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Abstract: This paper presents a fast trajectory optimization method combining the hp-Legendre pseu-
dospectral method and convex optimization for the 6-Degree-of-Freedom rocket-powered landing
problem. To accelerate calculations, this paper combines the Legendre pseudospectral method with a
linearization method for convexification, and an hp method that can divide the mesh is introduced
to reduce the computational workload. In terms of accuracy, a trust region update strategy that can
control the solution process is presented to approximate the original problem iteratively. Convergence
analysis is provided as evidence, substantiating that any solution produced by the hp-Legendre
pseudospectral convex method is not only feasible but potentially optimal for the original problem.
The effectiveness of the proposed method is demonstrated by numerical experiments. When com-
pared, the proposed method achieves higher calculation accuracy in solving the 6-Degree-of-Freedom
rocket-powered landing trajectory problem, while taking into account rocket attitude control.

Keywords: Legendre pseudospectral method; convex optimization; 6-Degree-of-Freedom
powered landing

1. Introduction

Trajectory optimization plays a particularly important role in the design of space
aircraft and high-altitude, high-speed, high-maneuverability aircraft. It runs through the
entire aircraft design process, affecting the overall aerodynamic layout, guidance and
control, power, and the structure of multiple subsystems.

Trajectory optimization of aircraft in the aerospace field is fundamentally an optimal
control problem. The methods for solving the optimal control problem are mainly divided
into indirect methods and direct methods. Indirect methods require extensive mathematical
derivation and are sensitive to initial values, making them unsuitable for solving complex
large-scale optimal control problems. Direct methods transcribe an optimal control problem
into a nonlinear programming problem (NLP) using a parameterization technique [1]. Due
to the development of computers, direct methods have been further developed and applied
in many fields. In direct methods, the most commonly applied techniques are pseudospec-
tral methods [1,2] and the convex optimization method [3], which are considered to have
the potential to be developed into online optimization methods.

Many references have proven the Karush–Kuhn–Tucker (KKT) conditions of the pseu-
dospectral methods [4]. However, in practice, the pseudospectral method, which is merely
a method that discretizes the optimal control problem into nonlinear programming, does
not have a direct solution. It needs to be combined with sequential quadratic programming
(SQP) to be solved. Although the pseudospectral method can guarantee the KKT of the
discretized optimal control problem, it does not prove that there is a solution in a certain
amount of time. This factor greatly limits the online application of the pseudospectral
method. The solution of nonlinear programming cannot always converge to an optimal
result in all cases. The global convergence of the convex optimization method is considered
an important factor in accelerating the solution efficiency.
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A natural idea is to combine the pseudospectral method (PM) [5] and convex op-
timization to break through the traditional PM. This can be called the pseudospectral
convex method (PCM). The challenge of rocket-powered landing is a prominent area
of research within the field of trajectory optimization, and the application of PCM to
achieve faster and more precise landing trajectory solutions has emerged as a focal point
of research. Sagliano [6] combined the flipped Radau pseudospectral method with the
convex optimization method to tackle the Mars powered descent problem, The problem
involves a 3-Degree-of-Freedom (3-DOF) model that considers both position and velocity
in three-dimensional space. Wang [7] introduced the pseudospectral improved succes-
sive convexification (P-iSC) algorithm for 3-DOF rocket landing problems, assuming ideal
rocket attitude control. In various trajectory optimization problems, PCMs are widely
employed. Li [8] proposed the successive Chebyshev pseudospectral convex optimization
method and successfully addressed spacecraft orbit transfer problems. Yu [9] developed an
innovative convex optimization algorithm based on the Chebyshev pseudospectral method,
effectively solving reentry trajectory optimization problems. Zhang [10] introduced a
novel method that combines convex techniques with Birkhoff pseudospectral methods to
address rendezvous and proximity operation problems while considering merely nonlinear
inequality constraints.

