Based on whether it is a case of SW Detected or OS/HW Detected, the system or
staff can make an appropriate response. The program in which an SDC error occurs can
execute normally without any indication of system errors but may output error results, a
situation that is difficult to detect [3]. Therefore, in this paper, we mainly focus on SDC
errors (the changes in program execution results caused by fault injection) and the impact
of their further propagation on the satellite network. We conduct 10,000 fault injection
experiments for each program in the route discovery and planning phases. We note that
some SDC errors that may be caused by fault injection belong to the same category. For
example, in the fault injection scenario of the Build_RIB program, 173 SDC errors belong
to the false links category (i.e., an unconnected path marked as connected). That is to say,
even though SDC errors are different, these SDC errors may belong to the same category. In
this context, we can achieve the desired results through 10,000 fault injection experiments.
Through statistical analysis of the fault injection results, we find that SDC errors caused by
SEU in satellite network routing programs are likely to cause the emergence of SH and GH
nodes in the network.

Because the data stored in memory is usually protected by a checking mechanism (such
as ECC) [30], we do not consider the impact of SEU on the static stored data. This paper
mainly considers the program running errors caused by SEU in the computing unit of the
processor. The proposed satellite network fault model under SEU is shown in Figure 2. The
model is divided into two parts according to the impact of SEU on different routing phases.

Aerospace 2023, 10, x FOR PEER REVIEW 6 of 31

3.1. Satellite Network Fault Model under SEU
Generally, most satellite network routing mechanisms include two main phases: the

route discovery phase and the route planning phase. The main function of the route dis-
covery phase is to collect a link-state advertisement (LSA), update the local network link-
state information, and generate a routing information base (RIB) for subsequent routing
planning. In the routing planning phase, satellite nodes obtain all the link-state infor-
mation of the satellite network from the RIB, use the path planning algorithm to plan the
paths to other nodes in the satellite network, and generate routing tables.

SEU may cause four results in program execution: Masked, SW Detected, OS/HW
Detected, and SDCs [22]. Masked means that the running result of the affected program
is equal to the golden run result of the program. That is, the SEU has no impact on the
output of the program. SW Detected represents cases where the protection scheme detects
the manifestation of an error and raises the error detection flag. OS/HW Detected repre-
sents cases where fault injection simulation runs terminate permanently by generating an
exception (i.e., segmentation faults or unknown instruction exception) or cause a time-out
error. Based on whether it is a case of SW Detected or OS/HW Detected, the system or staff
can make an appropriate response. The program in which an SDC error occurs can execute
normally without any indication of system errors but may output error results, a situation
that is difficult to detect [3]. Therefore, in this paper, we mainly focus on SDC errors (the
changes in program execution results caused by fault injection) and the impact of their
further propagation on the satellite network. We conduct 10,000 fault injection experi-
ments for each program in the route discovery and planning phases. We note that some
SDC errors that may be caused by fault injection belong to the same category. For example,
in the fault injection scenario of the Build_RIB program, 173 SDC errors belong to the false
links category (i.e., an unconnected path marked as connected). That is to say, even though
SDC errors are different, these SDC errors may belong to the same category. In this con-
text, we can achieve the desired results through 10,000 fault injection experiments.
Through statistical analysis of the fault injection results, we find that SDC errors caused
by SEU in satellite network routing programs are likely to cause the emergence of SH and
GH nodes in the network.

Because the data stored in memory is usually protected by a checking mechanism (such
as ECC) [30], we do not consider the impact of SEU on the static stored data. This paper
mainly considers the program running errors caused by SEU in the computing unit of the
processor. The proposed satellite network fault model under SEU is shown in Figure 2. The
model is divided into two parts according to the impact of SEU on different routing phases.

Figure 2. Satellite network fault model under SEU. Figure 2. Satellite network fault model under SEU.

(1) In the route discovery phase, satellites can obtain the overall link states of the
satellite network by sending and receiving link-state information from each other. Then
satellites calculate and update the local RIBs. SEU may affect the satellite that computes
the RIB, resulting in SDC errors in the generated RIB. One type of SDC error may cause
false links in the RIB (Detailed in Section 3.2). In the subsequent route planning, the wrong
RIB will be used as the input of the path planning algorithm, and further affect the satellite

Aerospace 2023, 10, 788 7 of 29

node to make it believe that there is a false link. When the path planning algorithm adopts
the false link, it can be considered that the satellite node is deceived and a SH node appears
in the satellite network.

(2) In the route planning phase, the satellite calculates the optimal path through the
path planning algorithm, obtains the next hop node ID, and generates a routing table. SEU
may affect the execution of the path planning program, cause path planning errors, and
further cause SDC errors in the generated routing table. SDC errors include data loss in
the routing table, a change in destination nodes, or unreachable next hops (Detailed in
Section 3.3). When any of the above SDC errors appear in the wrong routing table, it can be
considered that there may be GH nodes in the satellite network. In the subsequent data
forwarding process, the satellite node queries the wrong routing table, and may not be able
to find the next hop and discard the data packet.

To explain the generation mechanism of the SH and GH nodes and the detection and
protection framework proposed in this paper in detail, we construct a satellite network
scenario based on the Iridium network structure [13] and DHRP [31]. DHRP is a typical
routing protocol based on link delay. The programs executed by satellites in the route
discovery phase and the route planning phase are shown in Table 2. Based on this scenario,
we further discuss the impact of SEU on the satellite network routing mechanism and the
generation mechanism of SH and GH nodes induced by SDC errors.

Table 2. The main programs executed by satellites during the routing phases.

Route Discovery Phase Route Planning Phase

Name Build_RIB Dijkstra’s Shortest Path (DSP)

Input LSA (Link-state advertisement) RIB (Routing information base)

Output RIB RT (Routing table)

Main
function

Receive LSA information from other
satellite nodes, obtain the overall link
state of the satellite network, and
generate an RIB.

Read the link-state information in the
local RIB, use the Dijkstra algorithm to
plan the shortest path to other nodes,
and generate an RT.

3.2. SH Node Generation Mechanism

The program call graph can describe the functional relationships in programs, which
helps to understand program structure. Control-Flow Graphs (CFGs) are an abstract
representation of all possible execution paths of the program flow, formed by linking basic
blocks using directed edges (branches). Also, CFGs can depict the control flow execution of
the corresponding function and the possible execution order of basic blocks and instructions.
To explain the generation mechanism of the SH node, we take the program Build_RIB in
the route discovery phase in Table 2 as an example to conduct fault injection experiments.
First, based on the Build_RIB intermediate code generated by the Clang compilation, the
program call graph is built in this paper, as shown in Figure 3. Build_RIB reads the LSA by
calling the readFile function through the main function and writes the output results into
the RIB by calling the writeFile function.

To simulate a SEU of the program, we use the LLFI tool [32] to inject 10,000 faults
into the program in the form of a single-bit upset and carry out statistical analysis on the
results. Potential SDC errors that may be caused by fault injection include format errors,
link missing, weight changes, and false links. The error occurrence number and description
are shown in Table 3. Among them, format error, link loss, and weight change cannot cause
a SH node to form in subsequent routing planning. Also, if the false link delay is too long,
the path planning algorithm will not use the link in the process of path planning, which
thus cannot lead to a SH node forming. Therefore, we focus on the false link problem
caused by SDC errors. By comparing the routing tables generated by the DSP with error
RIBs and the golden run routing tables generated in the routing planning phase, we obtain
101 cases in which false links are used in the path planning. That is, SH nodes exist in the

Aerospace 2023, 10, 788 8 of 29

satellite network and affect the network. In this way, we find that the probability of the
occurrence of SH nodes that can affect the satellite network is about 1%.

Aerospace 2023, 10, x FOR PEER REVIEW 8 of 31

SH node to form in subsequent routing planning. Also, if the false link delay is too long, the
path planning algorithm will not use the link in the process of path planning, which thus
cannot lead to a SH node forming. Therefore, we focus on the false link problem caused by
SDC errors. By comparing the routing tables generated by the DSP with error RIBs and the
golden run routing tables generated in the routing planning phase, we obtain 101 cases in
which false links are used in the path planning. That is, SH nodes exist in the satellite net-
work and affect the network. In this way, we find that the probability of the occurrence of
SH nodes that can affect the satellite network is about 1%.

Figure 3. The call graph of Build_RIB.

Table 3. Build_RIB SDC error occurrence number and description.

SDC Error Occurrence Description
Format error 10 SDC error causes the number of RIB columns to change.

Link missing 124
SDC error causes the original connected link to be
marked as disconnected or missing.

Weight change 121 SDC error causes the link delay of the original connected
path to change.

False link 173
SDC error causes an unconnected path to be marked as
connected. We find that of these 173 false links, 101 can
generate SH nodes.

In the 101 cases where a SH node occurs, the instructions in the readFile function are
affected 61 times, the instructions in the writeFile function 24 times, and the instructions in
the main function 16 times. The reason why the instructions in the readFile function are
affected 61 times is that during the Build_RIB program execution, the main function calls
it 6 times. The readFile function has 20 basic blocks, among which the CFG and the instruc-
tions that lead to SH nodes forming are shown in Figure 4. The instructions that cause the
most SH nodes are load, icmp, sext, getelementptr, and add. The writeFile function has 14
basic blocks, of which the basic blocks and the instructions that lead to SH nodes forming
are shown in Figure 5. The instructions that cause SH nodes are mainly concentrated in
the basic block %34, and the instructions that cause the most SH nodes are load and getel-
ementptr. The main function has 55 basic blocks. Since there are six loop bodies with the
same structure (Including seven basic blocks) in the main function, we map the instruc-
tions that lead to SH nodes forming in the last five loop bodies to the original loop body
during the analysis. In this way, we obtain the CFG and the instructions that lead to SH
nodes forming, as shown in Figure 6.

Figure 3. The call graph of Build_RIB.

Table 3. Build_RIB SDC error occurrence number and description.

SDC Error Occurrence Description

Format error 10 SDC error causes the number of RIB columns to change.

Link missing 124 SDC error causes the original connected link to be
marked as disconnected or missing.

Weight change 121 SDC error causes the link delay of the original
connected path to change.

False link 173
SDC error causes an unconnected path to be marked as
connected. We find that of these 173 false links, 101 can
generate SH nodes.

In the 101 cases where a SH node occurs, the instructions in the readFile function are
affected 61 times, the instructions in the writeFile function 24 times, and the instructions
in the main function 16 times. The reason why the instructions in the readFile function
are affected 61 times is that during the Build_RIB program execution, the main function
calls it 6 times. The readFile function has 20 basic blocks, among which the CFG and
the instructions that lead to SH nodes forming are shown in Figure 4. The instructions
that cause the most SH nodes are load, icmp, sext, getelementptr, and add. The writeFile
function has 14 basic blocks, of which the basic blocks and the instructions that lead to SH
nodes forming are shown in Figure 5. The instructions that cause SH nodes are mainly
concentrated in the basic block %34, and the instructions that cause the most SH nodes
are load and getelementptr. The main function has 55 basic blocks. Since there are six loop
bodies with the same structure (Including seven basic blocks) in the main function, we map
the instructions that lead to SH nodes forming in the last five loop bodies to the original
loop body during the analysis. In this way, we obtain the CFG and the instructions that
lead to SH nodes forming, as shown in Figure 6.

Aerospace 2023, 10, 788 9 of 29Aerospace 2023, 10, x FOR PEER REVIEW 9 of 31

Figure 4. The CFG and the instructions in the readFile function that lead to SH nodes forming.

Figure 5. The basic blocks and the instructions in the writeFile function that lead to SH nodes
forming.

Figure 6. The CFG and the instructions in the main function that lead to SH nodes forming.

As shown in Figure 7, a typical example of a SH node caused by SEU is that during
the dynamic cycle 61,316 of the Build_RIB program execution, the 12th bit of the next in-
struction (%18) of the basic block %15 in the readFile function is flipped, resulting in a false

Figure 4. The CFG and the instructions in the readFile function that lead to SH nodes forming.

Aerospace 2023, 10, x FOR PEER REVIEW 9 of 31

Figure 4. The CFG and the instructions in the readFile function that lead to SH nodes forming.

Figure 5. The basic blocks and the instructions in the writeFile function that lead to SH nodes
forming.

