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Abstract: This research developed a pressure-based thrust vectoring angle estimation method for
fluidic thrust vectoring nozzles. This method can accurately estimate the real-time in-flight thrust
vectoring angle using only wall pressure information on the inner surface of the nozzle. We proposed
an algorithm to calculate the thrust vectoring angle from the wall pressure inside the nozzle. Non-
dominated sorting genetic algorithm II was applied to find the optimal sensor arrays and reduce
the wall pressure sensor quantity. Synchronous force and wall pressure measurement experiments
were carried out to verify the accuracy and real-time response of the pressure-based thrust vectoring
angle estimation method. The results showed that accurate estimation of the thrust vectoring angle
can be achieved with a minimum of three pressure sensors. The pressure-based thrust vectoring
angle estimation method proposed in this study has a good prospect for engineering applications;
it is capable of accurate real-time in-flight monitoring of the thrust vectoring angle. This method
is important and indispensable for the closed-loop feedback control and aircraft attitude control of
fluidic thrust vectoring control technology.

Keywords: passive fluidic thrust vectoring control; thrust vectoring angle estimation; genetic algo-
rithm optimization; pressure distribution reconstruction; non-dominated sorting genetic algorithm II

1. Introduction

Thrust vectoring control (TVC) is an indispensable technology for the next-generation
high-performance fighter. It can partly replace aerodynamic rudders to provide aircraft at-
titude control force [1], significantly enhance the maneuverability and agility of the aircraft,
and improve aerial combat capabilities. TVC methods can be divided into two categories:
mechanical thrust vectoring control and fluidic thrust vectoring control (FTVC). Mechanical
thrust vectoring control changes the shape of the nozzle to limit or change the flow direction
of the jet. It can achieve continuous and stable control of the jet vectoring direction but
with disadvantages such as complex and heavy mechanical structures, slow jet vectoring
response, and thrust loss [2]. In contrast, FTVC can avoid some of these problems. FTVC
changes the flow direction of the jet using active flow control methods, thus avoiding com-
plex mechanical structures. Some typical FTVC methods include shock vector control [3–5],
throat shifting control [6,7], dual throat control [8–10], counterflow control [11,12], and
co-flow control [13,14]. These FTVC methods all use air sources, such as high-pressure air
tanks or engine bleed air, to generate an active secondary flow, which will add redundant
structures to the control system of the nozzle. Therefore, these methods are defined as
active FTVC. In our study, we investigated a passive FTVC nozzle, which only consists of
two bilateral inclined offset walls and a pair of secondary flow valves [15]. There is no need
for an air source, high-pressure device, or engine bleed air to generate an active secondary
flow. Due to the advantages of low energy consumption, fast deflection speed, and low
thrust loss, passive FTVC is very promising for engineering applications.
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The thrust vectoring angle is a key performance indicator of TVC technology, which
not only affects the thrust of the engine but also determines the magnitude of the normal
force generated by the TVC system. When the TVC system is used as an aerodynamic
rudder, thrust vectoring angle directly affects the attitude maneuvering torque of the aircraft.
Moreover, if closed-loop feedback control of the nozzle is required, it is necessary to obtain
the in-flight real-time thrust vectoring angle. Therefore, real-time in-flight monitoring of
the thrust vectoring angle generated by the TVC system is very important. Mechanical
thrust vectoring control can indirectly obtain the vectoring angle of the jet through the
deflection degree of the nozzle configuration. Unfortunately, there is no efficient way for
FTVC methods to acquire the in-flight thrust vectoring angle. In ground performance
tests, the vectoring angle of the FTVC system is usually measured by the balance system
or the particle image velocimetry (PIV) system [16]. Flamm [17] used a six-component
strain gauge balance to obtain the thrust vectoring characteristics of a fluidic counterflow
nozzle. PIV can acquire the flow field in space in the form of non-contact measurement [18].
Raman et al. [19] used PIV to investigate the flow structures of a jet in a miniature fluidic
oscillator. However, it is difficult to directly measure the in-flight engine thrust [20]. In-flight
optical non-contact measurement of the exhausted jet is also difficult and impractical. These
technical bottlenecks are detrimental to the application of FTVC technologies and need
to be addressed urgently. Therefore, this investigation proposes a method for estimating
the thrust vectoring angle based on wall pressure distribution, which makes it possible
to acquire the in-flight thrust vectoring angle of the FTVC system. Unlike the previously
existing balance measurement and PIV methods, the strategy proposed in this study only
requires a few sparse pressure measurement points inside the FTVC nozzle, combined
with our vectoring angle solving algorithm, to realize the real-time static and dynamic
measurement of the jet vectoring angle.