The characteristic of the pseudospectral method is that increasing the number of
collocations will increase the accuracy of the solution. However, the increase in the number
of points will also increase the calculation burden for optimization. There is a contradiction
between the number of discrete allocation points and the computing speed. The idea of
using hp mesh division for sparse algebraic equations in the pseudospectral method is
borrowed in PCM to alleviate conflicts. In hp mesh division, h represents the total number
of meshes, and p represents the number of collocations in a mesh [11]. Sagliano [12]
introduced a generalized hp pseudospectral method to solve a 3-DOF landing problem.
Lei [13] proposed a convex optimization method based on an hp-adaptive pseudospectral
method for planning the trajectory of a 3-DOF powered landing.

In summary, the integration of the pseudospectral method and convex optimization
has emerged as an innovative approach [14] for addressing numerous optimal control
problems. In the context of rocket landing trajectory problems, extensive research has been
conducted on the 3-DOF optimal control problem. However, it is worth noting that the
3-DOF model assumes ideal attitude control, which introduces a disparity between the
idealized model and the real-world scenario.

In this paper, we focus on addressing the 6-Degree-of-Freedom rocket landing problem,
considering attitude variation as a research objective. We introduce a novel hp-Legendre
pseudospectral convex method to tackle the nonlinear optimal control problem associ-
ated with 6-Degree-of-Freedom powered landing. The method is built upon a founda-
tion of the Legendre pseudospectral method and convex optimization techniques. We
employ hp mesh division technology to reduce the computational burden of algebraic
equations. Recognizing the complexity of achieving an exact solution in a single calcula-
tion, we incorporate a trust region update strategy to control the iterative approximation
solution process.

The remaining paper is structured as follows: Section 2 presents the 6-Degree-of-
Freedom powered landing problem with relevant constraints. In Section 3, we propose the
hp-Legendre pseudospectral convex method (LPCM). Section 4 introduces the hp-Legendre
pseudospectral convex method with trust region strategy (hp-LPCM-TRS) along with the
accompanying convergence analysis. In Section 5, we showcase numerical simulation of
the 6-Degree-of-Freedom rocket-powered landing problem to illustrate the effectiveness
and performance of the proposed method. Section 6 serves as the conclusion of the article.
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2. Six-DOF Rocket-Powered Landing Problem

To provide a clear understanding of the problem, we will elaborate on the 6-Degree-
of-Freedom powered landing problem [15]. The dynamic equations, boundary constraints,
and path constraints are presented below.

The mass depletion dynamics are described as follows:

.
m = −||U||2

Ispg0
(1)

where the vacuum-specific-impulse Isp and Earth’s standard gravity constant g0 are defined.

The thrust vector is denoted as U =
[
Tx, Ty, Tz

]T . The position vector and velocity vector are

denoted as R =
[
rx, ry, rz

]T and V =
[
vx, vy, vz

]T , respectively. The differential equations
for position and velocity are as follows:

.
R = V (2)

.
V =

1
m

CBU + G (3)

where G = [0, 0, g0]
T , and the matrix C, which encodes the attitude transformation, is

denoted as:

CB =

−2q2
3 − 2q2

4 + 1 2q1q4 + 2q2q3 −2q1q3 + 2q2q4
−2q1q4 + 2q2q3 −2q2

2 − 2q2
4 + 1 2q1q2 + 2q3q4

2q1q3 + 2q2q4 −2q1q2 + 2q3q4 −2q2
2 − 2q2

3 + 1

 (4)

It consists of an attitude quaternion Q = [q1, q2, q3, q4]
T . Quaternions do not have

singularities, and, in contrast to other representations such as Euler angles, they do not
suffer from issues like Gimbal lock. In addition, quaternions are suitable for computer
computation. More details about C can be found in reference. The attitude quaternion
differential equation is as follows:

.
Q =

1
2

OwQ (5)

where the skew-symmetric matrix Ow is denoted as follows:

Ow =


0 −wx −wy −wz

wx 0 wz −wy
wy −wz 0 wx
wz wy −wx 0

 (6)

where wx, wy, and wz denote the angular velocity of the rocket rotating around the three
axes in the arrow body coordinate system, respectively. Finally, the three differential
equations for the angular velocity of the rotation are as follows:

.
W = M− SwW (7)

where M is a torque matrix and Sw is a skew-symmetric matrix, as denoted by

Sw =

 0 −wz wy
wz 0 −wx
−wy wx 0

 (8)