Figure 6. The CFG and the instructions in the main function that lead to SH nodes forming.

As shown in Figure 7, a typical example of a SH node caused by SEU is that during
the dynamic cycle 61,316 of the Build_RIB program execution, the 12th bit of the next in-
struction (%18) of the basic block %15 in the readFile function is flipped, resulting in a false

Figure 5. The basic blocks and the instructions in the writeFile function that lead to SH nodes forming.

Aerospace 2023, 10, x FOR PEER REVIEW 9 of 31

Figure 4. The CFG and the instructions in the readFile function that lead to SH nodes forming.

Figure 5. The basic blocks and the instructions in the writeFile function that lead to SH nodes
forming.

Figure 6. The CFG and the instructions in the main function that lead to SH nodes forming.

As shown in Figure 7, a typical example of a SH node caused by SEU is that during
the dynamic cycle 61,316 of the Build_RIB program execution, the 12th bit of the next in-
struction (%18) of the basic block %15 in the readFile function is flipped, resulting in a false

Figure 6. The CFG and the instructions in the main function that lead to SH nodes forming.

As shown in Figure 7, a typical example of a SH node caused by SEU is that during
the dynamic cycle 61,316 of the Build_RIB program execution, the 12th bit of the next
instruction (%18) of the basic block %15 in the readFile function is flipped, resulting in a
false link between the No. 9 satellite node and the No. 56 satellite node. In the process of

Aerospace 2023, 10, 788 10 of 29

path planning, because the link delay of this false link (Node 9 to 56) is 14 ms better than
other paths, this false link is adopted by the path planning algorithm, and the next hop
to reach Node 56 and its surrounding nodes in the generated routing table is Node 9. In
the actual forwarding process, Node 9 cannot directly forward the data packet to Node
56. Therefore, Node 9 finds another link or drops the data packet, resulting in a SH in the
satellite network.

Aerospace 2023, 10, x FOR PEER REVIEW 10 of 31

link between the No.9 satellite node and the No.56 satellite node. In the process of path
planning, because the link delay of this false link (Node 9 to 56) is 14 ms better than other
paths, this false link is adopted by the path planning algorithm, and the next hop to reach
Node 56 and its surrounding nodes in the generated routing table is Node 9. In the actual
forwarding process, Node 9 cannot directly forward the data packet to Node 56. There-
fore, Node 9 finds another link or drops the data packet, resulting in a SH in the satellite
network.

Figure 7. A typical example of a SH node caused by SEU.

3.3. GH Node Generation Mechanism
To explain the generation mechanism of GH nodes, we take the program Dijkstra’s

Shortest Path (DSP) in the route planning phase in Table 2 as an example to conduct fault
injection experiments. First, based on the DSP intermediate code generated by the Clang
compilation, the program call graph is built in this paper, as shown in Figure 8. First, DSP
obtains the link-state information by calling the fscanf function through the main function.
Then, DSP uses the Dijkstra function to plan the path from the satellite node to other nodes
in the network and obtains the next hop node ID. Finally, the program generates a routing
table in the format of the destination node ID and the next hop node ID.

To simulate a SEU of the program, we use the LLFI tool to inject 10,000 faults into the
DSP program in the form of a single-bit upset and carry out a statistical analysis of the
results. We find that more than 80% of the results are Masked, SW Detected, or OS/HW
Detected, and the number of SDC errors is 1173. Potential SDC errors that may be caused
by fault injection include data loss, destination node changes, and next-hop node changes.
The occurrence number and description of the errors are shown in Table 4. Because the
influence of SEU on the DSP program ultimately affects the routing table, the data loss
and the destination node change in the routing table can cause the satellite to fail to find
the next hop, resulting in the emergence of a GH node in the satellite network. In most
cases of next-hop changes, the next hop changes to other connectable neighbor nodes.
Therefore, in the case of a next-hop change, we further obtain 188 cases where the next
hop changes to a non-neighbor node, that is, the case where a GH node occurs in the sat-
ellite network. In this way, we find that the probability of the occurrence of GH nodes
induced by SEU is about 2%.

Figure 7. A typical example of a SH node caused by SEU.

3.3. GH Node Generation Mechanism

To explain the generation mechanism of GH nodes, we take the program Dijkstra’s
Shortest Path (DSP) in the route planning phase in Table 2 as an example to conduct fault
injection experiments. First, based on the DSP intermediate code generated by the Clang
compilation, the program call graph is built in this paper, as shown in Figure 8. First, DSP
obtains the link-state information by calling the fscanf function through the main function.
Then, DSP uses the Dijkstra function to plan the path from the satellite node to other nodes
in the network and obtains the next hop node ID. Finally, the program generates a routing
table in the format of the destination node ID and the next hop node ID.

Aerospace 2023, 10, x FOR PEER REVIEW 11 of 31

Figure 8. The call graph of Dijkstra’s Shortest Path (DSP).

Table 4. DSP SDC error occurrence number and description.

SDC Error Occurrence Description

Data loss 9
The route table misses one or more rows. The satellite
fails to find the next hop of the corresponding destination
node, which can generate a GH.

Destination
node change

5
The destination node in the routing table changes. The
satellite fails to find the next hop of the corresponding
destination node, which can generate a GH.

Next-hop node
change 1159

The next hop node in the routing table changes. A GH is
generated when the next-hop node changes to a non-
neighbor node, which occurs 188 times in total.

GH nodes occur in 202 cases After statistical analysis, we find that in the nine cases
of data loss, except for the load instruction (%10) of the basic block %8 in the array_fill
function, the other seven cases occur in the %188, %192 and %253 basic blocks of the Dijks-
tra function. Meanwhile, the five cases of destination node change are caused by the load
instruction (%201) in the basic block %197 of the Dijkstra function, as shown in Figure 9.
At the same time, we find that in the 188 cases of next-hop node changes, in which GH
nodes appear, the majority (161 times) occur in the main function, as shown in Figure 10,
and the rest (27 times) occur in the Dijkstra function, as shown in Figure 11. Of these, the
instructions in the main function that can cause GH nodes are mainly concentrated in the
basic blocks %9, %12, %17, %33, and %37, and the instructions in the Dijkstra function that
can cause GH nodes are mainly concentrated in the basic blocks of %28, %208, and %237.

Figure 8. The call graph of Dijkstra’s Shortest Path (DSP).

To simulate a SEU of the program, we use the LLFI tool to inject 10,000 faults into the
DSP program in the form of a single-bit upset and carry out a statistical analysis of the
results. We find that more than 80% of the results are Masked, SW Detected, or OS/HW
Detected, and the number of SDC errors is 1173. Potential SDC errors that may be caused
by fault injection include data loss, destination node changes, and next-hop node changes.
The occurrence number and description of the errors are shown in Table 4. Because the
influence of SEU on the DSP program ultimately affects the routing table, the data loss and
the destination node change in the routing table can cause the satellite to fail to find the
next hop, resulting in the emergence of a GH node in the satellite network. In most cases of
next-hop changes, the next hop changes to other connectable neighbor nodes. Therefore,
in the case of a next-hop change, we further obtain 188 cases where the next hop changes
to a non-neighbor node, that is, the case where a GH node occurs in the satellite network.

Aerospace 2023, 10, 788 11 of 29

In this way, we find that the probability of the occurrence of GH nodes induced by SEU is
about 2%.

Table 4. DSP SDC error occurrence number and description.

SDC Error Occurrence Description

Data loss 9

The route table misses one or more rows. The
satellite fails to find the next hop of the
corresponding destination node, which can
generate a GH.

Destination node change 5

The destination node in the routing table
changes. The satellite fails to find the next hop of
the corresponding destination node, which can
generate a GH.

Next-hop node change 1159

The next hop node in the routing table changes.
A GH is generated when the next-hop node
changes to a non-neighbor node, which occurs
188 times in total.

GH nodes occur in 202 cases After statistical analysis, we find that in the nine cases of
data loss, except for the load instruction (%10) of the basic block %8 in the array_fill function,
the other seven cases occur in the %188, %192 and %253 basic blocks of the Dijkstra function.
Meanwhile, the five cases of destination node change are caused by the load instruction
(%201) in the basic block %197 of the Dijkstra function, as shown in Figure 9. At the same
time, we find that in the 188 cases of next-hop node changes, in which GH nodes appear,
the majority (161 times) occur in the main function, as shown in Figure 10, and the rest
(27 times) occur in the Dijkstra function, as shown in Figure 11. Of these, the instructions in
the main function that can cause GH nodes are mainly concentrated in the basic blocks %9,
%12, %17, %33, and %37, and the instructions in the Dijkstra function that can cause GH
nodes are mainly concentrated in the basic blocks of %28, %208, and %237.

Aerospace 2023, 10, x FOR PEER REVIEW 12 of 31

Figure 9. The CFG and the instructions in the Dijkstra function that lead to data loss and destination
node changes.

Figure 10. The CFG and the instructions in the main function that lead to next-hop node changes.

Figure 9. The CFG and the instructions in the Dijkstra function that lead to data loss and destination
node changes.

Aerospace 2023, 10, 788 12 of 29

Aerospace 2023, 10, x FOR PEER REVIEW 12 of 31

Figure 9. The CFG and the instructions in the Dijkstra function that lead to data loss and destination
node changes.

Figure 10. The CFG and the instructions in the main function that lead to next-hop node changes. Figure 10. The CFG and the instructions in the main function that lead to next-hop node changes.

Aerospace 2023, 10, x FOR PEER REVIEW 13 of 31

Figure 11. The CFG and the instructions in the Dijkstra function that lead to next-hop node changes.

An extreme case of a GH node is a Blackhole node, that is, a node that discards all
packets passing through it. Blackhole nodes also exist in the above cases. As shown in
Figure 12, a typical example of a GH node caused by SEU is that the No.15 Satellite node
is affected by SEU in the route planning phase. During dynamic cycle 12,618 of the DSP
program execution, the 30th bit of the add instruction (%35) of the basic block %33 in the
main function is flipped. As a result, all the next hops in the generated routing table are
non-neighbor nodes and cannot be connected. Therefore, in the data forwarding phase,
node 15 could not forward the data packets to other nodes and finally dropped the data
packets, resulting in a Blackhole in the satellite network.

Figure 12. A typical example of a Blackhole node caused by SEU.

4. The Digital-Twin-Based Detection and Protection Framework
The combination of digital twins and runtime verification is still a very young idea

[4]. Digital twins can make full use of the physical model, sensor update data, history data,
and other information to map a real satellite network in a virtual digital space, thus re-
flecting the operation status of the satellite network. At the same time, the ground station
staff can also find problems in the satellite network and make adjustments in time. In this
section, we first define the digital-twin information in the proposed framework. Then we
propose the detection and protection framework and describe the overall process and de-
tection algorithm in detail.

4.1. Data Description in the Framework

Figure 11. The CFG and the instructions in the Dijkstra function that lead to next-hop node changes.

An extreme case of a GH node is a Blackhole node, that is, a node that discards all
packets passing through it. Blackhole nodes also exist in the above cases. As shown in
Figure 12, a typical example of a GH node caused by SEU is that the No. 15 Satellite node
is affected by SEU in the route planning phase. During dynamic cycle 12,618 of the DSP
program execution, the 30th bit of the add instruction (%35) of the basic block %33 in the
main function is flipped. As a result, all the next hops in the generated routing table are
non-neighbor nodes and cannot be connected. Therefore, in the data forwarding phase,

Aerospace 2023, 10, 788 13 of 29

node 15 could not forward the data packets to other nodes and finally dropped the data
packets, resulting in a Blackhole in the satellite network.

Aerospace 2023, 10, x FOR PEER REVIEW 13 of 31

Figure 11. The CFG and the instructions in the Dijkstra function that lead to next-hop node changes.

An extreme case of a GH node is a Blackhole node, that is, a node that discards all
packets passing through it. Blackhole nodes also exist in the above cases. As shown in
Figure 12, a typical example of a GH node caused by SEU is that the No.15 Satellite node
is affected by SEU in the route planning phase. During dynamic cycle 12,618 of the DSP
program execution, the 30th bit of the add instruction (%35) of the basic block %33 in the
main function is flipped. As a result, all the next hops in the generated routing table are
non-neighbor nodes and cannot be connected. Therefore, in the data forwarding phase,
node 15 could not forward the data packets to other nodes and finally dropped the data
packets, resulting in a Blackhole in the satellite network.