In aerodynamics, the estimations of aerodynamic properties from the surface pressure
distribution have been widely used, and we expect to learn from them and propose a
new pressure-based thrust vectoring angle estimation method for FTVC nozzles. For
example, multi-hole probes can determine the three-dimensional velocity vector and fluid
properties through the pressure data at specific locations on the head of the probe [21]. In
the case of a delta wing, the instantaneous loads can be predicted from sparse pressure
measurements [22]. The flush air data sensing system can use a matrix of pressure orifices
on the nose of the aircraft to estimate air data parameters [23]. The lateral force caused by
the bi-stable asymmetric forebody vortices at a high angle of attack can be estimated by the
circumferential pressure distribution [24]. Regarding FTVC technology, previous studies
have indicated that the vectoring angle of FTVC is strongly determined by the near-wall
pressure on both sides of the jet [25–27]; therefore, it is possible to estimate the thrust
vectoring properties through the wall pressure distribution. Normally, a dense array of
pressure sensors on the nozzle wall is always required to obtain the pressure distribution on
the wall, but this solution is impractical for in-flight applications. The acceptable solution
is to place sparse sensors at several key locations. However, inside the FTVC nozzles, the
interaction between the jet and the wall is exceptionally complicated; typical near-wall flow
processes include the shear layer, reattachment, and separation bubble [28–30]. Moreover,
during the transient process of jet deflection, there will be dramatic changes in the near-wall
flow structures, such as the formation and breakdown of the separation bubble [31]. These
circumstances determining the wall pressure distribution of the FTVC nozzle are irregular
and unsteady, which makes it very difficult to find the critical pressure locations to indicate
the thrust vectoring properties. Therefore, we use genetic algorithm optimization to find
the optimal locations with the least sensors.

Genetic algorithms show good performance in finding the best global solution to diffi-
cult problems [32,33], and they have been widely employed in layout optimization [34–38].
However, traditional genetic algorithms are computationally expensive for large popu-
lations [38]. In this research, we used the non-dominated sorting genetic algorithm II
(NSGA-II) to optimize the layout of the pressure sensors. NSGA-II was developed from
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NSGA [39], which has the advantages of a fast non-dominated sorting procedure, an
elitist strategy, a parameterless approach, and a simple yet efficient constraint-handling
method [40]. NSGA-II is particularly suitable for solving multi-objective optimization
problems because this method uses an inexpensive, low-fidelity analytical approach to
evaluate objectives and constraints [41].

In summary, it is extremely important for thrust vectoring nozzles to obtain the real-
time in-flight thrust vectoring angle. However, for FTVC nozzles, there is no effective way
to measure the thrust vectoring angle in-flight. It is theoretically possible to obtain the
thrust vectoring angle by placing hundreds or thousands of pressure sensors on the inner
side wall of the nozzle, but this is obviously not practical in engineering applications. To
solve this pressing problem, this research proposes an optimized pressure-based thrust
vectoring angle estimation method for fluidic thrust vectoring nozzles. It is capable of
monitoring the real-time in-flight thrust vectoring angle with a sparse pressure sensor array,
which is optimized by a genetic algorithm. We conducted synchronous experiments to
prove the accuracy and real-time response of this method. The pressure-based vectoring
angle estimation method is a reliable meter for FTVC nozzles, which can provide accurate
vector angles to the pilot or flight control system, thus improving the aircraft attitude
control capability and safety of FTVC control. Therefore, this method is important and
indispensable for the further application of FTVC technology.

This paper consists of five sections. Section 2 introduces the experimental facilities and
techniques. Section 3 introduces the theory of the research and the optimization method.
Section 4 discusses the results of the research. Section 5 presents the conclusions.

2. Experimental Approach
2.1. Test Facilities and Model

We built an electric jet propulsion system to investigate and validate the pressure-based
thrust vectoring angle estimation method proposed in this research. The propulsion system
is powered by a 144 mm ducted fan, which can generate jets with velocities ranging from
10 to 60 m/s. The type of 144 mm ducted fan is a 144EDF-Metal fan, which is manufactured
by Taizhou Juxian Drone Company in China. The size of the jet outlet can be changed
by replacing the contraction section. The test facilities include the pressure measurement
system, the six-component balance system, and the synchronous DAQ system, as shown
in Figure 1.
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The passive FTVC nozzle is installed at the outlet of the jet propulsion system to
achieve jet vectoring control. The detailed parameters of the passive FTVC nozzle are
illustrated in Figure 2. The main structures of the nozzle consist of two inclined walls, two
sidewalls, and two control valves. The origin of the nozzle coordinate axis system is located
at the center of the jet outlet, the Y-axis coincides with the center axis of the jet propulsion
system, the Z-axis is in the opposite direction of gravity, and the X-axis is determined by
the right-hand rule, as shown in Figure 2a. There is an offset of G = 6 mm between the jet
outlet and the leading edge of the inclined wall. The incline angle between the inclined
wall and the nozzle Y-axis is θ = 16◦. The length of the inclined wall is L = 125 mm, and the
height of the jet outlet is H = 50 mm. The two sidewalls are located on the lateral sides of
the inclined wall. In Figures 1 and 2, the sidewall on the left side is hidden.
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To facilitate the description of the position on the inclined wall, the wall coordinate
axis system shown in Figure 2b is defined. Take the inclined wall on the lower side as an
example; the coordinate origin o is located at the center of the leading edge of the inclined
wall, the x-axis points to the left along the leading edge of the wall (transverse), and the
y-axis points to the trailing edge along the wall (streamwise). The width of the jet outlet is
W = 250 mm.