M = J−1
B RBU (9)
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where JB represents the inertial tensor of the vehicle, and RB represents the constant position
vector, as denoted by

JB =

jb1 0 0
0 jb2 0
0 0 jb3

 (10)

RB =

 0 −rb3 rb2
rb3 0 −rb1
−rb2 rb1 0

 (11)

where rb =
[
rb1 , rb2 , rb3

]
represents the gimbal-point position vector and jb = [jb1, jb2, jb3]

represents the inertial vector of the vehicle.
The state variable vector X = [m, R, V, Q, W]T is defined, and the control variable

vector U =
[
Tx, Ty, Tz

]T is also defined. They are functions of time. The 6-Degree-of-
Freedom powered landing problem must satisfy boundary conditions and path constraints.

The initial and terminal boundary variables are

Xt0 = [m(t0), R(t0), V(t0), Q(t0), W(t0)] (12)

Xt f =
[
m
(

t f

)
, R
(

t f

)
, V
(

t f

)
, Q
(

t f

)
, W
(

t f

)]
(13)

The given initial and terminal conditions values are provided by

X0 = [m0, R0, V0, Q0, W0] (14)

X f =
[
m f , R f , Vf , Q f , W f

]
(15)

The boundary conditions are as follows:

Xt0 = X0 (16)

Xt f = X f (17)

where the subscripts t0 and t f indicate the state variables at the initial time and at the
terminal time, respectively.

The path constraints are given as follows. The mass of the rocket is restricted by the
following constraint:

mdry ≤ m(t) ≤ mwet (18)

where mdry is the structural mass and mwet is mdry plus fuel mass. The trajectory is restricted
within an upward-facing glide-slope cone with an angle γ in the range of [0◦, 90◦].√

rx(t)
2 + ry(t)

2 ≤ rz(t)
2

tan(γ)
(19)

To avoid excessive tilt angles θ in the trajectory, it is limited by a maximum value of
θmax. The path constraint for θmax is denoted as follows:√

q2(t)
2 + q3(t)

2 ≤
√

1− cos(θmax)

2
(20)

Furthermore, a maximum angular rate of wmax is used to limit W by

||W(t)||2 ≤ wmax (21)
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For convenience, W(t) =
[
wx(t), wy(t), wz(t)

]
is a vector of angular rate functions.

The commanded thrust vector is constrained within the magnitude interval [Tmin, Tmax]
and the gimbal angle interval [0, δmax], where δmax ∈ (0◦, 90◦).

0 < Tmin ≤ ||U(t)||2 ≤ Tmax (22)

cos(δmax)||U(t)||2 ≤ Tz(t) (23)

where the thrust magnitude lower bound constraint is non-convex, it needs to be linearized
using a first-order Taylor series approximation. The linearized lower bound constraint is
obtained by

Tmin ≤
ˆU(t)T∣∣∣∣∣∣ ˆU(t)
∣∣∣∣∣∣

2

U(t) (24)

ˆU(t) is a guessed value. The maximum mass at the terminal time is set as the per-
formance index. In summary, we have the following continuous 6-Degree-of-Freedom
powered landing optimal control problem, denoted as PL:

(PL)



Min ◦ J = −m
(

t f

)
s.t ◦

.
m(t) = − ||U(t)||2

Ispg0

.
R(t) = V(t)

.
V(t) = 1

m CBU(t) + G
.

Q(t) = 1
2OwQ(t)

.
W(t) = M− SwW(t)

Xt0 = X0Xt f = X f mdry ≤ m(t) ≤ mwet√
rx(t)

2 + ry(t)
2 ≤ rz(t)2

tan(γ)

√
q2(t)

2 + q3(t)
2 ≤

√
1−cos(θmax)

2
||W(t)||2 ≤ wmax
||U(t)||2 ≤ Tmax

Tmin ≤
ˆU(t)T

|| ˆU(t)||2
U(t) cos(δmax)||U(t)||2 ≤ Tz(t)

(25)

All path constraints of problem PL have been converted to convex constraints. How-
ever, due to the nonlinear nature of the dynamic equations, the entire problem remains
non-convex. The next section will demonstrate how to employ the pseudospectral convex
method to linearize the nonlinear dynamic equations within the problem step by step. The
transformation will ultimately render problem PL as a convex problem.