Figure 12. A typical example of a Blackhole node caused by SEU.

4. The Digital-Twin-Based Detection and Protection Framework
The combination of digital twins and runtime verification is still a very young idea

[4]. Digital twins can make full use of the physical model, sensor update data, history data,
and other information to map a real satellite network in a virtual digital space, thus re-
flecting the operation status of the satellite network. At the same time, the ground station
staff can also find problems in the satellite network and make adjustments in time. In this
section, we first define the digital-twin information in the proposed framework. Then we
propose the detection and protection framework and describe the overall process and de-
tection algorithm in detail.

4.1. Data Description in the Framework

Figure 12. A typical example of a Blackhole node caused by SEU.

4. The Digital-Twin-Based Detection and Protection Framework

The combination of digital twins and runtime verification is still a very young idea [4].
Digital twins can make full use of the physical model, sensor update data, history data, and
other information to map a real satellite network in a virtual digital space, thus reflecting
the operation status of the satellite network. At the same time, the ground station staff can
also find problems in the satellite network and make adjustments in time. In this section,
we first define the digital-twin information in the proposed framework. Then we propose
the detection and protection framework and describe the overall process and detection
algorithm in detail.

4.1. Data Description in the Framework

At present, the existing state-of-the-art research in the field of satellite networks mostly
employs two constellation designs for satellite networks: Walker delta (Inclined constellation)
and Walker star (Polar orbit constellation). The satellite network structure based on the
Walker constellation can be expressed as N×M/N/F(F = 0, 1, . . . , N− 1) [28], where M is
the number of satellites in a single orbit, N is the number of orbits, and F is the phase factor.
Due to the predictability of satellite orbit and the stability of inter-satellite links, the routing
mechanism combined with time slot is widely used in satellite networks [29]. During one
time slot, the satellite network topology can be regarded as static. Satellites can obtain the
current satellite network operation status and link states through routing discovery. As shown
in Figure 13, we set the orbit ID IDorb in the satellite network topology from left to right to 1
to N, and set the satellite ID in the orbit IDsat from top to bottom to 1 to M. Then the satellite
node ID in the satellite network can be expressed as IDorb ‖ IDsat. For example, the ID of the
6th node in the first orbit under the Iridium network structure is 106.

The detection and protection framework proposed in this paper needs some necessary
information to synchronize and manage the satellite network. The information collected in
actual satellite networks can be expressed as Ip, as shown in Equation (1), where Posp rep-
resents the position information of satellites, LSAp represents the link-state advertisements
of satellites, RIBp represents routing information bases, and RTp represents routing tables.
In some plane-speaker-based or centralized planning algorithms, only the plane speakers
or centralized controllers build the routing information base. Therefore, it is necessary to
obtain K routing information bases based on the specific algorithms.

Ip =


Posp
LSAp
RIBp
RTp

 =


Pos1

p, Pos2
p, . . . , PosN×M

p
LSA1

p, LSA2
p, . . . , LSAN×M

p
RIB1

p, RIB2
p, . . . , RIBK

p
RT1

p , RT2
p , . . . , RTN×M

p

 (1)

The position information of satellite i can be expressed as Posi
p, as shown in Equation

(2), where IDi
orb represents orbit ID, IDi

sat represents satellite ID in the orbit, LONi repre-

Aerospace 2023, 10, 788 14 of 29

sents the longitude of the satellite i, LATi represents the latitude of the satellite i, and ALTi

represents the altitude of the satellite i.

Posi
p =< IDi

orb, IDi
sat, LONi, LATi, ALTi > (2)

Aerospace 2023, 10, x FOR PEER REVIEW 14 of 31

At present, the existing state-of-the-art research in the field of satellite networks
mostly employs two constellation designs for satellite networks: Walker delta (Inclined
constellation) and Walker star (Polar orbit constellation). The satellite network structure
based on the Walker constellation can be expressed as 𝑁 × 𝑀/𝑁/𝐹(𝐹 = 0,1, … , 𝑁 − 1)
[28], where 𝑀 is the number of satellites in a single orbit, 𝑁 is the number of orbits, and 𝐹 is the phase factor. Due to the predictability of satellite orbit and the stability of inter-
satellite links, the routing mechanism combined with time slot is widely used in satellite
networks [29]. During one time slot, the satellite network topology can be regarded as
static. Satellites can obtain the current satellite network operation status and link states
through routing discovery. As shown in Figure 13, we set the orbit ID 𝐼𝐷௢௥௕ in the satellite
network topology from left to right to 1 to 𝑁, and set the satellite ID in the orbit 𝐼𝐷௦௔௧
from top to bottom to 1 to 𝑀. Then the satellite node ID in the satellite network can be
expressed as 𝐼𝐷௢௥௕||𝐼𝐷௦௔௧. For example, the ID of the 6th node in the first orbit under the
Iridium network structure is 106.

Figure 13. Topology diagram of satellite networks.

The detection and protection framework proposed in this paper needs some neces-
sary information to synchronize and manage the satellite network. The information col-
lected in actual satellite networks can be expressed as 𝐼௣, as shown in Equation (1), where 𝑃𝑜𝑠௣ represents the position information of satellites, 𝐿𝑆𝐴௣ represents the link-state ad-
vertisements of satellites, 𝑅𝐼𝐵௣ represents routing information bases, and 𝑅𝑇௣ represents
routing tables. In some plane-speaker-based or centralized planning algorithms, only the
plane speakers or centralized controllers build the routing information base. Therefore, it
is necessary to obtain K routing information bases based on the specific algorithms.

𝐼௣ = ⎝⎜
⎛𝑃𝑜𝑠௣𝐿𝑆𝐴௣𝑅𝐼𝐵௣𝑅𝑇௣ ⎠⎟

⎞ = ⎝⎜
⎛𝑃𝑜𝑠௣ଵ, 𝑃𝑜𝑠௣ଶ , … , 𝑃𝑜𝑠௣ே×ெ𝐿𝑆𝐴௣ଵ , 𝐿𝑆𝐴௣ଶ , … , 𝐿𝑆𝐴௣ே×ெ𝑅𝐼𝐵௣ଵ, 𝑅𝐼𝐵௣ଶ , … , 𝑅𝐼𝐵௣௄𝑅𝑇௣ଵ, 𝑅𝑇௣ଶ , … , 𝑅𝑇௣ே×ெ ⎠⎟

⎞
 (1)

The position information of satellite 𝑖 can be expressed as 𝑃𝑜𝑠௣௜ , as shown in Equa-
tion (2), where 𝐼𝐷௢௥௕௜ represents orbit ID, 𝐼𝐷௦௔௧௜ represents satellite ID in the orbit, 𝐿𝑂𝑁௜
represents the longitude of the satellite 𝑖, 𝐿𝐴𝑇௜ represents the latitude of the satellite 𝑖,
and 𝐴𝐿𝑇௜ represents the altitude of the satellite 𝑖. 𝑃𝑜𝑠௣௜ =< 𝐼𝐷௢௥௕௜ , 𝐼𝐷௦௔௧௜ , 𝐿𝑂𝑁௜, 𝐿𝐴𝑇௜, 𝐴𝐿𝑇௜ > (2)

Figure 13. Topology diagram of satellite networks.

The link-state advertisements of satellite i can be expressed as LSAi
p, which is a set of

link delay information between itself and neighbor nodes, as shown in Equation (3), where
IDj

orb ‖ IDj
sat represents the satellite node ID of satellite j, DLYij represents the link delay

between satellite i and satellite j, and i.NBR represents the neighbor nodes of satellite i. At
the same time, the routing information base can be expressed as RIBp, which is a set of
LSA of all nodes in the satellite network, as shown in Equation (4).

LSAi
p =

{
< IDi

orb ‖ IDi
sat, IDj

orb ‖ IDj
sat, DLYij > | j ∈ i.NBR

}
(3)

RIBp =
{

LSAk
p | k ∈ (0, N ×M)

}
(4)

The routing table of satellite i can be expressed as RTi
p, as shown in Equation (5), where

DESTk represents the destination node and NEXTk represents the next-hop node. Both
DESTk and NEXTk can be expressed in the form of IDorb ‖ IDsat.

RTi
p =

{〈
DESTk, NEXTk

〉
| k ∈ (0, N ×M) ∧ k 6= i

}
(5)

Similarly, the digital-twin information IDT obtained by the ground station also has the
same data structure, as shown in Equation (6).

IDT =


PosDT
LSADT
RIBDT
RTDT

 =


Pos1

DT , Pos2
DT , . . . , PosN×M

DT
LSA1

DT , LSA2
DT , . . . , LSAN×M

DT
RIB1

DT , RIB2
DT , . . . , RIBK

DT
RT1

DT , RT2
DT , . . . , RTN×M

DT

 (6)

4.2. Detection and Protection Framework

From the fault model described in Section 3, it can be seen that SEU can affect the
execution of routing programs in satellite networks, and lead to the emergence of SH
and GH nodes in satellite networks, thereby reducing the reliability and availability of
satellite networks. Digital twins can reflect the operation status of the satellite network

Aerospace 2023, 10, 788 15 of 29

through sensor data, satellite-ground communication data, and other information, which is
convenient for detecting the abnormal status of a satellite network. Therefore, we propose
a detection and protection framework for SH and GH nodes induced by SDC errors based
on digital twins, as shown in Figure 14. The framework is divided into two main parts: the
physical twin and the digital twin. The physical twin collects and monitors necessary data,
such as satellite position and LSA. At the same time, the digital twin can enable the ground
staff to obtain the operation status of the satellite network, find out the problems of the
satellite network, and make adjustments in time. In addition, the secure communication
protocol [4] is used to maintain communication and state updates between the digital twin
and the physical twin. By mapping the process files generated by the satellite routing
mechanism to digital space, the framework can do all that it can to find the SH and GH
nodes before the satellites transmit data.

Aerospace 2023, 10, x FOR PEER REVIEW 15 of 31

The link-state advertisements of satellite 𝑖 can be expressed as 𝐿𝑆𝐴௣௜ , which is a set
of link delay information between itself and neighbor nodes, as shown in Equation (3),
where 𝐼𝐷௢௥௕௝ ||𝐼𝐷௦௔௧௝ represents the satellite node ID of satellite 𝑗 , 𝐷𝐿𝑌௜௝ represents the
link delay between satellite 𝑖 and satellite 𝑗, and 𝑖. 𝑁𝐵𝑅 represents the neighbor nodes
of satellite 𝑖. At the same time, the routing information base can be expressed as 𝑅𝐼𝐵௣,
which is a set of 𝐿𝑆𝐴 of all nodes in the satellite network, as shown in Equation (4). 𝐿𝑆𝐴௣௜ = ൛< 𝐼𝐷௢௥௕௜ ||𝐼𝐷௦௔௧௜ , 𝐼𝐷௢௥௕௝ ||𝐼𝐷௦௔௧௝ , 𝐷𝐿𝑌௜௝ > ห 𝑗 ∈ 𝑖. 𝑁𝐵𝑅ሽ (3)𝑅𝐼𝐵௣ = ൛𝐿𝑆𝐴௣௞ ห 𝑘 ∈ (0, 𝑁 × 𝑀)ሽ (4)

The routing table of satellite 𝑖 can be expressed as 𝑅𝑇௣௜, as shown in Equation (5),
where 𝐷𝐸𝑆𝑇௞ represents the destination node and 𝑁𝐸𝑋𝑇௞ represents the next-hop node.
Both 𝐷𝐸𝑆𝑇௞ and 𝑁𝐸𝑋𝑇௞ can be expressed in the form of 𝐼𝐷௢௥௕||𝐼𝐷௦௔௧. 𝑅𝑇௣௜ = ሼ< 𝐷𝐸𝑆𝑇௞, 𝑁𝐸𝑋𝑇௞ >| 𝑘 ∈ (0, 𝑁 × 𝑀) ∧ 𝑘 ് 𝑖ሽ (5)

Similarly, the digital-twin information 𝐼஽் obtained by the ground station also has
the same data structure, as shown in Equation (6).