2.2. Pressure Measurement System

The pressure measurement system was used to obtain the pressure distribution on
the inclined wall during jet vectoring control. It has 64 acquisition channels using SM-5652
pressure transducers, which were manufactured by Silicon Microstructures Incorporated
(SMI) in the USA. Data were acquired using a NI PXI-6284 multifunction I/O module. The
measurement range is 0.15 PSI, and the precision is 0.05% F.S. According to the feature of
the differential pressure sensor, the pressure can be expressed by

Ptest = Ps − Patm, (1)

Cp =
Ptest

1
2 ρv2

∞
, (2)

where Ptest is the pressure acquired by the sensor, Ps is the local absolute pressure, Patm is
the atmospheric pressure at the reference of the sensor, Cp is the pressure coefficient, ρ is
the density of the air, and v∞ is the velocity of the jet at the outlet.
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2.3. Six-Component Balance System

The six-component balance system was used to directly measure the thrust vectoring
characteristics during jet deflection, thus verifying the accuracy of the pressure-based
thrust vectoring angle estimation. The balance system consists of the six-component
balance, one NI PXI-6284 multifunction I/O module, and one NI PXIe-1078 computer.
The six-component balance (type GYS-TP-01-B1) was built in-house; it contains a total
of 28 resistive strain gauges, 8 in the FY direction and 4 in each of the other directions.
The type of the strain gauges is BF350, which were manufactured by AVIC Zhonghang
Electronic Measuring Instruments Company in China. The specifications of the balance are
shown in Table 1, and the balance axes are the same as the nozzle coordinate axis system
in Figure 2a.

Table 1. Specifications of the six-component balance.

FX FY FZ MX MY MZ

Range (kg, kg·m) 15 3 20 2 1 1
Accuracy (%F.S.) 0.32 0.44 0.17 0.42 0.38 0.26
Precision (%F.S.) 0.07 0.18 0.08 0.10 0.12 0.09

2.4. Synchronous DAQ System

The synchronous DAQ system was used to enable the time-synchronous acquisition
of forces and wall pressure distribution during thrust vector control in Section 4.5. The
DAQ system consists of one NI PXIe-1078 computer and two NI PXI-6284 multifunction
I/O modules, which were manufactured by National Instruments (NI) in Texas, USA.
The synchronous acquisition software was programmed based on NI LabVIEW. The force
signals acquired by the balance system were used for a direct calculation of the thrust
vectoring angle, and the pressure signals collected by the pressure sensors were used for an
indirect estimation of the thrust vectoring angle. The schematic diagram of the synchronous
DAQ system is shown in Figure 3. The pressure measurement system and the balance
system acquire data simultaneously and continuously at a sampling frequency of 100 Hz.
At moment t1, the control valve actuates the jet to deflection until moment t2, as illustrated
by the pink rectangular area. The reliability of the pressure-based thrust vectoring angle
estimation algorithm can be demonstrated by comparing its difference with the vectoring
angle directly measured by the balance at the same moment.
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3. Methodology
3.1. Passive Fluidic Thrust Vectoring Control

This section briefly describes the basic control principles of passive FTVC. As men-
tioned previously, there is no need for an air source, high-pressure device, or engine bleed
air for passive FTVC to deflect the jet. As shown in Figure 4a, the shear layer of the primary
jet keeps entraining fluid into the primary jet, which makes the pressure in the near-wall
area of the nozzle lower than the external pressure of the environment. Because both the
upper and lower valves are opened, the ambient fluid will be passively entrained into
the nozzle from the environment through the secondary flow channel. In this case, the
flow conditions of the upper and lower sides of the jet are basically the same, and the jet is
neutral. When one of the valves is closed, such as the lower side shown in 0b, the passive
secondary flow on the lower side will be cut off. Then, a strong low-pressure area will be
created in the near-wall region on the lower side, actuating the jet to deflect towards the
lower side. Figure 4b also provides the typical wall pressure distribution of the attached
jet [31], which shows that there is a low-pressure region near the leading edge of the wall.
By changing the closure percentage of the control valves, the jet can be deflected at different
vectoring angles. The closure percentage δv of the valves is defined as

δv =
S

Smax
, (3)

where Smax = G × W, which is the maximum cross-sectional area of the secondary flow
channel, and S is the area blocked by the control valve.
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3.2. Thrust Vectoring Angle Algorithm Based on Wall Pressure Distribution

According to [13], the thrust vectoring angle generated by the TVC system can be
calculated by

θT = arctan
FZ
FY

, (4)

where θT is the thrust vectoring angle and FY and FZ are the axial force in the Y-direction
and the normal force in the Z-direction, respectively.
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In Strykowski’s [42] study on a counterflow TVC nozzle, he proposed a method to
calculate thrust vectoring angle from wall pressure

θP = arcsin
(P∞ − PB)L

J
, (5)

where θP is the thrust vectoring angle estimated by pressure, P∞ is the local ambient
pressure, PB is the pressure at the secondary flow channel, L is the length of the wall, and J
is the forward momentum of the jet.

The method in Equation (5) uses the pressure of the secondary flow channel to rep-
resent the overall pressure of the wall, but the actual wall pressure distribution is not
uniform. In addition, it ignores the wall incline angle and the effect of backpressure on
thrust. Therefore, the thrust vectoring angle calculated by this method is inaccurate.

In this investigation, we propose a thrust vectoring angle algorithm based on wall
pressure. The thrust generated by the jet is

Tjet =
.

mv∞ + Se(Pe − Patm), (6)

Tjet = ρv2
∞HW + HW(Pe − Patm), (7)

where
.

m is the mass flow of the jet, Se is the area of the jet outlet, Pe is the static pressure of
the jet at the outlet, Patm is the environmental pressure, and ρv2

∞ is the dynamic pressure,
which can be measured at the jet outlet.