3. hp-Legendre Pseudospectral Convex Method
3.1. Combining Legendre Pseudospectral Method and Convex Optimization

The Legendre pseudospectral convex method (LPCM) principle involves discretizing
the state at Legendre–Gauss–Lobatto (LGL) collocation points, multiplying it with a differ-
ential matrix to obtain the corresponding differential values, and subsequently completing
the algebraic substitution of the differential components. This process can be broken down
into the following steps:

In accordance with the principle of the Legendre pseudospectral method, it is essential
to map the real time interval t ∈

[
t0, t f

]
to τ ∈ [−1, 1]. During this mapping, the state

variable function x(τ) and the control variable function u(τ) are approximated using
Lagrange interpolating polynomials.

x(τ) =
N

∑
i=0

Li(τ)Xi (26)

u(τ) =
N

∑
i=0

Li(τ)Ui (27)
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Li(τ) is the Lagrange interpolation basis function and can be calculated by

Li(τ) =
N

∏
j=0,j 6=i

τ − τj

τi − τj
(28)

The derivation of x(τ) and u(τ) with respect to time τ is as follows:

.
x(τk) =

N

∑
i=0

.
Li(τk)Xi =

N

∑
i=0

DkiXi (29)

.
u(τk) =

N

∑
i=0

.
Li(τk)Ui =

N

∑
i=0

DkiXi (30)

where k = 0, 1, . . . , N; D(N+1)×(N+1) is a differential matrix. The differential value, which
is of the Lagrange basis function at each τ, has a clear mathematical expression as follows:

(Dki)


PN(τk)

PN(τi)(τk−τi)
, i 6= k

−N(N + 1)/4, i = k = 0
N(N + 1/4), i = k = N

0, otherwise

(31)

In the above expression, PN(τi)
is the Legendre orthogonal polynomial. For detailed

information, please refer to reference [15]. Integral terms in J need to be converted to matrix
multiplication using a quasi-Gaussian quadrature formula.

∫ t f

t0

G(x(t), u(t), t)dt =
N

∑
k=0

Gkwk (32)

Here, wj is the Legendre integral weight, which is mathematically expressed as follows:

wj =
2

N(N + 1)
1

P2
N
(
xj
) , 0 ≤ j ≤ N (33)

The discretized problem, denoted as PN , is established based on the aforementioned
steps:

(PN)



Min J = E(x(−1), x(1)) +
N
∑

k=0
Gkwk

s.t
N
∑

i=0
DkiX = f (Xk, Uk, τk)

C1(Xi, Ui) = 0, i = 0, 1, . . . , N
C2(Xi, Ui) ≤ 0, i = 0, 1, . . . , N

(34)

Now, C1 and C2 represent the discretization formula of continuous path constraints.
J represents the discretization formula of the continuous performance index. Continuous
dynamics have been replaced by algebraic matrix multiplication. According to problem
PN , the pseudospectral discretized powered landing problem is given by
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(PNL)



Min ◦ J = −mN

s.t ◦
N
∑

i=0
Dkimk = −

||Uk ||2
Ispg0

N
∑

i=0
DkiRk = Vk

N
∑

i=0
DkiVk =

1
m CBUk + G

N
∑

i=0
DkiQk =

1
2OwQk

N
∑

i=0
DkiWk = M− SwWk

Xt0 = X0 Xt f = XN mdry ≤ mk ≤ mwet√
r2

xk
+ ry

2
k ≤

rz
2
k

tan(γ)

√
q2

2k
+ q2

3k
≤
√

1−cos(θmax)
2

||Wk||2 ≤ wmax
||Uk||2 ≤ Tmax

Tmin ≤
ÛT

k
||Ûk||2

Uk cos(δmax)||Uk||2 ≤ Tzk , k = 0, 1, 2, .., N

(35)

The subscript k denotes the k-th discretization value. For example, mk represents k-th
variable derived from a series of discrete mass variables. The above rocket landing trajectory
problem is a nonlinear programming problem, especially because the path constraint is
convex, but the equality constraint is nonlinear.