𝐼஽் = ൭௉௢௦ವ೅௅ௌ஺ವ೅ோூ஻ವ೅ோ்ವ೅ ൱ = ൮௉௢௦ವ೅భ , ௉௢௦ವ೅మ , … , ௉௢௦ವ೅ಿ×ಾ௅ௌ஺ವ೅భ , ௅ௌ஺ವ೅మ , … , ௅ௌ஺ವ೅ಿ×ಾோூ஻ವ೅భ , ோூ஻ವ೅మ , … , ோூ஻ವ೅಼ோ ವ்೅భ , ோ ವ்೅మ , … , ோ ವ்೅ಿ×ಾ ൲ (6)

4.2. Detection and Protection Framework
From the fault model described in Section 3, it can be seen that SEU can affect the exe-

cution of routing programs in satellite networks, and lead to the emergence of SH and GH
nodes in satellite networks, thereby reducing the reliability and availability of satellite net-
works. Digital twins can reflect the operation status of the satellite network through sensor
data, satellite-ground communication data, and other information, which is convenient for
detecting the abnormal status of a satellite network. Therefore, we propose a detection and
protection framework for SH and GH nodes induced by SDC errors based on digital twins,
as shown in Figure 14. The framework is divided into two main parts: the physical twin and
the digital twin. The physical twin collects and monitors necessary data, such as satellite
position and LSA. At the same time, the digital twin can enable the ground staff to obtain
the operation status of the satellite network, find out the problems of the satellite network,
and make adjustments in time. In addition, the secure communication protocol [4] is used
to maintain communication and state updates between the digital twin and the physical
twin. By mapping the process files generated by the satellite routing mechanism to digital
space, the framework can do all that it can to find the SH and GH nodes before the satellites
transmit data.

Figure 14. The detection and protection framework based on digital twins. Figure 14. The detection and protection framework based on digital twins.

The proposed framework has four main modules: simulation module, routing module,
detection module, and calculation module. The main functions of the simulation module
include receiving LSA and satellite position information and updating the digital satellite
network. The main functions of the routing module include route discovery and route
planning. The RIB and RT generated in this model are important files for satellite routing.
The main functions of the detection module include RIB detection and routing table detec-
tion. If the framework finds problems that can cause SH nodes or GH nodes, it will call the
calculation module. The main functions of the calculation module include generating RIBs
and RTs, which are used to recover the satellite network after finding problems.

After collecting LSA and satellite position information, the satellite network will send
them to the ground station. The ground station uses the simulation module to update
the digital satellite network. At the same time, the satellite network continues to execute
the routing module, generate RIB and RT in stages, and send them to the ground station,
respectively. It should be noted that the RIBs generated during the route discovery phase
are directly sent back to the ground station (GS) without waiting for the route planning
phase to complete. Therefore, after receiving the RIBs (5. in Figure 14), the GS directly calls
the detection module to detect the RIBs and returns the detection result (6. in Figure 14).
If the GS finds an RIB with a problem, it will call the calculation module (7. in Figure 14),
calculate the RT for the affected satellite, and send it to the affected satellite (8. in Figure 14).
Similarly, after receiving the RTs (9. in Figure 14), the GS calls the detection module to
detect the RTs and return the detection result (10. in Figure 14). If the GS finds an RT with
a problem, it will call the calculation module (11. in Figure 14), calculate the RT for the
affected satellites, and send it to the affected satellites (12. in Figure 14). In the simulation
scenario of this article, the faulty nodes (including SH, GH, and affected nodes) cannot find
the correct next hop for forwarding data due to the wrong routing tables. Therefore, the
framework proposed in this paper recovers the faulty nodes by sending the correct routing
tables to the faulty nodes.

Aerospace 2023, 10, 788 16 of 29

The framework proposed in this paper is mainly used to detect and protect a satellite
network during its routing update process. The framework does not interfere with the
normal routing behavior and has no additional computational overhead except for sending
data. In addition, during RIB and routing table transmission, the satellite network does
not need to wait for the ground station detection results and continues to perform the next
phase or other tasks. According to data from NOAA [1], the probability of high-energy
protons or galactic cosmic rays causing an SEU is 16%. Under the experimental settings
of this article, the experimental results of this article show that the probabilities of SH or
GH occurrence caused by SEU are around 1% and 2%, respectively. All measurements and
calculations in Sections 3.2 and 3.3 are specific to the experimental settings of this article.
In most cases, the satellite network can complete routing updates without the help of the
ground station. When SEU causes SH nodes or GH nodes, the ground station can also
detect and repair the routing tables in time. Therefore, compared with the traffic-based
detection method, the framework proposed in this paper can complete the detection before
data forwarding, thus greatly improving the reliability and availability of satellite networks.

4.3. The Detection and Protection Method in the Framework

In this section, we describe the overall workflow of the proposed detection and
protection framework and describe the detection algorithms of SH and GH nodes in detail.

4.3.1. Overall Workflow

Two assumptions are made in this paper: (1) the sensor equipment of the satellite is re-
liable; and (2) the credibility of the interaction information between the satellite and ground
can be guaranteed through the secure communication protocol. The overall workflow of
the detection and protection framework proposed in this paper is shown in Figure 15 and
is divided into the following main steps.

Aerospace 2023, 10, x FOR PEER REVIEW 17 of 31

workflow of the detection and protection framework proposed in this paper is shown in
Figure 15 and is divided into the following main steps.

Figure 15. The overall workflow of the detection and protection framework.

Step 1. When the satellite network starts the routing update process, the satellite
nodes obtain the current position information (Pos) and link-state advertisements (LSAs)
through the sensor and send them to the ground station. The ground station updates the
digital simulation scenario according to the information received.

Step 2. After receiving the LSAs, the ground station detects whether the LSA has er-
rors. If an LSA has errors, the ground station will further determine which satellite has
errors, send commands to the satellite to rebuild the LSA, and let the satellite return the
new LSA to the ground station.

Step 3. After routing discovery, the satellite network sends the RIBs to the ground
station. Based on the digital-twin routing data, the ground station detects whether the RIB
has a false link and further determines whether the false link can generate a SH node. If a
SH node can be generated, the ground station will rebuild the RIB for the satellite, gener-
ate a routing table, and upload the routing table to the satellite.

Step 4. When sending RIBs, the satellite network does not need to wait for the detec-
tion results of the ground station and directly calculates the routing tables. Then, the sat-
ellite network will send the generated routing tables to the ground station for detection.
If there is a routing table that can trigger a GH node, the ground station will regenerate
the routing table for the satellite and upload it to the satellite.

4.3.2. SH Detection and Protection Method
Based on the SH generation mechanism proposed in Section 3.2, we design and im-

plement a SH detection algorithm for the satellite network based on the Walker constella-
tion and a routing mechanism based on link delay, as shown in Algorithm 1. After the
satellite network generates an RIB, the ground station analyzes the adjacency of satellite
nodes in the satellite network topology and the digital twin data 𝑃𝑜𝑠஽் , 𝐿𝑆𝐴஽் , and

Figure 15. The overall workflow of the detection and protection framework.

Step 1. When the satellite network starts the routing update process, the satellite nodes
obtain the current position information (Pos) and link-state advertisements (LSAs) through

Aerospace 2023, 10, 788 17 of 29

the sensor and send them to the ground station. The ground station updates the digital
simulation scenario according to the information received.

Step 2. After receiving the LSAs, the ground station detects whether the LSA has
errors. If an LSA has errors, the ground station will further determine which satellite has
errors, send commands to the satellite to rebuild the LSA, and let the satellite return the
new LSA to the ground station.

Step 3. After routing discovery, the satellite network sends the RIBs to the ground
station. Based on the digital-twin routing data, the ground station detects whether the RIB
has a false link and further determines whether the false link can generate a SH node. If a
SH node can be generated, the ground station will rebuild the RIB for the satellite, generate
a routing table, and upload the routing table to the satellite.

Step 4. When sending RIBs, the satellite network does not need to wait for the detection
results of the ground station and directly calculates the routing tables. Then, the satellite
network will send the generated routing tables to the ground station for detection. If there
is a routing table that can trigger a GH node, the ground station will regenerate the routing
table for the satellite and upload it to the satellite.

4.3.2. SH Detection and Protection Method

Based on the SH generation mechanism proposed in Section 3.2, we design and imple-
ment a SH detection algorithm for the satellite network based on the Walker constellation
and a routing mechanism based on link delay, as shown in Algorithm 1. After the satellite
network generates an RIB, the ground station analyzes the adjacency of satellite nodes
in the satellite network topology and the digital twin data PosDT , LSADT , and RIBDT
to detect whether there is a false link that can trigger a SH. The proposed algorithm is
as follows:

Step 1. (Line 1–2) Based on the data structure shown in Equations (3) and (4), for
each piece of data < IDi

orb ‖ IDi
sat, IDj

orb ‖ IDj
sat, DLYij > in RIBDT , the algorithm firstly

judges whether both satellites of the communication link are in the same orbit. If they are
in the same orbit, jump to Step 2; If they are not in the same orbit, jump to Step 4.

Step 2. (Line 3–4) If the two satellites are in the same orbit, the algorithm further
determines whether the two satellites are adjacent. If they are adjacent, this means there is
an actual direct link. If they are not adjacent, this indicates that there is a false link in the
satellite network, and it is necessary to further judge whether the false link is adopted, and
jump to Step 3.

Step 3. (Line 5–9) Calculate the minimum number of hops Ln in the orbit between
two satellites, and judge whether DLYij less than Ln× average delay DLYiol of inter-orbital
links (IOLs). If the condition is satisfied, this means that the false link is adopted and there
is a SH node. If the condition is not satisfied, this means that the false link has not been
adopted, and the SH node has not been generated. Continue to the next data.

Step 4. (Line 10) If the two satellites are not in the same orbit, the algorithm further
determines whether the two satellites are in adjacent orbits and adjacent to each other. If
they are adjacent, jump to Step 5; if they are not adjacent, jump to Step 7.

Step 5. (Line 11,15) Judge whether LATi or LAT j is bigger than the polar region
boundary latitude. If the condition is satisfied, this means that there is a false link, and
jump to Step 6 to further judge whether the false link is adopted. If the condition is not
satisfied, this means that there is an actual direct link, and this piece of data will not cause
a SH node. Continue to the next piece of data.

Step 6. (Line 12–14) Judge whether DLYij is less than 2× average delay DLYiol of IOLs
+ average delay DLYaol of intra-orbital links (AOLs). If the condition is satisfied, this means
that the false link is adopted and a SH node exists. If the condition is not satisfied, this
means that the false link has not been adopted, and the SH node has not been generated.
Continue to the next piece of data.

Step 7. (Line 16–19) If the two satellites are not adjacent, this means that the link is a
false link. The algorithm further judges whether the false link can be adopted. First, the

Aerospace 2023, 10, 788 18 of 29

algorithm calculates the minimum number of hops Ln in the orbit and the minimum number
of hops Lo between orbits. Then the algorithm judges whether LATi or LAT j is bigger than
the polar region boundary latitude. If the condition is satisfied, Ln =

∣∣∣IDi
sat − IDj

sat

∣∣∣+ 2

and Lo =
∣∣∣IDi

orb − IDj
orb

∣∣∣; If the condition is not satisfied, Ln =
∣∣∣IDi

sat − IDj
sat

∣∣∣ and Lo =∣∣∣IDi
orb − IDj

orb

∣∣∣. Jump to Step 8.

Step 8. (Line 20–22) The algorithm also judges whether DLYij is less than Ln×DLYiol +
Lo × DLYaol . If the condition is satisfied, this means that the false link is adopted and a
SH node exists. If the condition is not satisfied, this means that the false link has not been
adopted, and the SH node has not been generated.