When the vectoring angle of the jet is θP, the thrust component of Tjet in the Y-direction is

TY,jet = HW
(

ρv2
∞ + Pe − Patm

)
cos θP. (8)

The normal force generated by the passive FTVC system is calculated from the wall
pressure distribution. As shown in Figure 4b, the resultant force applied on the lower wall
by the negative pressure is FP, which can be calculated by

FP = −
x 1

2
ρv2

∞Cp(x, y)dxdy, (9)

FP = −Cp
1
2

ρv2
∞Sw, (10)

where Cp is the average wall pressure coefficient all over the wall and Sw = W × L is the
area of the inclined wall.

As shown in Figure 4b, the component of FP in the Z-direction is

FPZ = −1
2

ρv2
∞WLCpcos θ. (11)

As a result, the thrust vectoring angle θP estimated by pressure distribution can be
calculated by

tan θP =
FPZ,lower − FPZ,upper

TY,jet
, (12)

sin θP
cos θP

=
ρv2

∞WLcos θ

2HW(ρv2
∞ + Pe − Patm)cos θP

(
Cp,upper − Cp,lower

)
, (13)

θP = arcsin
[

ρv2
∞Lcos θ

2H(ρv2
∞ + Pe − Patm)

(
Cp,upper − Cp,lower

)]
. (14)

From Equation (14), it can be seen that the average wall pressure plays a key role in
pressure-based thrust vectoring angle estimation. For this reason, we need to obtain the
pressure distribution over the inclined wall. However, placing hundreds or thousands of
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pressure sensors on the wall is impractical. Therefore, we employed NSGA-II to achieve
the reduction in sensor quantity and optimization of the sensor array.

In this research, we used two strategies to estimate the average wall pressure:

1. Pressure distribution reconstruction method: Reconstruct the wall pressure distribu-
tion from sparse sensor arrays on the wall and then obtain the average wall pressure.
The reconstruction methods include 2D reconstruction (Section 4.1), 3D reconstruction
(Section 4.2), and half-3D reconstruction (Section 4.3);

2. Direct average pressure method: Characterize the average wall pressure directly using
the average pressure of the sparse pressure sensors (Section 4.4).

The strategies and objectives of different methods are shown in Table 2.

Table 2. The strategies and objectives of different methods.

Method Section Equations Strategy Goal

2D 4.1 (14) (26)

Pressure distribution reconstruction Thrust vectoring angle estimation3D 4.2
(14) (28)Half-3D 4.3

Aver Cp 4.4 (14) (30) Direct average pressure

3.3. NSGA-II Optimization Method

This section introduces the optimization process of the sensor layout based on NSGA-
II and the accuracy verification of the pressure-based thrust vectoring angle estimation
method based on wall pressure distribution proposed in this paper. The procedure of the
investigation can be described as follows:

1. Obtain the original wall pressure distributions at different δv using a dense array of
pressure sensors;

2. Define the number of the sensors (Ns) and the optional position ranges of the sensors
for optimization;

3. NSGA-II optimization (flow chart shown in Figure 5);
4. Carry out the synchronous force and pressure measurement experiment shown in

Figure 1 to verify the accuracy and dynamic response performance of pressure-based
thrust vectoring angle estimation.

The mean absolute error ε and the mean relative error εr are defined as

ε =
1
N ∑N

i=1|x
∗ − xreal |, (15)

εr =
ε

xreal
× 100%. (16)

The root mean square error (RMSE) and the relative root mean square error (RRMSE)
are used for the evaluation of the optimization results which, according to ref. [43], can be
defined as

RMSE =

√
1
N ∑N

i=1(x∗ − xreal)
2, (17)

RRMSE =
RMSE

xreal
× 100%. (18)
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3.4. Kriging Interpolation

Kriging is a well-known spatial interpolation method that has been applied in various
research studies [44,45]. Kriging was named by Matheron [46] after Krige [47], who
pioneered this method for determining ore-grade distributions based on core samples. The
Kriging method can use the initial set of data values to perform optimal and unbiased
estimates of regionalized variables at unsampled locations [48]. In this research, we use
Kriging interpolation to reconstruct the overall wall pressure distributions of the 3D jets
from sparse pressure data.

In the estimation of Kriging interpolation coefficients, a semi-variogram is introduced
to measure the spatial correlation of the sample data with distance. Suppose that z(s) is
the value at point s and z(s + h) represents the value spacing distance h apart; then, the
semi-variogram of z(s) is defined as [49]

r(h) =
1
2

Var[z(s)− z(s + h)]. (19)

The Gaussian semi-variogram model is used; the theoretical semi-variogram is

r(h) = C0 + C
[
1− exp

(
−h2/a2

)]
, (20)
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where C0 is the nugget effect, C is the structured variance, and a is the variogram range.
With the original values z(s1), z(s2), . . ., z(sn) at points s1, s2, . . ., sn, the Kriging

estimation of the unsampled position s0 is [49]

ẑ(s0) = ∑n
i=1 λiz(si), (21)

where λi is chosen to ensure that the estimation is unbiased and the variance of the
estimation error is minimum; the optimization objective can be expressed as [49]

min
{

Var
[
z(s0)−∑n

i=1 λiz(si)
]
− 2m

(
∑n

i=1 λi − 1
)}

, (22)

where m is a Lagrange multiplier that ensures ∑n
i=1 λi = 1. Then, λi can be obtained

from [49,50]
−∑n

j=1 λjr
(
si − sj

)
+ r(s0 − si)−m = 0. (23)

Equation (23) can be written as:
r11 · · · r1n 1
...

. . . ...
...

rn1
1

· · ·
· · ·

rnn 1
1 0




λ1
...