The optimal control problem is converted into a nonlinear programming problem
using the Legendre pseudospectral method; while it can be solved with SQP, the solution
speed cannot be guaranteed. In this section, we transform the nonlinear programming
problem into a second-order cone problem (SOCP) in convex optimization, which can be
efficiently solved. The basic form of the SOCP is as follows:

(PSOCP)


min ◦ aT

i x
s.t. ◦ A0x = b0

||Aix + bi|| ≤ cT
i + d, i = 1, 2, .., m

(36)

The symbol ||·|| represents the 2-norm. In the SOCP, some linear equality constraints
are required, and the feasible region for inequality constraints is second-order conical. The
Legendre pseudospectral convex optimization method is employed to convert a nonlinear
optimal control problem into the SOCP. However, the transformed problem may not be
solved initially, and the solvability of the problem needs to be improved by relaxation and
trust region methods. The process is as follows:

Linearizing the nonlinear terms. In problem PN , the dynamics, which often contain
nonlinear terms, need to be linearized. Here the nonlinear dynamics are linearized using
the first-order Taylor formula.

f (x) = f (x̂) + f ′(x̂)(x− x̂) + o(x− x̂) (37)

where f (x) is a nonlinear function, x̂ is a known quantity, f ′(x) is the first derivative, and
o represents an infinitesimal of higher order.

In dynamics, the first-order differential equation is written as follows:

.
x =

dx
dτ

= f (x, u) (38)

The right-hand side is a nonlinear function, and the left-hand side is a derivative
of the state variable. Taylor expansion can be used to linearize the right-hand side. The
linearization equation is as follows:

f (x, u)|(x̂,û) = A(x̂, û) · (x− x̂) + B(x̂, û) · (u− û) + f (x̂, û) (39)

In the above equation, x̂ and û represent the last generation state variable and control
variable, respectively. x and u are unknown variables that need to be solved. A represents
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the partial derivative of f (x, u) with respect to state variable x, and B represents the partial
derivative of f (x, u) with respect to control variable u. They can be written as follows:

A = fx =
∂ f (x, u)

∂x
(40)

B = fu =
∂ f (x, u)

∂u
(41)

.
x can be represented as follows:

.
x =

dx
dτ

= f (x, u) = L(x, u) + R(x̂, û) (42)

L represents a linear system:

L(x, u) = Ax + Bu (43)

R represents the difference between the actual dynamic value of last generation
solution and the linearized system value.

R(x̂, , û) = f (x̂, , û)− (Ax̂ + Bû) (44)

For DX =
.

X, the algebraic equation can be written as follows:

N

∑
i=0

DkiXi = L(Xk, Uk) + R
(
X̂k, Ûk

)
(45)

Involving relaxation and trust regions. A relaxation variable, denoted as v f , is in-
troduced to manage the feasibility of relaxations [7]. Additionally, we have δx and δu,
representing trust regions for state and control variables, respectively. These trust regions
are crucial in ensuring that the solution remains in proximity to the linearization point,
thereby enhancing numerical stability throughout the solution process [14].

N

∑
i=0

DkiXi −
(

L(Xi, Ui) + R
(
X̂i, Ûi

))
= v f (46)

∣∣X− X̂
∣∣ ≤ δx (47)

∣∣U − Û
∣∣ ≤ δu (48)

The Legendre pseudospectral convex problem, denoted by PNc, is generally repre-
sented in the following form:

(Pc)



Min ◦ Jc[X, U] = J + wv ·
∣∣∣∣∣∣v f

∣∣∣∣∣∣
s.t ◦

N
∑

i=0
DkiXi −

(
L(Xi, Ui) + R

(
X̂i, Ûi

))
= v f

C1(Xi, Ui, τi) = 0, i = 0, 1, . . . , N
C2(Xi, Ui, τi) ≤ 0, i = 0, 1, . . . , N∣∣X− X̂

∣∣ ≤ δx∣∣U − Û
∣∣ ≤ δu

j = 0, 1, . . . , N

(49)
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Solving problem. Based on PNc, the problem PNC is simplified and denoted as follows:

(PNLC)



Min ◦ J = −mN

s.t
N
∑

i=0
Dkimk =

(
−||Ûk||2

Ispg0
+ Am

(
Xk − X̂k

)
+ Bm

(
Uk − Ûk

))
N
∑

i=0
DkiRk =

(
V̂k + AR

(
Xk − X̂k

)
+ BR

(
Uk − Ûk

))
N
∑

i=0
DkiVk =

(
1
m CÛk + G + AV

(
Xk − X̂k

)
+ BV

(
Uk − Ûk

))
N
∑

i=0
DkiQk =

(
1
2OwQ̂k + AQ

(
Xk − X̂k

)
+ BQ

(
Uk − Ûk

))
N
∑

i=0
DkiWk =

(
J−1
B RBÛk − SwŴk + AW

(
Xk − X̂k

)
+ BW

(
Uk − Ûk

))
Xt0 = X0Xt f = XN

mdry ≤ mk ≤ mwet
||Wk||2 ≤ wmax ||Uk||2 ≤ Tmax√

r2
xk
+ ry

2
k ≤

rz
2
k

tan(γ)

√
q2

2k
+ q2

3k
≤
√

1−cos(θmax)
2

Tmin ≤
ÛT

k
||Ûk||2

Uk cos(δmax)||Uk||2 ≤ Tzk

k = 0, 1, 2, .., N

(50)

where Am, AR, AQ, AV , and AW represent the derivatives of each dynamic with respect
to state variable X, respectively, and Bm, BR, BQ, BV , and BW represent the derivatives of
dynamics with respect to control variable U. Further details can be found in Appendix A.

The problem PNLC is an SOCP that can be solved using convex optimization algorithms.
The solution obtained from PNLC represents the global convergence solution of the problem,
but it should be noted that this solution is a relaxation of the original problem. A real
solution to the original problem is achieved only when the relaxation equals zero.

Equations (26) to (50) represent the mathematical formulation of the Legendre pseu-
dospectral convex method for solving the 6-Degree-of-Freedom powered landing problem.

3.2. Mesh Division Using hp Method

After obtaining the relaxed SOCP form of the optimal control problem in the previous
section, the solution scope of the problem is significantly expanded. However, the solution
speed is related to the scale of the established SOCP [3]. Using hp mesh division, the large
SOCP can be divided into multiple sub-SOCPs connected by boundary conditions. The
solution of the established relaxed SOCP is constrained by a trust region to remain close to
the linearization point, which may not always yield the optimal solution. By adjusting the
size of the trust region, the solution space of the SOCP can be gradually changed, allowing
it to converge towards the solution of the original problem.

The hp-Legendre pseudospectral convex method (hp-LPCM) is proposed in this
section. We will explain how this method further subdivides the relaxed SOCP and updates
the trust region to bring the relaxed solution closer to the solution of the original problem
during the iterative solution process. The specific steps are as follows:

Determine the total number of collocations that can be assigned to the problem PNLC,
and the total number of meshes, denoted as H. Different numbers of collocations can be
assigned to different meshes, denoted by Nhp =

[
N0, N1, N2, . . . , NH]. These numbers

must satisfy the following constraint:

p =
H

∑
i=0

Ni (51)
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D =
[

D0, D1, D2, .., Dh
]

is calculated according to Nhp. The total time interval in each

segment is represented by Thp =
[(

t0
0, t0

f

)
,
(

t1
0, t1

f

)
, . . . ,

(
tH
0 , tH

f

)]
.

N

∑
i=0

Dj
kiX

j
i =

tj
f − tj

0

2
f
(

X j
i , U j

i

)
, j = 0, 1, 2, .., H (52)

where X j and U j represent the state vector and control vector of j-th mesh, respectively.
The time in T must satisfy the following constraints, for relating the sub-mesh all together.

tj
f = tj+1

0 , j = 0, 1, 2, . . . , H − 1 (53)

X j
0 = X j+1

f , , j = 0, 1, 2, . . . , H − 1 (54)

It is obvious that control variables are not correlated because control variables might
appear as jump points in many cases.