Algorithm 1 SH detection algorithm

Input: PosDT , LSADT and RIBDT
Output: if_Sinkhole_exist
Start

1. For each piece of data < IDi
orb ‖ IDi

sat, IDj
orb ‖ IDj

sat, DLYij > in RIBDT

2. if IDi
orb = IDj

orb:

3. if abs(IDi
sat − IDj

sat) = 1 or abs(IDi
sat − IDj

sat)= M− 1:
4. Not SH item, continue
5. else:

6. Ln = Min
(∣∣∣IDi

sat − IDj
sat

∣∣∣, M−
∣∣∣IDi

sat − IDj
sat

∣∣∣)
7. if DLYij ≤ Ln × DLYiol :
8. SH exists, break
9. else: Not SH item, continue

10. elif abs(IDi
orb − IDj

orb) = 1 and IDi
sat = IDj

sat:
11. if LATi and LAT j ≥ Polar region boundary latitude:
12. if DLYij ≤ 2× DLYiol + DLYaol :
13. SH exists, break
14. else: Not SH item, continue
15. else: Not SH item, continue
16. else:
17. if LATi and LAT j ≥ Polar region boundary latitude:

18. Ln =
∣∣∣IDi

sat − IDj
sat

∣∣∣+ 2, Lo =
∣∣∣IDi

orb − IDj
orb

∣∣∣
19. else: Ln =

∣∣∣IDi
sat − IDj

sat

∣∣∣, Lo =
∣∣∣IDi

orb − IDj
orb

∣∣∣
20. if DLYij ≤ Ln × DLYiol + Lo × DLYaol :
21. SH exists, break
22. else: Not SH item, continue
23. Detect the next piece of data
24. return if_Sinkhole_exist

End

After the SH detection process, if an RIB that can cause a SH is detected, the ground
station will use the satellite position information PosDT and link-state information LSADT
to generate the correct RIB. Then the ground station generates a correct routing table
for the satellite corresponding to the wrong RIB and uploads the routing table to the
satellite. If there are no RIBs with errors, the ground station and satellite network require no
additional operation.

4.3.3. GH Detection and Protection Method

Based on the GH generation mechanism proposed in Section 3.3, we design and imple-
ment a GH detection algorithm for the satellite network based on the Walker constellation
and the routing mechanism based on link delay, as shown in Algorithm 2. After the satellite

Aerospace 2023, 10, 788 19 of 29

network generates routing tables, the ground station analyzes the adjacency of satellite
nodes in the satellite network topology and the digital twin data PosDT and RTDT to detect
whether there is an SDC error that can trigger a GH. The proposed algorithm proposed is
as follows:

Step 1. (Line 1,13) Based on the data structure shown in Equation (5), for the digital
twin routing table RTi

DT of satellite i, the algorithm firstly judges whether it contains all
the satellite nodes except itself. If the condition is satisfied, the algorithm jumps to Step
2 to further judge whether the next hop is reachable. If the condition is not satisfied, this
means that satellite i cannot find the next hop to some nodes, and there is a GH node in the
satellite network.

Step 2. (Line 2–3) For each piece of data < DEST, NEXT > in RTi
DT , the algorithm

judges whether satellite i and NEXT are in the same orbit. If the condition is satisfied,
jump to Step 3; if the condition is not satisfied, jump to Step 4.

Step 3. (Line 4–6) If the two satellites are in the same orbit, the algorithm further judges
whether satellite i and NEXT are adjacent. If the condition is satisfied, this means that
satellite i can send packets to the next hop, and this piece of data will not cause a GH node,
and the system can continue to the next piece of data. If the condition is not satisfied, this
means that the next hop cannot be reached and there is a GH node in the satellite network.

Step 4. (Line 7, 11) If the two satellites are not in the same orbit, the algorithm further
judges whether satellites i and NEXT are in adjacent orbits and adjacent to each other. If the
condition is satisfied, jump to Step 5 to further judge whether it is in the link disconnected
area. If the condition is not satisfied, this means that the next hop cannot be reached and a
GH node exists in the network.

Step 5. (Line 8–10) The algorithm judges whether LATi or LAT j is bigger than the
polar region boundary latitude. If the condition is satisfied, this means that the next hop
cannot be reached and a GH node exists in the network. If the condition is not satisfied,
this means that satellite i can send packets to the next hop, and this piece of data will not
cause a GH node.

Algorithm 2 GH detection algorithm

Input: PosDT , LSADT and RTDT
Output: if_Grayhole_exist
Start

1. if ∀(IDi
orb ‖ IDi

sat) in RT.DEST:
2. For each piece of data < DEST, NEXT > in RTDT

3. if IDi
orb = NEXT.IDorb:

4. if abs(IDi
sat − NEXT.IDsat) = 1 or abs(IDi

sat − NEXT.IDsat)= M− 1:
5. Not GH item, continue
6. else: GH exists, break
7. elif abs(IDi

orb − NEXT.IDorb) = 1 and IDi
sat = NEXT.IDsat:

8. if LATi or LAT j ≥ Polar region boundary latitude:
9. GH exists, break
10. else: Not GH item, continue
11. else: GH exists, break
12. Detect the next piece of data
13. else: GH exists, break
14. return if_Grayhole_exist

End

After completing the GH detection process, if a routing table that can lead to GH is
found, the ground station will use the satellite network routing information base RIBDT
to generate the correct routing table for the satellite and upload the routing table to the
satellite. If there are no routing tables that can lead to a GH, no additional operation is
required for the ground station and satellite network.

Aerospace 2023, 10, 788 20 of 29

5. Simulations and Discussions

In this section, we conduct the experimental evaluation of the proposed detection
and protection framework. We first describe the simulation scenario, experimental con-
figuration, and the main behaviors of the satellites in the routing update process. Then,
we evaluate the performance and overhead of the proposed framework and analyze the
experimental results.

5.1. Simulation Setup

To evaluate the effectiveness of the detection and protection framework proposed in
this paper, we use a computer to simulate the ground station (digital twin). At the same time,
we build a satellite network simulation scenario based on the Iridium constellation [13],
which is widely used in the literature, and regard it as the physical twin. The satellite
network parameters are shown in Table 5. In this paper, the region with a latitude higher
than 70 degrees is set as the polar region. In polar regions, the relative speed between
satellites in different orbits is too fast to build stable inter-satellite links in adjacent orbits.
Therefore, we only consider inter-orbital links (IOLs) in the same orbit in the polar region.
In this paper, the STK 11.6 simulation tool is used to obtain the propagation delay of
communication links and satellite position information. In addition, we assume that the
sensor can provide correct data about the satellite network. We also assume that the secure
communication protocol can ensure the correctness of data transmission. At the same
time, we import the satellite network orbit data files obtained from an STK simulation
into the ONE v1.6.0 simulator, which is an open-source software developed by Nokia
(Finland) Research Center, to simulate network communication scenarios. The scenario
randomly selects nodes to send 50 kB−1 MB sized packets to other nodes and the packets
are generated at the rate of one per 1–3 s. We set 10% of nodes as SHs or GHs, and evaluate
the SH or GH detection methods, respectively.

Table 5. The network parameters of the Iridium constellation.

Parameter Description Value

Number of satellites 66

Number of orbital planes 6

Number of satellites per orbit 11

Orbital altitude (km) 778

Orbital inclination (◦) 86

Adjacent orbit equatorial longitude difference (◦) 31.6

Adjacent satellite latitude difference (◦) 16.4

The polar region boundary latitude (◦) 70

Number of ISLs for each satellite ≤4

The routing discovery, path planning, fault injection, and detection experiments
were performed on a computer with the following configuration: Ubuntu 16.04 (64-bit)
operating system, i7-8550 CPU, and 8 GB of RAM. We use LLFI to conduct fault injection
experiments. The routing programs are written in the C programming language, and the
fault injection result statistics and fault detection algorithms are implemented in Python
3.7.9. In this scenario, the satellite network uses the classic link-state-oriented routing
protocol DHRP [31]. The main behaviors of the satellites in different routing phases are
as follows:

(a) Route discovery phase

In the route discovery phase, to reduce the number of broadcasts and update the link
state of the whole network as quickly as possible, DHRP sets up a plane speaker (PS) at
each orbit plane to collect the LSAs of satellites in the plane. The PSs construct link-state

Aerospace 2023, 10, 788 21 of 29

advertisement sets S-LSAs. The PSs of different orbits also exchange S-LSAs to obtain
the overall link states of the satellite network, build a routing information base (RIB), and
build a link delay adjacency matrix. The main program at this stage is the Build_RIB
described in Table 2.

(b) Route planning phase

In the route planning phase, the PS takes the link delay adjacency matrix built in the
route discovery phase as the input parameter and uses Dijkstra’s Shortest Path algorithm
(DSP) algorithm to calculate the routing tables for the satellite nodes in this orbit. The
satellite nodes can transmit data after acquiring the routing table. The main program at
this stage is the DSP described in Table 2.

5.2. Evaluation of Detection Capability

The generation mechanism of SH and GH nodes caused by SDC errors has been
given in Section 3. This paper proposes SH and GH nodes induced by SDC errors and
the detection method based on DT and routing process files for the first time. There are
few detection methods and data sets for SH and GH nodes caused by SDC errors. The
existing SH or GH detection methods are based on node behavior or network traffic, such
as RFTrust [17], SoS-RPL [18], and CEBD [6]. Whether caused by SDC or not, the behavior
of SH or GH nodes during the forwarding phase is consistent (such as dropping data
packages). That is, SH (or GH) nodes caused by SDC behave in the same way as SH (or
GH) nodes caused in other ways. Therefore, from the perspective of detection capabilities,
the proposed method and existing SH or GH detection methods are comparable. We
construct a data set based on the satellite network scenario described in Section 5.1 to
evaluate the performance and overhead of the proposed method. The data set contains
100 cases with SH nodes, 100 cases with GH nodes, 100 normal cases, and 100 other cases.
We obtained the detection results of existing methods by setting SH or GH nodes and
simulating communication between nodes in the ONE simulator and compared them with
the proposed method.

Existing detection methods for SH and GH nodes are mainly based on traffic. This
method usually detects the network traffic when the satellite network carries out the actual
packet forwarding after the route update is completed. In contrast, the method proposed in
this paper can detect the intermediate files in the process of satellite network route update
and can find the SH and GH nodes faster and timelier. In addition, if the packet does
not pass through the SH or GH nodes during packet forwarding, traffic-based detection
methods cannot effectively detect the fault node. Unlike existing methods, the proposed
method can logically detect SH and GH nodes caused by SDC errors by obtaining the
position information, link information, routing information base, routing table, and other
routing update process files of satellite nodes, thus improving the reliability and availability
of satellite networks.

To evaluate whether there are False Negatives (FNs) or False Positives (FPs) in this
method, we recorded the experiment results and calculated the accuracy, precision, and
recall rate of the results. In this example, a sample with SH/GH nodes is defined as a
positive sample, and a sample without SH/GH nodes is defined as a negative sample. The
definition of relevant concepts is as follows:

• TP (True Positive): During GH/SH detection, the detection algorithm detects positive
samples as positive samples;

• TN (True Negative): During GH/SH detection, the detection algorithm detects nega-
tive samples as negative samples;

• FN (False Negative): During GH/SH detection, the detection algorithm detects posi-
tive samples as negative samples, that is, the model fails to identify that the sample
has a GH/SH node;

• FP (False Positive): During GH/SH detection, the detection algorithm detects negative
samples as positive samples, that is, the model misreports that the sample has a
GH/SH node;

Aerospace 2023, 10, 788 22 of 29

• Accuracy: ac = TP + TN/(TP + TN + FP + FN);
• Precision: pr = TP/(TP + FP);
• Recall: re = TP/(TP + FN).

(1) Evaluation of SH detection capability

We select 300 RIBs from the data set, which include 100 cases with SH, 100 normal
cases, and 100 cases with link loss or weight change, to evaluate the accuracy of the
proposed SH detection algorithm. The confusion matrix of the results is shown in Table 6.
We also compare the proposed method with the following SH detection methods:

• RFTrust [17] considers packet delivery ratio, average delay, and energy consumption,
and uses Random Forest and subjective logic to detect SHs.

• SoS-RPL [18] defines two features (DI-RANK and DV-RANK) to detect SHs, and
features can be updated by exchanging routing graph information.

• INTI [33] estimates the reputation of the node to detect SH attacks. Reputation
is the belief that nodes establish by iterations, actions, or information exchange
between them.

• InDReS [34] considers QoS Metrics and uses a constraint-based specification model to
detect SH attacks.

Table 6. The confusion matrix of SH detection results.