λn
m

 =


r01
...

r0n
1

, (24)

where rij = r
(
si − sj

)
. By solving this system of equations, the value at the unsampled

position s0 can be estimated.

4. Results and Discussion

First, we define the optimization objectives and parameters for different pressure
distribution reconstruction methods and average pressure estimation methods, as shown
in Table 3.

Table 3. Optimization parameters for different pressure distribution reconstruction and average
pressure estimation methods.

Method Section Range Population Iteration Ni
Number of
Sensors Ns

Objective

2D 4.1
{

xP = 0
5 ≤ yP ≤ 120

200 400 2~24

Optimal reconstruction of
wall pressure distribution

3D 4.2
{
−120 ≤ xP ≤ 120

5 ≤ yP ≤ 120
500 800 1~24

Half-3D 4.3
{

0 ≤ xP ≤ 120
5 ≤ yP ≤ 120

Aver Cp 4.4
{

0 ≤ xP ≤ 120
5 ≤ yP ≤ 120

500 800 1~24 Optimal estimation of
average wall pressure

4.1. Optimal Reconstruction of 2D Wall Pressure Distribution

In this section, the 2D jet in the transverse symmetry plane YOZ is studied without
considering the three-dimensional characteristics of the jet.

4.1.1. Original Wall Pressure Distributions of 2D Jets

For the 2D jet in the plane shown in Figure 6, we set 24 equally spaced pressure taps
on the wall from the leading edge to the trailing edge to obtain the real wall pressure distri-
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butions of the 2D jet. The positions of the pressure taps for the 2D jet can be described as{
xPi = 0,

yPi = 5i, i = 1, 2, · · · , 24.
(25)
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Figure 6. Distribution of original pressure measurement taps for the 2D jet in the transverse symmetry
plane YOZ.

Figure 7 shows the original wall pressure distributions of the 2D jets under different δv
values. There are two main patterns of pressure distribution. In the first case, the pressure
over the wall is basically uniform from the leading edge to the trailing edge (δv = 0~0.2 in
Figure 7), which corresponds to the detached jet shown in Figure 4a. In the second case,
the pressures at the wall’s leading edge and trailing edge show a significant difference
(δv = 0.4~1 in Figure 7), which corresponds to the attached jet shown in Figure 4b. The
variation in the wall pressure distribution characteristics is due to the different near-wall
flow structures [31]. Therefore, the sparse pressure sensors distributed on the wall should
have the ability to optimally fit the wall pressure distribution under different δv values.
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4.1.2. Optimization Results and Performance of 2D Wall Pressure Distribution Reconstruction

The optimal pressure reconstruction errors of different iterations are shown in Figure 8a.
When Ni = 400, the error has been minimized and smoothed. Figure 8b shows the pressure
reconstruction errors of different Ns. In general, the greater the number of sensors, the
smaller the error in reconstructing the pressure distribution. The error decreases with a
turn at Ns = 6, and the error is basically smooth when Ns > 6. Therefore, in the case of a 2D
jet, Ns = 6 provides the best balance between improvement of reconstruction accuracy and
reduction of sensor quantity.
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Figure 9 shows the optimized 2D pressure distribution reconstruction performance
with different numbers of sensors. For the cases of detached jets (e.g., δv = 0), only a few
sensors are required to provide good pressure reconstruction results because the pressure
distribution is relatively uniform. However, when it comes to the cases of attached jets
(e.g., δv = 0.5 and 1), reconstruction of the wall pressure distribution appears unsatisfactory
when Ns < 6 (see Figure 9a,b). When Ns = 6, Figure 9c shows that under different δv values,
the reconstructed pressures match well with the real pressure distributions. From the
comparison of Figure 9c,d, it can be seen that the pressure reconstruction performance
of six or more sensors is nice and basically consistent. Therefore, for 2D jets, the optimal
number of sensors is six.

Aerospace 2023, 10, x FOR PEER REVIEW 13 of 26 
 

 

2D jet, Ns = 6 provides the best balance between improvement of reconstruction accuracy 
and reduction of sensor quantity. 

  
(a) (b) 

Figure 8. The 2D pressure distribution reconstruction error. (a) Error of 400 iterations. (b) Error of 
different numbers of sensors Ns. 

Figure 9 shows the optimized 2D pressure distribution reconstruction performance 
with different numbers of sensors. For the cases of detached jets (e.g., δv = 0), only a few 
sensors are required to provide good pressure reconstruction results because the pressure 
distribution is relatively uniform. However, when it comes to the cases of attached jets 
(e.g., δv = 0.5 and 1), reconstruction of the wall pressure distribution appears unsatisfactory 
when Ns < 6 (see Figure 9a,b). When Ns = 6, Figure 9c shows that under different δv values, 
the reconstructed pressures match well with the real pressure distributions. From the 
comparison of Figure 9c and Figure 9d, it can be seen that the pressure reconstruction 
performance of six or more sensors is nice and basically consistent. Therefore, for 2D jets, 
the optimal number of sensors is six. 

With the reconstructed pressure distribution, the average wall pressure of a 2D jet is 𝐶 = 1𝐿 𝐶 𝑦 𝑑𝑦, (26)

where Cp (y) is the reconstructed 2D pressure distribution function. 

  
(a) (b) 

Figure 9. Cont.