Linearizing each mesh using the linearization method in LPCM. The specific equations
for this process are as follows:

N

∑
i=0

Dj
kiX

j
i =

tj
f − tj

0

2

(
L
(

X j
i , U j

i

)
+ R

(
ˆ

X j
i ,

ˆ
U j

i

))
, j = 0, 1, 2, .., h (55)

where
ˆ

X j
i and

ˆ
U j

i represent the state vector and control vector of j-th mesh in the
last generation.

Relaxing each mesh using the relaxation technique in LPCM and adding trust regions
δ

j
x and δ

j
u to limit the variation of the state and control quantities around the linear point.

N

∑
i=0

Dj
kiX

j
i −

tj
f − tj

0

2

(
L
(

X j
i , U j

i

)
+ R

(
ˆ

X j
i ,

ˆ
U j

i

))
= v f , j = 0, 1, 2, .., h (56)∣∣∣X j − X̂ j

∣∣∣ ≤ δj
x , j = 0, 1, 2, . . . , h (57)

∣∣∣U j − Û j
∣∣∣ ≤ δj

u , j = 0, 1, 2, . . . , h (58)

The hp-LPCM formulas for problem Phpc are summarized as follows:

(
Phpc

)



Min ◦ Jhpc[X, U] = −mp + wv ·
∣∣∣∣∣∣v f

∣∣∣∣∣∣
2

s.t ◦
N
∑

i=0
Dj

kiX
j
i −

tj
f−tj

0
2

(
L
(

X j
i , U j

i

)
+ R

(
ˆ

X j
i ,

ˆ
U j

i

))
= v f ,

tj
f = tj+1

0 , j = 0, 1, 2, . . . , H − 1

X j
0 = X j+1

f , j = 0, 1, 2, . . . , H − 1

C1

(
X j

i , U j
i

)
= 0

C2

(
X j

i , U j
i

)
≤ 0

p =
h
∑

j=0
N j∣∣X− X̂

∣∣ ≤ δx∣∣U − Û
∣∣ ≤ δu

j = 0, 1, 2, .., h− 1
i = 0, 1, . . . , N

(59)
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The relaxed SOCP problem for rocket landing is processed through a series of steps to
obtain the mesh division relaxed SOCP problem, denoted as Php

NLC.

(
Php

NLC

)



Min ◦ J = −mN + wv ·
∣∣∣∣∣∣v f

∣∣∣∣∣∣
2

s.t
N j

∑
i=0

Dj
kim

j
k = σj

−
∣∣∣∣∣∣∣∣ ˆ

U j
k

∣∣∣∣∣∣∣∣
2

Ispg0
+ Am

(
X j

k −
ˆ

X j
k

)
+ Bm

(
U j

k −
ˆ

U j
k

)+ v f

N j

∑
i=0

Dj
kiR

j
k = σj

(
V̂ j

k + AR

(
X j

k −
ˆ

X j
k

)
+ BR

(
U j

k −
ˆ

U j
k

))
+ v f

N j

∑
i=0

Dj
kiV

j
k = σj

(
1
m CÛ j

k + G + AV

(
X j

k −
ˆ

X j
k

)
+ BV

(
U j

k −
ˆ

U j
k

))
+ v f

N j

∑
i=0

Dj
kiQ

j
k = σj

(
1
2OwQ̂j

k + AQ

(
X j

k −
ˆ

X j
k

)
+ BQ

(
U j

k −
ˆ

U j
k

))
+ v f

N j

∑
i=0

DkiW
j
k = σj

(
J−1
B RBÛ j

k − SwŴ j
k + AW

(
X j

k −
ˆ

X j
k

)
+ BW

(
U j

k −
ˆ

U j
k

))
+ v f

Xt0 = X0 Xt f = XNH−1 , k = 0, 1, 2, . . . , N j, j = 0, 1, 2, . . . , H − 1
mdry ≤ mi ≤ mwet√
r2

xi
+ ry

2
i ≤

rz
2
i

tan(γ)√
q2

2i
+ q2

3i
≤
√

1−cos(θmax)
2

||Wi||2 ≤ wmax
||Ui||2 ≤ Tmax

Tmin ≤
ÛT

i
||Ûi||2

Ui

cos(δmax)||Ui||2 ≤ Tzi , i = 0, 1, 2, . . . , p

σj =
tj

f−tj
0

2 , j = 0, 1, 2, . . . , H − 1
tj

f = tj+1
0 , j = 0, 1, 2, . . . , H − 2

X j
0 = X j+1

f , j = 0, 1, 2, . . . , H − 2

p =
H
∑

j=0
N j∣∣X− X̂

∣∣ ≤ δx
∣∣U − Û

∣∣ ≤ δu

(60)