Actual Value

Positives Negatives

Predicted value
Positives TP:100 FP:2
Negatives FN:0 TN:198

The comparison of SH detection capabilities is shown in Figure 16. It can be seen
that the proposed method performs well in terms of accuracy (99.3%), precision (98%),
and recall (100%). Therefore, it can be considered that the proposed method has a good
detection ability for the SH nodes caused by SDC errors. We also note that there are two
false alarms in Table 6. In the SH detection algorithm, we use two parameters (DLYiol)
and (DLYaol). For satellite constellations, the delay in an inter-orbital link is usually a fixed
value. However, the DLYaol varies with the latitude of the satellite. Therefore, (DLYaol) can
be seen as an adjustable parameter and an important parameter for maintaining FN and FP
balance. To improve our chances of detecting a SH as much as possible, we increase the
DLYaol appropriately. However, this leads to false alarms in the detection results.

(2) Evaluation of GH detection capability

We select 300 RTs from the data set, which include 100 cases with GH, 100 normal
cases, and 100 cases with the next hop changing to other connected nodes to evaluate the
accuracy of the proposed GH detection algorithm. The confusion matrix of the results
is shown in Table 7. We also compare the proposed method with the following GH
detection methods:

• CEBD [6] is an extensible GH detection framework, which collects and analyzes data
exchanged between nodes and constructs neural-network-based behavior classifiers
to distinguish Blackhole behaviors from rational behaviors.

• Other classifiers, including SVM, CART, and ID3, can also be exploited in the CEBD
framework as a comparative method.

The comparison of GH detection capabilities is shown in Figure 17. It can be seen
that the proposed method performs well in terms of accuracy (100%), precision (100%),
and recall (100%). Therefore, it can be considered that the proposed method has a good
detection ability for GH nodes caused by SDC errors.

Aerospace 2023, 10, 788 23 of 29

Aerospace 2023, 10, x FOR PEER REVIEW 23 of 31

• SoS-RPL [18] defines two features (DI-RANK and DV-RANK) to detect SHs, and fea-
tures can be updated by exchanging routing graph information.

• INTI [33] estimates the reputation of the node to detect SH attacks. Reputation is the
belief that nodes establish by iterations, actions, or information exchange between
them.

• InDReS [34] considers QoS Metrics and uses a constraint-based specification model
to detect SH attacks.
The comparison of SH detection capabilities is shown in Figure 16. It can be seen that

the proposed method performs well in terms of accuracy (99.3%), precision (98%), and
recall (100%). Therefore, it can be considered that the proposed method has a good detec-
tion ability for the SH nodes caused by SDC errors. We also note that there are two false
alarms in Table 6. In the SH detection algorithm, we use two parameters (𝐷𝐿𝑌ప௢௟തതതതതതതത) and
(𝐷𝐿𝑌௔௢௟തതതതതതതതത). For satellite constellations, the delay in an inter-orbital link is usually a fixed
value. However, the 𝐷𝐿𝑌௔௢௟ varies with the latitude of the satellite. Therefore, (𝐷𝐿𝑌௔௢௟തതതതതതതതത) can
be seen as an adjustable parameter and an important parameter for maintaining FN and
FP balance. To improve our chances of detecting a SH as much as possible, we increase
the 𝐷𝐿𝑌௔௢௟തതതതതതതതത appropriately. However, this leads to false alarms in the detection results.

Table 6. The confusion matrix of SH detection results.

 Actual Value
 Positives Negatives

Predicted value
Positives TP:100 FP:2
Negatives FN:0 TN:198

Figure 16. Comparison of SH detection capabilities.

(2) Evaluation of GH detection capability
We select 300 RTs from the data set, which include 100 cases with GH, 100 normal

cases, and 100 cases with the next hop changing to other connected nodes to evaluate the
accuracy of the proposed GH detection algorithm. The confusion matrix of the results is
shown in Table 7. We also compare the proposed method with the following GH detection
methods:
• CEBD [6] is an extensible GH detection framework, which collects and analyzes data

exchanged between nodes and constructs neural-network-based behavior classifiers
to distinguish Blackhole behaviors from rational behaviors.

• Other classifiers, including SVM, CART, and ID3, can also be exploited in the CEBD
framework as a comparative method.
The comparison of GH detection capabilities is shown in Figure 17. It can be seen that

the proposed method performs well in terms of accuracy (100%), precision (100%), and

Figure 16. Comparison of SH detection capabilities.

Table 7. The confusion matrix of GH detection results.

Actual Value

Positives Negatives

Predicted value
Positives 100 0
Negatives 0 200

Aerospace 2023, 10, x FOR PEER REVIEW 24 of 31

recall (100%). Therefore, it can be considered that the proposed method has a good detec-
tion ability for GH nodes caused by SDC errors.

Table 7. The confusion matrix of GH detection results.

 Actual Value
 Positives Negatives

Predicted value
Positives 100 0
Negatives 0 200

Figure 17. Comparison of GH detection capabilities.

5.3. Evaluation of Performance and Cost
(1) Overall computing overhead

To evaluate the performance of the detection and protection framework proposed in
this paper, we first discuss the computing overhead of the proposed framework in differ-
ent situations. The low computing overhead operations, such as information transmission
and sensor data acquisition, are not considered. Specific symbols and descriptions are as
follows.

PT: physical twin (satellite network); DT: Digital Twin (ground station); NS: The nor-
mal situation; SN: The situation in which only the SH nodes caused by SDC error exist; GN:
The situation in which only GH nodes caused by SDC errors exist; SGN: The situation in
which both SH and GH nodes caused by SDC errors exist; GR: The cost of generating RIB;
GRT: The overhead of generating routing tables for satellites; CR: The cost of checking RIB;
CRT: The overhead of checking routing tables; p: The number of RIBs with false links that
can cause SHs; q: The number of routing tables that can cause GHs; r: The number of routing
tables that can cause GH nodes and do not belong to the routing tables generated by wrong
RIB affected by SDC errors.

Table 8 shows the computing overheads of the satellite network and the ground sta-
tion in different situations. For example, in the case of SN, the total computing overhead
of DT is K × CR + N × M × CRT + p × (GR + GRT). Specifically, this represents the total cost
of executing K instances of RIB check, N × M instances of routing table detection, p in-
stances of RIB generation, and p × ே×ெ௄ instances of routing table generation.

Table 8. The computing overhead of the proposed framework in different situations.

 NS
SN (Extra
Overhead)

GN (Extra
Overhead) SGN (Extra Overhead)

PT K × GR + N × M × GRT 0 0 0

Figure 17. Comparison of GH detection capabilities.

5.3. Evaluation of Performance and Cost

(1) Overall computing overhead

To evaluate the performance of the detection and protection framework proposed in
this paper, we first discuss the computing overhead of the proposed framework in different
situations. The low computing overhead operations, such as information transmission
and sensor data acquisition, are not considered. Specific symbols and descriptions are
as follows.

PT: physical twin (satellite network); DT: Digital Twin (ground station); NS: The
normal situation; SN: The situation in which only the SH nodes caused by SDC error exist;
GN: The situation in which only GH nodes caused by SDC errors exist; SGN: The situation
in which both SH and GH nodes caused by SDC errors exist; GR: The cost of generating
RIB; GRT: The overhead of generating routing tables for satellites; CR: The cost of checking
RIB; CRT: The overhead of checking routing tables; p: The number of RIBs with false links
that can cause SHs; q: The number of routing tables that can cause GHs; r: The number of
routing tables that can cause GH nodes and do not belong to the routing tables generated
by wrong RIB affected by SDC errors.

Table 8 shows the computing overheads of the satellite network and the ground station
in different situations. For example, in the case of SN, the total computing overhead of DT
is K × CR + N ×M × CRT + p × (GR + GRT). Specifically, this represents the total cost of

Aerospace 2023, 10, 788 24 of 29

executing K instances of RIB check, N ×M instances of routing table detection, p instances
of RIB generation, and p × N×M

K instances of routing table generation.

(2) Total time cost of the routing update process

Table 8. The computing overhead of the proposed framework in different situations.

NS SN (Extra
Overhead)

GN (Extra
Overhead) SGN (Extra Overhead)

PT K × GR + N ×M × GRT 0 0 0

DT K × CR + N ×M × CRT P × (GR + GRT) q × GRT p × (GR + GRT) + r × GRT

The total time cost consists mainly of propagation delay, transmission delay, and
program running time. Compared with propagation delay, transmission delay, the running
time of the program, is much shorter. Therefore, in this example, only propagation delay
and transmission delay are considered to evaluate the communication time cost of the
proposed framework.

The propagation delay can be expressed as DlyProp, as shown in Equation (7), where
Dis is the distance between the two sides of the communication and Velwave is the propaga-
tion speed of the wave in the vacuum (About 3× 105 km/s).

DlyProp = Dis/Velwave (7)

We use the STK tool to simulate the Iridium constellation described in Section 5.1
and obtain the link propagation delay of IOLs and AOLs, as shown in Figure 18. In this
scenario, the link propagation delay of IOLs is about 13.5 ms. Considering the polar region
boundary latitude, the link delay range of AOLs is about 4–12 ms. At the same time, we
set up a satellite-ground communication link and obtain the link distance range between
the satellite and the ground station through simulation, as shown in Figure 19. Without
considering the weather and other complex factors, the link delay range between the
satellite and ground station is about 3–10 ms.

Aerospace 2023, 10, x FOR PEER REVIEW 25 of 31

DT K × CR + N × M × CRT P × (GR +
GRT)

q × GRT p × (GR + GRT) + r × GRT

(2) Total time cost of the routing update process
The total time cost consists mainly of propagation delay, transmission delay, and

program running time. Compared with propagation delay, transmission delay, the run-
ning time of the program, is much shorter. Therefore, in this example, only propagation
delay and transmission delay are considered to evaluate the communication time cost of
the proposed framework.

The propagation delay can be expressed as 𝐷𝑙𝑦௉௥௢௣, as shown in Equation (7), where 𝐷𝑖𝑠 is the distance between the two sides of the communication and 𝑉𝑒𝑙௪௔௩௘ is the prop-
agation speed of the wave in the vacuum (About 3 × 10ହ𝑘𝑚/𝑠). 𝐷𝑙𝑦௉௥௢௣ = 𝐷𝑖𝑠/𝑉𝑒𝑙௪௔௩௘ (7)

We use the STK tool to simulate the Iridium constellation described in Section 5.1 and
obtain the link propagation delay of IOLs and AOLs, as shown in Figure 18. In this sce-
nario, the link propagation delay of IOLs is about 13.5 ms. Considering the polar region
boundary latitude, the link delay range of AOLs is about 4–12 ms. At the same time, we
set up a satellite-ground communication link and obtain the link distance range between
the satellite and the ground station through simulation, as shown in Figure 19. Without
considering the weather and other complex factors, the link delay range between the sat-
ellite and ground station is about 3–10 ms.

Figure 18. The link propagation delay of IOLs and AOLs. Figure 18. The link propagation delay of IOLs and AOLs.

The transmission delay can be expressed as Dlytrans, as shown in Equation (8), where
Sizedata represents the size of the transmission data and Tr represents the transmission rate
of the channel.

Dlytrans = Sizedata/Tr (8)

According to different transmission frequencies and communication bandwidth, Tr
varies from tens of K to tens of Mbps. Generally speaking, the frequency and bandwidth
of the inter-satellite link, data uplink, and data downlink are different. For example, the

Aerospace 2023, 10, 788 25 of 29

inter-satellite link of the MILSTAR satellite system uses 60 GHz mmWave communication
with a 2.16 GHz bandwidth, and the uplink frequency and downlink frequency are about
44 GHz and 20 GHz, respectively [35,36]. For the convenience of evaluation, the transmis-
sion rates of inter-satellite link, data uplink, and data downlink in this example are set to
3 Mbps, 2 Mbps, and 1 Mbps, respectively.

Aerospace 2023, 10, x FOR PEER REVIEW 26 of 31

Figure 19. The distance range of a satellite–ground communication link.

The transmission delay can be expressed as 𝐷𝑙𝑦௧௥௔௡௦, as shown in Equation (8), where 𝑆𝑖𝑧𝑒ௗ௔௧௔ represents the size of the transmission data and 𝑇𝑟 represents the transmission
rate of the channel. 𝐷𝑙𝑦௧௥௔௡௦ = 𝑆𝑖𝑧𝑒ௗ௔௧௔/𝑇𝑟 (8)

According to different transmission frequencies and communication bandwidth, 𝑇𝑟
varies from tens of K to tens of Mbps. Generally speaking, the frequency and bandwidth
of the inter-satellite link, data uplink, and data downlink are different. For example, the
inter-satellite link of the MILSTAR satellite system uses 60 GHz mmWave communication
with a 2.16 GHz bandwidth, and the uplink frequency and downlink frequency are about
44 GHz and 20 GHz, respectively [35,36]. For the convenience of evaluation, the transmis-
sion rates of inter-satellite link, data uplink, and data downlink in this example are set to
3 Mbps, 2 Mbps, and 1 Mbps, respectively.