Aerospace 2023, 10, 978 13 of 25Aerospace 2023, 10, x FOR PEER REVIEW 14 of 26 
 

 

  
(c) (d) 

Figure 9. Optimized 2D pressure distribution reconstruction performance of different numbers of 
sensors. (a) Ns = 4. (b) Ns = 5. (c) Ns = 6. (d) Ns = 10. 

4.2. Optimal Reconstruction of 3D Wall Pressure Distribution 
In this section, the overall wall pressure distribution of the jet is researched, and the 

three-dimensional pressure characteristics of the jet are taken into consideration. 

4.2.1. Original Wall Pressure Distributions of 3D Jets 
We arranged a 24 × 25 pressure sensor array to measure the original 3D wall pressure 

distributions of the jet, as shown in Figure 10. The positions of the pressure taps can be 
described as 𝑥 = 5 𝑗 − 1 , 𝑗 = 1,2,⋯ ,25,𝑦 = 5𝑖, 𝑖 = 1,2,⋯ ,24.  (27)

Because there are a total of 600 pressure measurement locations and the limit of pres-
sure channels is 64, we obtained only one column of pressure data in a single run, and the 
overall pressure distribution in the measurement area could be acquired through multiple 
scans, as illustrated by the blue area in Figure 10. The jet can be considered symmetrical 
in the transverse direction, so the pressure of the wall where x > 0 is measured as well as 
the region where x < 0 is the mirror area, as illustrated by the pink area in Figure 10. 

 
Figure 10. Distribution of original pressure measurement taps for the 3D jet. 

Figure 9. Optimized 2D pressure distribution reconstruction performance of different numbers of
sensors. (a) Ns = 4. (b) Ns = 5. (c) Ns = 6. (d) Ns = 10.

With the reconstructed pressure distribution, the average wall pressure of a 2D jet is

Cp =
1
L

∫
Cp(y)dy, (26)

where Cp (y) is the reconstructed 2D pressure distribution function.

4.2. Optimal Reconstruction of 3D Wall Pressure Distribution

In this section, the overall wall pressure distribution of the jet is researched, and the
three-dimensional pressure characteristics of the jet are taken into consideration.

4.2.1. Original Wall Pressure Distributions of 3D Jets

We arranged a 24 × 25 pressure sensor array to measure the original 3D wall pressure
distributions of the jet, as shown in Figure 10. The positions of the pressure taps can be
described as {

xPij = 5(j− 1), j = 1, 2, · · · , 25,
yPij = 5i, i = 1, 2, · · · , 24.

(27)
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Because there are a total of 600 pressure measurement locations and the limit of pres-
sure channels is 64, we obtained only one column of pressure data in a single run, and the
overall pressure distribution in the measurement area could be acquired through multiple
scans, as illustrated by the blue area in Figure 10. The jet can be considered symmetrical in
the transverse direction, so the pressure of the wall where x > 0 is measured as well as the
region where x < 0 is the mirror area, as illustrated by the pink area in Figure 10.

Figure 11 provides the original 3D wall pressure distribution of the jets under dif-
ferent δv values. Similar to the case of 2D jets, the 3D wall pressure distribution also has
two distribution patterns. The first pattern corresponds to a detached jet, such as Figure 11d,
which has a very flat wall pressure distribution with no obvious transverse pressure differ-
ences. The second pattern corresponds to an attached jet, such as Figure 11a–c, where the
pressure is low at the leading edge and high at the trailing edge. However, unlike the 2D
jets, in the cases of the attached 3D jets, there is a transverse difference in pressure distribu-
tion in the two corner areas of the leading edge, as shown in Figure 11a. According to this
phenomenon, the wall pressure distribution is divided into a 2D region and 3D region.
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4.2.2. Optimization Results and Performance of 3D Wall Pressure Distribution Reconstruction

The 3D pressure distribution reconstruction error of different Ns amounts is shown in
Figure 12. Because the 3D wall pressure distribution is much more complex than the 2D
case, the reconstruction error becomes larger compared with the 2D case.
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Figure 13 shows the 3D pressure distribution reconstruction performance with dif-
ferent numbers of sensors. When δv = 0, different numbers of sensors can all obtain good
reconstruction results as the pressure is flat. When δv becomes larger, better pressure
reconstruction results will be obtained with a larger number of sensors. When Ns = 5, the
reconstructed pressure can roughly reflect the general distribution pattern of low pres-
sure at the leading edge and high pressure at the trailing edge, but it is not capable of
reconstructing the 3D pressure characteristics of the corners, as shown in Figure 13d,e.
When Ns = 15, the leading edge 3D pressure feature can already be demonstrated (see
Figure 13g,h). However, it cannot distinguish between the central 2D pressure and the 3D
corner pressure. When Ns = 24, Figure 13j,k shows that the reconstructed pressure distribu-
tion characteristics are almost the same as that of the original ones shown in Figure 13a,b.
Both the 2D pressure area and 3D corner area can be reconstructed well.
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With the reconstructed pressure distribution, the average wall pressure of a 3D jet is

Cp =
1

WL

x
Cp(x, y)dxdy, (28)

where Cp (x, y) is the reconstructed 3D pressure distribution function.

4.3. Optimal Reconstruction of Half-3D Wall Pressure Distribution

If the jet transverse symmetry is used as a complementary condition, then it is possible
to achieve a further reduction in sensor quantity while maintaining a good 3D pressure
reconstruction performance. Assume that one sensor is located at P1 (xP, yP); the pressure
at P1 possesses the following feature

Cp(xP, yP) = Cp(−xP, yP), (29)

where Cp (−xP, yP) is the pressure coefficient of point P2 (xP, yP), which is symmetric with
P1 about the y-axis.