At the same time, in the framework proposed in this paper, the five types of process
files involved in the DHRP routing protocol are transmitted and stored in the form of txt.
The size of each file, the required number of files in the satellite network, inter-satellite
link transmission delay, uplink transmission delay, and downlink transmission delay are
shown in Table 9, and Figure 20 contains five curves that correspond to the five types of
process files involved in the DHRP routing protocol. Each curve shows the change in the
transmission delay of one file with the transmission rate.

Table 9. Transmission delay of different files.

 POS LSA S-LSA RIB RT
Size (B) 17 26 368 1868 432
The number of files in PT 66 66 6 6 66
The inter-satellite link transmission delay
(ms) - 0.07 0.98 - 1.16

The uplink transmission delay (ms) - - - - 1.73
The downlink transmission delay (ms) 0.14 0.21 - 14.94 3.46
Note: “-” means that the proposed framework doesn’t need to consider this delay.

Figure 19. The distance range of a satellite–ground communication link.

At the same time, in the framework proposed in this paper, the five types of process
files involved in the DHRP routing protocol are transmitted and stored in the form of txt.
The size of each file, the required number of files in the satellite network, inter-satellite
link transmission delay, uplink transmission delay, and downlink transmission delay are
shown in Table 9, and Figure 20 contains five curves that correspond to the five types of
process files involved in the DHRP routing protocol. Each curve shows the change in the
transmission delay of one file with the transmission rate.

Table 9. Transmission delay of different files.

POS LSA S-LSA RIB RT

Size (B) 17 26 368 1868 432

The number of files in PT 66 66 6 6 66

The inter-satellite link transmission delay (ms) - 0.07 0.98 - 1.16

The uplink transmission delay (ms) - - - - 1.73

The downlink transmission delay (ms) 0.14 0.21 - 14.94 3.46
Note: “-” means that the proposed framework doesn’t need to consider this delay.

To evaluate the additional communication time cost of the detection and protection
framework proposed in this paper, we take the DHRP routing protocol as an example
to obtain the total routing convergence time under the NS, SN, GN, and SGN situations,
respectively, as shown in Figure 21.

Under the normal situation (NS), the total routing convergence time consists mainly
of the following parts: the time for collecting inter-satellite link delay (Link delay obtaining),
the maximum delay for PS to obtain the LSA of the current orbit satellite (LSAs to PS), the
S-LSA exchange time between PS of different orbits (S-LSA exchange), and the maximum
delay for PS to distribute route tables for satellites in the orbit (RT distribution). Due to
the uncertainty in PS selection in the satellite network, we consider the optimal and worst

Aerospace 2023, 10, 788 26 of 29

case of S-LSA switching. The best situation is when the PS of each orbit is in the same
logical position in the orbit, that is, only AOLs are used. The worst situation is that the
difference between the ID of PS in the orbit 1 (IDPS1

sat) and the ID of PS in the orbit 6 (IDPS6
sat)

is the half number of satellites per orbit (IDPS1
sat − IDPS6

sat = 5, in this case), that is, AOLs
and IOLs with the maximum number of hops are used. In this case, the Link delay obtaining
time can be calculated as 2 × 13.5 = 27 ms (delay of round-trip links between adjacent
satellites), the LSAs to PS time can be calculated as 5 × 13.5 = 67.5 ms (link delay between
PS and the satellite farthest from it), the shortest S-LSA exchange time can be calculated
as 5× (9 + 0.98) ≈ 50 ms (best case scenario, time cost of 5 AOLs link transmissions), the
longest S-LSA exchange time can be calculated as 5× (9 + 0.98)+ 5× (13.5 + 0.98) ≈ 123 ms
(worst case scenario, time cost of 5 AOLs and 5 IOLs transmissions), the RT distribution
time can be calculated as 5× 13.5 + 1.16 ≈ 73 ms (time cost for PS to send the routing table
to the satellite farthest from it), and the average S-LSA exchange time can be calculated as
(50 + 123)/2 = 86.5 ms.

Aerospace 2023, 10, x FOR PEER REVIEW 27 of 31

Figure 20. Changes in file transmission delay with transmission rate.

To evaluate the additional communication time cost of the detection and protection
framework proposed in this paper, we take the DHRP routing protocol as an example to
obtain the total routing convergence time under the NS, SN, GN, and SGN situations,
respectively, as shown in Figure 21.

Figure 21. The total routing convergence time under different situations.

Under the normal situation (NS), the total routing convergence time consists mainly
of the following parts: the time for collecting inter-satellite link delay (Link delay obtaining),
the maximum delay for PS to obtain the LSA of the current orbit satellite (LSAs to PS), the
S-LSA exchange time between PS of different orbits (S-LSA exchange), and the maximum
delay for PS to distribute route tables for satellites in the orbit (RT distribution). Due to the
uncertainty in PS selection in the satellite network, we consider the optimal and worst
case of S-LSA switching. The best situation is when the PS of each orbit is in the same
logical position in the orbit, that is, only AOLs are used. The worst situation is that the
difference between the ID of PS in the orbit 1 (𝐼𝐷௦௔௧௉ௌଵ) and the ID of PS in the orbit 6 (𝐼𝐷௦௔௧௉ௌ଺)
is the half number of satellites per orbit (𝐼𝐷௦௔௧௉ௌଵ − 𝐼𝐷௦௔௧௉ௌ଺ = 5, in this case), that is, AOLs and
IOLs with the maximum number of hops are used. In this case, the Link delay obtaining

Figure 20. Changes in file transmission delay with transmission rate.

Aerospace 2023, 10, x FOR PEER REVIEW 27 of 31

Figure 20. Changes in file transmission delay with transmission rate.

To evaluate the additional communication time cost of the detection and protection
framework proposed in this paper, we take the DHRP routing protocol as an example to
obtain the total routing convergence time under the NS, SN, GN, and SGN situations,
respectively, as shown in Figure 21.

Figure 21. The total routing convergence time under different situations.

Under the normal situation (NS), the total routing convergence time consists mainly
of the following parts: the time for collecting inter-satellite link delay (Link delay obtaining),
the maximum delay for PS to obtain the LSA of the current orbit satellite (LSAs to PS), the
S-LSA exchange time between PS of different orbits (S-LSA exchange), and the maximum
delay for PS to distribute route tables for satellites in the orbit (RT distribution). Due to the
uncertainty in PS selection in the satellite network, we consider the optimal and worst
case of S-LSA switching. The best situation is when the PS of each orbit is in the same
logical position in the orbit, that is, only AOLs are used. The worst situation is that the
difference between the ID of PS in the orbit 1 (𝐼𝐷௦௔௧௉ௌଵ) and the ID of PS in the orbit 6 (𝐼𝐷௦௔௧௉ௌ଺)
is the half number of satellites per orbit (𝐼𝐷௦௔௧௉ௌଵ − 𝐼𝐷௦௔௧௉ௌ଺ = 5, in this case), that is, AOLs and
IOLs with the maximum number of hops are used. In this case, the Link delay obtaining

Figure 21. The total routing convergence time under different situations.

Under the SN situation, the additional routing convergence time consisted mainly of
the following parts: the RIB download time (RIB download) and the routing table upload
time (RT upload). In this example, we assume that we have detected a wrong RIB that
can cause a SH. The RIB download time can be calculated as 14.94 + 6 ≈ 21 ms (downlink
transmission delay of RIB and average propagation delay of the satellite–ground link), and

Aerospace 2023, 10, 788 27 of 29

the RT upload time can be calculated as 11× 1.73 + 6 ≈ 25 ms (uplink transmission delay of
RT and average propagation delay of the satellite–ground link). In other words, if an RIB
of a PS has an error, the RTs of 11 satellites in this orbit need to be uploaded additionally.

Under the GN situation, the additional routing convergence time consists mainly of
the following parts: the routing table download time (RT download) and the routing table
upload (RT upload) time. In this example, we assume that we have detected a wrong RT
that can cause a GH. The RT download time can be calculated as 11× 3.46 + 6 ≈ 44 ms
(downlink transmission delay of RT and average propagation delay of the satellite–ground
link), and the RT upload time can be calculated as 1.73 + 6 ≈ 8 ms (uplink transmission
delay of RT and average propagation delay of the satellite–ground link). In other words,
the PS sends the routing tables of all satellites in this orbit to the ground station, and the
ground station uploads the correct RT according to the ID of the affected RT.

Under the SGN situation, if the wrong RTs are included in RTs generated according
to the wrong RIB, the additional routing convergence time is the same as that of SN. If
the wrong RTs are not included in the RTs generated according to the wrong RIB (this
is the case in Figure 21), the additional routing convergence time consists mainly of the
following parts: the RIB download time (RIB download), routing table download time (RT
download), and routing table upload time (RT upload). In this example, we assume that we
have detected a wrong RIB that can cause a SH and a wrong RT that can cause a GH. The
RIB download time can be calculated as 14.94 + 6 ≈ 21 ms (downlink transmission delay of
RIB and average propagation delay of the satellite–ground link), the RT download time can
be calculated as 11× 3.46 + 6 ≈ 44 ms (downlink transmission delay of RT and average
propagation delay of the satellite–ground link), and the RT upload time can be calculated
as 1.73 + 6 ≈ 8 ms (uplink transmission delay of RT and average propagation delay of
the satellite–ground link). In this case, after sending the RIB to the ground station, the PS
continues to send the routing tables of all satellites in the same orbit, and the ground station
uploads the correct RTs according to the ID of the affected satellites.

Figure 21 shows the routing convergence time in each case. The average time under NS
(NS Avg) is 254.5 ms. Compared with NS Avg and NS Max, the time cost under SN increased
by 17.6% and 3.1%; the time cost under GN increased by 20% and 5.1%; and the time cost
under SGN increased by 28.2% and 12.3%, respectively. In theory, the probability of high-
energy protons or galactic cosmic rays causing an SEU is 16% [1,37], and the experimental
results of this article show that the probabilities of SH and GH occurrence caused by SEU are
around 1% and 2%, respectively. Therefore, the probabilities of SH and GH occurrence caused
by high-energy protons or galactic cosmic rays are around 0.16% and 0.32%, respectively.
Therefore, the satellite network is under the NS situation most of the time. At the same time,
when there are SHs and GHs caused by SEU, the additional time cost range is between 3.1%
and 28.2%, which is acceptable for the satellite system as a whole.

6. Conclusions

SDC errors caused by SEU can affect the execution of routing programs, which may
further lead to the emergence of SH and GH nodes in satellite networks, reducing the
reliability and availability of the satellite networks. To solve this problem, we propose a
digital-twin-based detection and protection framework for SDC-induced SH and GH nodes
in satellite networks. By analyzing and detecting the digital-twin process files of the satellite
network routing mechanism, the proposed framework can detect SH and GH nodes caused
by SDC errors in the satellite network as early as possible before the satellite carries out
actual data forwarding, allowing the failed nodes to be recovered in time. At the same
time, this framework does not interfere with the normal operation of the satellite network
routing mechanism when there is no SDC error or when the SDC errors do not cause SH or
GH nodes to form. We evaluate the proposed detection and protection framework through
experiments. Experiment results show that the detection algorithm proposed in this paper
has high accuracy (99.3–100%), precision (98–100%), and recall (100%) compared to existing

Aerospace 2023, 10, 788 28 of 29

approaches, and the additional time cost of routing convergence caused by this framework
is relatively low (3.1–28.2%).

At present, the proposed framework mainly focuses on satellite network routing
mechanisms based on link delay. We also note some shortcomings of this method, such as
increasing the communication cost of satellite systems. In addition, compared to hardware-
level fault injection methods or irradiation experiments, the fault coverage rate of software-
based fault injection simulation methods is lower. In the future, we will improve the
proposed framework by integrating other routing mechanisms, such as routing mecha-
nisms based on link congestion and QoS. At the same time, we will consider extracting
the features of the routing update process file to reduce the communication cost of the
satellite system. We will also try using fault injection methods that are closer to the real
radiation environment.