Applying Equation (29), we can use Ns real sensors with Ns symmetrical virtual
sensors to achieve measurement with 2 × Ns sensors. We define this method as half-3D
reconstruction. All real sensors are in the region where x ≥ 0.

Figure 14 shows the half-3D pressure distribution reconstruction error of different Ns
and the comparison of the half-3D method with the full-3D method. The two methods
have the same error when Ns = 1. In addition to this, the half-3D method always has
smaller pressure distribution reconstruction errors for all sensor quantities. This advantage
is particularly evident at 2 ≤ Ns ≤ 9, which brings about a significant error reduction.

The performance of half-3D pressure distribution reconstruction with different Ns is
shown in Figure 15. When Ns = 5, the 3D corner pressure at the leading edge can already
be roughly reconstructed, but the 2D area is poorly demonstrated, as shown in Figure 15d.
When Ns = 15, Figure 15j,k shows that both the 2D pressure area and 3D corner area can be
reconstructed well. Compared with the full-3D method in Figure 13, the half-3D method
can achieve better 3D pressure reconstruction accuracy with fewer sensors.
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For the half-3D method, the calculation of average wall pressure is the same as that of
the full-3D method, as shown in Equation (28). We recommend the half-3D method rather
than the full-3D method, and the case of Ns = 15 was taken for final verification.

4.4. Direct Average Pressure Method

The results presented in the previous sections are based on the pressure reconstruction
method. According to Equation (14), it is the average wall pressure that needs to be
obtained, and a completely accurate wall pressure distribution is not necessary. In this
section, the average wall pressure is estimated directly by the average pressure of the sparse
pressure sensors. The purpose of this method is to estimate the average wall pressure as
accurately as possible with a minimum number of sensors. Figure 16 shows the error of
the average pressure with different Ns. When Ns ≤ 2, the estimation error of the average
pressure is large. When Ns ≥ 3, the error levels off. Based on the requirement to minimize
the number of sensors, Ns = 3 was chosen as the preferred solution. For comparison, the
case Ns = 1 is also verified in the next section.
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With the direct average pressure method, the average pressure can be estimated by

Cp =
1

Ns
∑ Cpi, i = 1, 2, · · · , Ns. (30)

4.5. Verification of the Thrust Vectoring Angle Estimation Method with Synchronous Experiments
4.5.1. Experimental Procedure

In the verification of our thrust vectoring angle estimation method, we used both
balance force measurement and wall pressure measurement. The two types of data were
collected synchronously on the timeline using an NI LabVIEW DAQ system. In the ex-
periment, we first used the secondary flow valve to control the deflection of the jet. The
balance measured the thrust vectoring angle θT directly, while the pressure transducers
measured the wall pressure and indirectly estimated the thrust vectoring angle θP using
the algorithm proposed in this investigation. Then, the accuracy of this thrust vectoring
angle estimation method can be evaluated by comparing the errors between θT and θP.

4.5.2. Definition of the Sensor Arrays on the Verification Model

Synchronous force and pressure measurement experiments were carried out to verify
the pressure-based thrust vectoring angle estimation method proposed in this research.
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We set up 25 pressure measurement taps on the wall to verify four different estimation
methods at the same time; the model is shown in Figure 17. The pressure measurement
taps on the upper and lower walls are symmetrical about the XOY plane, with a total of
50 wall pressure sensors, as shown in Figure 1. The details of the sensor arrays are listed
in Table 4.
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Table 4. Definition of the sensor arrays in the verification model.

No. Method Ns Area (Figure 17) Equations Thrust Vectoring Angle
Calculation Method

1 Balance / / (4) θT, Direct force measurement

2 4.1_2D 6 Green (14) (26)

θP, Pressure-based estimation
3 4.3_half-3D 15 Pink (14) (28)

4 4.4_aver Cp
3

Blue (14) (30)5 1

4.5.3. Accuracy of Pressure-Based Thrust Vectoring Angle Estimation

The accuracy of pressure-based thrust vectoring angle estimation is verified by the
control law of thrust vectoring angle with δv. During the experiment, the thrust vectoring
angle is obtained in two different ways. The first is direct force measurement, whose
result is θT. The second is a pressure-based estimation, whose result is θP. The calculating
equations are summarized in Table 4. All of the thrust vectoring angles obtained by different
methods are acquired synchronously in the same test.

From the control law shown in Figure 18a, it can be seen that θP estimated by the 2D
method, half-3D method, and aver Cp_3 method agree well with θT. Figure 18b illustrates
that the errors of the first three methods are small, their mean absolute errors ε are less
than 0.5◦, and their mean relative errors εr are less than 3.1%. However, the accuracy of
the Cp_1 method, which uses only one sensor, is poor. The mean relative error is 17.5%.
Note that the control law in Figure 18a shows a hysteresis loop between the jet attachment
process and the jet detachment process; this is caused by the changes in the near-wall flow
structures [31].
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Considering the objective of using the minimum number of sensors to achieve pressure-
based thrust vectoring angle estimation, the direct average pressure method with Ns = 3 is
a preferred solution. According to Equation (14), we need at least three differential sensors
to acquire the pressure of the six measurement positions on the upper and lower walls.

4.5.4. Dynamic Response of Pressure-Based Thrust Vectoring Angle Estimation

In addition to accuracy, the pressure-based thrust vectoring angle estimation methods
must possess good dynamic responses to meet the expectations in situations such as closed-
loop feedback control, vehicle attitude control, etc. Take the half-3D method with Ns = 15 as
an example; Figure 19a shows the synchronous dynamic response of θT and θP. During the
test, the jet is initially in the neutral state. Then, multiple secondary flow valve closed–open
switching is performed, whereupon the jet switches between attached and detached. The
result shows that θT and θP maintain good consistency. A cross-correlation analysis is
performed for θT and θP; Figure 19b shows that the normalized cross-correlation coefficient
(NCC) reaches 0.99919 and that they remain synchronized in time. This suggests that the
pressure-based thrust vectoring angle estimation has a good dynamic response capability.
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4.5.5. Uncertainty Analysis

In our experiments, we performed seven independent repetitions of the balance
measurement, as shown in Figure 20; in this section, we perform an uncertainty analysis
for the thrust vectoring angle estimation method proposed in this paper.
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The type A evaluations of uncertainty uA can be calculated by

uA =
s(x)√

n
=

√
1

n(n− 1)∑
n
i=1(xi − x)2, (31)

where n = 7 is the number of tests and s(x) is the standard deviation.
According to Equation (31), the type A uncertainties of the thrust vectoring angle

estimation method are summarized in Table 5.

Table 5. The type A uncertainties of the thrust vectoring angle estimation method.

Jet Attachment Jet Detachment
δv uA δv uA

0 0.110◦ 1.0 0.048◦

0.1 0.064◦ 0.9 0.044◦

0.2 0.135◦ 0.8 0.061◦

0.3 0.211◦ 0.7 0.042◦

0.4 0.274◦ 0.6 0.074◦

0.5 0.068◦ 0.5 0.078◦

0.6 0.039◦ 0.4 0.090◦

0.7 0.039◦ 0.3 0.119◦

0.8 0.069◦ 0.2 0.146◦

0.9 0.083◦ 0.1 0.146◦

1.0 0.048◦ 0 0.147◦

The above results show that a good estimation of thrust vectoring angle based on wall
pressure can be achieved with a minimum of three differential pressure sensors. The half-3D
method requires more sensors, but it can accurately reconstruct the overall wall pressure
distribution. In the FTVC nozzles, the near-wall flow structures play a significant role in jet
deflection control. Therefore, the half-3D method can assist in the study of the development
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of the near-wall 3D flow structures using the wall pressure distribution. Table 6 summarizes
the different thrust vectoring angle estimation and wall pressure reconstruction methods
and recommends their scope of application.

Table 6. Summary of different pressure-based thrust vectoring angle estimation methods and their
recommended applications.

Method Number of Sensors Recommended for

2D 6 Wall pressure distribution
reconstructionHalf-3D 15

Direct average pressure 3 Real-time in-flight thrust
vectoring angle estimation

5. Conclusions

We developed a pressure-based thrust vectoring angle estimation method for FTVC
nozzles in this investigation. Multiple methods were proposed to reconstruct wall pressure
distribution and estimate average wall pressure, including a 2D method, 3D method,
half-3D method, and direct average pressure method. Non-dominated sorting genetic
algorithm II was applied to find the optimal sensor arrays for reducing the sensor quantity.
Synchronous force and pressure measurement experiments were carried out to verify the
pressure-based thrust vectoring angle estimation methods. The most important findings
are summarized as follows:

1. Direct average pressure method can provide a good estimation of thrust vectoring
angle with a minimum of three differential pressure sensors;

2. The estimation method in this study is capable of accurate and fast response vectoring
angle monitoring; the mean relative error is less than 3.1%;

3. The half-3D method requires more sensors, but it can accurately reconstruct the overall
wall pressure distribution using a sparse array of pressure sensors, which is helpful in
the study of the near-wall 3D flow structures in FTVC nozzles.

The pressure-based thrust vectoring angle estimation method proposed in this study
has a good prospect for engineering applications; it is capable of real-time in-flight mon-
itoring of the thrust vectoring angle with very few sensors. This method is extremely
important and indispensable for the closed-loop feedback control and aircraft attitude
control of FTVC technology.

This research proposed an accurate and practical pressure-based thrust vectoring angle
estimation method. However, the accurate in-flight estimation of the thrust magnitude
requires further study.
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Nomenclature

Cp, Cp Pressure coefficient and average pressure coefficient
DAQ Data acquisition
FTVC Fluidic thrust vectoring control
G Offset of the secondary flow channel
H Height of the jet outlet
L Length of the inclined wall
Ni Times of iterations
Ns Number of sensors
NSGA-II Non-dominated sorting genetic algorithm II
RMSE Root mean square error
RRMSE Relative root mean square error
TVC Thrust vectoring control
uA Type A evaluations of uncertainty
v∞ Velocity of the jet at the outlet
W Width of the jet outlet
x, y Axes of the wall coordinate system
xP, yP Coordinates of point P in the wall coordinate system
X, Y, Z Axes of the nozzle coordinate system
x*, xreal Measured value and real value
δv Closure percentage of the secondary flow valve
ε, εr Mean absolute error and mean relative error
θ Incline angle of the inclined wall
θP Thrust vectoring angle estimated by wall pressure
θT Thrust vectoring angle
ρ Density of air
2D, 3D Two-dimensional, three-dimensional
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