Author Contributions: Conceptualization, G.Q. and Y.Z.; methodology, G.Q. and T.Y.; software, T.Y.
and G.Q.; investigation, G.Q. and Y.Q.; validation, G.Q., Y.Z. and T.Y.; result analysis, T.Y. and Y.Q.;
writing—original draft preparation, G.Q. and T.Y.; writing—review and editing, Y.Z., G.Q. and Y.Q.;
supervision, Y.Z.; funding acquisition, Y.Z. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (General
Program) under Grant No. 61572253.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. SPE.txt, U.S. Department of Commerce, NOAA, Space Weather Prediction Center. Available online: https://www.ngdc.noaa.

gov/stp/satellite/goes/doc/SPE.txt (accessed on 11 October 2022).
2. James, B.; Quinn, H.; Wirthlin, M.; Goeders, J. Applying compiler-automated software fault tolerance to multiple processor

platforms. IEEE Trans. Nucl. Sci. 2020, 67, 321–327. [CrossRef]
3. Yan, Z.; Zhuang, Y.; Zheng, W.; Gu, J. Multi-Bit Data Flow Error Detection Method Based on SDC Vulnerability Analysis. ACM

Trans. Embed. Comput. Syst. 2022; just accepted. [CrossRef]
4. Hóu, Z.; Li, Q.; Foo, E. A Digital Twin Runtime Verification Framework for Protecting Satellites Systems from Cyber Attacks. In

Proceedings of the 26th International Conference on Engineering of Complex Computer Systems (ICECCS), Hiroshima, Japan, 26
March 2022; pp. 117–122.

5. Chen, L.; Tang, F.; Li, X.; Yang, L.T.; Cao, L. Dynamical control domain division for software defined satellite-ground integrated
vehicular networks. IEEE Trans. Net. Sci. Eng. 2021, 8, 2732–2741. [CrossRef]

6. Gao, Y.; Tao, J.; Xu, Y.; Wang, Z.; Sun, W.; Cheng, G. Cebd: Contact-evidence-driven blackhole detection based on machine
learning in oppnets. IEEE Trans. Comput. Soc. Syst. 2021, 8, 1344–1356. [CrossRef]

7. Ioulianou, P.P.; Vassilakis, V.G.; Shahandashti, S.F. ML-based Detection of Rank and Blackhole Attacks in RPL Networks. In
Proceedings of the 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP),
Porto, Portugal, 20 July 2022; pp. 338–343.

8. Pundir, S.; Wazid, M.; Singh, D.P.; Das, A.K.; Rodrigues, J.J.; Park, Y. Designing efficient sinkhole attack detection mechanism in
edge-based IoT deployment. Sensors 2020, 20, 1300. [CrossRef]

9. Nadeem, A.; Alghamdi, T.G. Detection Algorithm for Sinkhole Attack in Body Area Sensor Networks Using Local Information.
Int. J. Netw. Secur. 2019, 21, 670–679.

10. Remya Krishnan, P.; Arun Raj Kumar, P. Detection and Mitigation of Smart Blackhole and Gray Hole Attacks in VANET Using
Dynamic Time Warping. Wirel. Pers. Commun. 2022, 124, 931–966. [CrossRef]

11. Shangguan, D.; Chen, L.; Ding, J. A digital twin-based approach for the fault diagnosis and health monitoring of a complex
satellite system. Symmetry 2020, 12, 1307. [CrossRef]

12. Zhao, L.; Wang, C.; Zhao, K.; Tarchi, D.; Wan, S.; Kumar, N. INTERLINK: A digital twin-assisted storage strategy for satellite-
terrestrial networks. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3746–3759. [CrossRef]

13. Liu, J.; Zhao, B.; Xin, Q.; Su, J.; Ou, W. Drl-er: An intelligent energy-aware routing protocol with guaranteed delay bounds in
satellite megaconstellations. IEEE Trans. Netw. Sci. Eng. 2020, 8, 2872–2884. [CrossRef]

14. Wang, Y.; Feng, J.; Liu, J.; Liu, X.; Wang, J. Case Study of Digital Twin-based Human-robot Collaborative Work-cell for Satellite
Assembly. In Proceedings of the 2021 IEEE International Conference on Industrial Engineering and Engineering Management
(IEEM), Xi’an, China, 8 December 2021; pp. 698–702.

https://www.ngdc.noaa.gov/stp/satellite/goes/doc/SPE.txt
https://www.ngdc.noaa.gov/stp/satellite/goes/doc/SPE.txt
https://doi.org/10.1109/TNS.2019.2959975
https://doi.org/10.1145/3572838
https://doi.org/10.1109/TNSE.2021.3050213
https://doi.org/10.1109/TCSS.2021.3078160
https://doi.org/10.3390/s20051300
https://doi.org/10.1007/s11277-021-09390-3
https://doi.org/10.3390/sym12081307
https://doi.org/10.1109/TAES.2022.3169130
https://doi.org/10.1109/TNSE.2020.3039499

Aerospace 2023, 10, 788 29 of 29

15. Li, Y.; Tao, Z.; Wang, L.; Du, B.; Guo, J.; Pang, S. Digital twin-based job shop anomaly detection and dynamic scheduling. Robot.
Comput.-Integr. Manuf. 2023, 79, 102443. [CrossRef]

16. Azangoo, M.; Sorsamäki, L.; Sierla, S.A.; Mätäsniemi, T.; Rantala, M.; Rainio, K.; Vyatkin, V. A methodology for generating a
digital twin for process industry: A case study of a fiber processing pilot plant. IEEE Access 2022, 10, 58787–58810. [CrossRef]

17. Prathapchandran, K.; Janani, T. A trust aware security mechanism to detect sinkhole attack in RPL-based IoT environment using
random forest–RFTRUST. Comput. Netw. 2021, 198, 108413. [CrossRef]

18. Zaminkar, M.; Fotohi, R. SoS-RPL: Securing internet of things against sinkhole attack using RPL protocol-based node rating and
ranking mechanism. Wirel. Pers. Commun. 2020, 114, 1287–1312. [CrossRef]

19. Pan, T.; Huang, T.; Li, X.; Chen, Y.; Xue, W.; Liu, Y. OPSPF: Orbit prediction shortest path first routing for resilient LEO satellite
networks. In Proceedings of the ICC 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20 May
2019; pp. 1–6.

20. Pramitarini, Y.; Perdana, R.H.Y.; Tran, T.N.; Shim, K.; An, B. A hybrid price auction-based secure routing protocol using advanced
speed and cosine similarity-based clustering against sinkhole attack in VANETs. Sensors 2022, 22, 5811. [CrossRef]

21. Singh, S.; Nandan, A.S.; Sikka, G.; Malik, A.; Vidyarthi, A. A secure energy-efficient routing protocol for disease data transmission
using IoMT. Comput. Electr. Eng. 2022, 101, 108113. [CrossRef]

22. Didehban, M.; So, H.; Gali, P.; Shrivastava, A.; Lee, K. Generic Soft Error Data and Control Flow Error Detection by Instruction
Duplication. IEEE Trans. Dependable Secur. Comput. 2023, 1, 1–16. [CrossRef]

23. So, H.; Didehban, M.; Ko, Y.; Shrivastava, A.; Lee, K. EXPERT: Effective and flexible error protection by redundant multithreading.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19 March
2018; pp. 533–538.

24. So, H.; Didehban, M.; Shrivastava, A.; Lee, K. A software-level redundant multithreading for soft/hard error detection and
recovery. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 25 March
2019; pp. 1559–1562.

25. Li, Z.; Menon, H.; Maljovec, D.; Livnat, Y.; Liu, S.; Mohror, K. Spotsdc: Revealing the silent data corruption propagation in
high-performance computing systems. IEEE Trans. Vis. Comput. Gr. 2020, 27, 3938–3952. [CrossRef] [PubMed]

26. Shrivastava, A.; Didehban, M. Software approaches for in-time resilience. In Proceedings of the 56th Annual Design Automation
Conference, Las Vegas, NV, USA, 2 June 2019; pp. 1–4.

27. Wei, J.; Thomas, A.; Li, G.; Pattabiraman, K. Quantifying the accuracy of high-level fault injection techniques for hardware faults.
In Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Atlanta, GA,
USA, 23 June 2014; pp. 375–382.

28. Guan, M.; Xu, T.; Gao, F.; Nie, W.; Yang, H. Optimal walker constellation design of LEO-based global navigation and augmentation
system. Remote Sens. 2020, 12, 1845. [CrossRef]

29. Xu, R.; Di, X.; He, X.; Qi, H. Evaluation method of node importance in temporal satellite networks based on time slot correlation.
EURASIP J. Wirel. Commun. 2021, 1, 188. [CrossRef]

30. Yue, H.; Wei, X.; Tan, J.; Jiang, N.; Qiu, M. Eff-ECC: Protecting GPGPUs Register File with a Unified Energy-Efficient ECC
Mechanism. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2022, 41, 2080–2093. [CrossRef]

31. Zhang, X.; Yang, Y.; Xu, M.; Luo, J. ASER: Scalable distributed routing protocol for LEO satellite networks. In Proceedings of the
IEEE 46th Conference on Local Computer Networks (LCN), Edmonton, AB, Canada, 4 October 2021; pp. 65–72.

32. Lu, Q.; Farahani, M.; Wei, J.; Thomas, A.; Pattabiraman, K. Llfi: An intermediate code-level fault injection tool for hardware faults.
In Proceedings of the 2015 IEEE International Conference on Software Quality, Reliability and Security (QRS), Vancouver, BC,
Canada, 5 August 2015; pp. 11–16.

33. Muzammal, S.M.; Murugesan, R.K.; Jhanjhi, N.Z.; Jung, L.T. SMTrust: Proposing trust-based secure routing protocol for RPL
attacks for IoT applications. In Proceedings of the 2020 International Conference on Computational Intelligence (ICCI), Bandar
Seri Iskandar, Malaysia, 8 October 2020; pp. 305–310.

34. Surendar, M.; Umamakeswari, A. InDReS: An Intrusion Detection and response system for Internet of Things with 6LoWPAN. In
Proceedings of the 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET),
Chennai, India, 23 March 2016; pp. 1903–1908.

35. Cho, I.S.; Baek, S.J. Optimal multicast scheduling for millimeter wave networks leveraging directionality and reflections. In
Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10 May
2021; pp. 1–10.

36. Bai, T.; Heath, R.W. Coverage and rate analysis for millimeter-wave cellular networks. IEEE Trans. Wireless Commun. 2014,
14, 1100–1114. [CrossRef]

37. Yang, S.; Shao, Q.; Bian, C. Reliability analysis of ensemble fault tolerance for soft error mitigation against complex radiation
effect. Reliab. Eng. Syst. Saf. 2022, 217, 108092. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.rcim.2022.102443
https://doi.org/10.1109/ACCESS.2022.3178424
https://doi.org/10.1016/j.comnet.2021.108413
https://doi.org/10.1007/s11277-020-07421-z
https://doi.org/10.3390/s22155811
https://doi.org/10.1016/j.compeleceng.2022.108113
https://doi.org/10.1109/TDSC.2023.3245842
https://doi.org/10.1109/TVCG.2020.2994954
https://www.ncbi.nlm.nih.gov/pubmed/32746251
https://doi.org/10.3390/rs12111845
https://doi.org/10.1186/s13638-021-02062-7
https://doi.org/10.1109/TCAD.2021.3104529
https://doi.org/10.1109/TWC.2014.2364267
https://doi.org/10.1016/j.ress.2021.108092

	Introduction
	Related Work
	Fault Model and SH and GH Node Generation Mechanism
	Satellite Network Fault Model under SEU
	SH Node Generation Mechanism
	GH Node Generation Mechanism

	The Digital-Twin-Based Detection and Protection Framework
	Data Description in the Framework
	Detection and Protection Framework
	The Detection and Protection Method in the Framework
	Overall Workflow
	SH Detection and Protection Method
	GH Detection and Protection Method

	Simulations and Discussions
	Simulation Setup
	Evaluation of Detection Capability
	Evaluation of Performance and Cost

	Conclusions
	References