The problems PNLC and Php
NLC can be addressed using convex optimization algorithms,

such as the interior point method. However, these problems may remain unsolved if the
trust region size is set too small and the accuracy of the initial guess is low. Conversely, a
larger trust region may result in reduced solution accuracy. So, it is necessary to update the
trust region size to obtain an optimal solution according to the quality of the initial guess.

4. Trust Region Update Strategy
4.1. Controlled Solution Process through Trust Region

Begin by setting initial guess X̂, Û, and then solve Php
NLC to obtain solution X, U and

objective value J. Then, update the trust region according to the system nonlinear cost Q
and the system linear cost L. The system linear error is equal to the linearized dynamic
error plus the linearized constraint error, while the system nonlinear error is equal to the
nonlinear dynamic error plus the nonlinear constraint error. The calculation error ratio is
denoted as follows:

ρ =

∣∣Q̂−Q
∣∣∣∣Q̂− L
∣∣ (61)

If C1 and C2 are nonlinear, they are linearized using a first-order Taylor series approxi-
mation. Q and L are calculated as follows:
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Q̂ =
∣∣∣∣DX̂− σ f

(
X̂, Û

)∣∣∣∣
2 +

∣∣∣∣C1
(
X̂, Û

)∣∣∣∣
2 +

∣∣∣∣C2
(
X̂, Û

)∣∣∣∣
2 (62)

Q = ||DX− σ f (X, U)||2 + ||C1(X, U)||2 + ||C2(X, U)||2 (63)

L =
∣∣∣∣DX− σ

(
L(X, U) + R

(
X̂, Û

))∣∣∣∣
2 +

∣∣∣∣LC1
(
X̂, Û, X, U

)∣∣∣∣
2 +

∣∣∣∣LC2
(
X̂, Û, X, U

)∣∣∣∣
2 (64)

If C1 C2 are linear, they are calculated as follows:

∆Q = ||DX− σ f (X, U)||2 (65)

∆L =
∣∣∣∣DX− σ

(
L(X, U) + R

(
X̂, Û

))∣∣∣∣
2 (66)

The trust region is updated based on the value of ρ. We set ρ0 = 0.1, ρ1 = 0.25,
ρ2 = 0.9. Here is how the trust region is updated depending on the value of ρ. If
ρ < ρ0, the current solutions are rejected. If ρ0 < ρ < ρ1, δx and δu will be scaled down.
δx = αδx, δu = αδu, 0 < α < 1, and X̂ = X, Û = U. If ρ1 < ρ < ρ2, the trust region remains
unchanged, and X̂ = X, Û = U. If ρ2 < ρ, it indicates that the trust region should be
enlarged. δx = βδx, δu = βδu, where β > 1, and X̂ = X, Û = U.

By incorporating the proposed trust region update method with the PCMs, we intro-
duce the following two algorithms for solving the optimal control problem, specifically for
the 6-Degree-of-Freedom powered landing.

We incorporate the method from Section 3.2 into Algorithm 1 to propose Algorithm 2
as follows.

Algorithm 1: Legendre Pseudospectral Convex Method with Trust Region Strategy (LPCM-TRS)

Input: a optimal control problem P, a number of collocation of points N, trust region size δx and
δu, initial guessed solution X̂ and Û, tolerance ε, Maximum number of iterations η, other
parameters α, β, ρ0, ρ1, ρ2
Output: X and U

1: Transforming problem P into problem Pc using Equations (26)–(35)
2: Transforming problem Pc into problem PNC using Equations (36)–(59)
3: for each i ∈ [1, η]
4: Getting solution X and U by solving PNC
5: Calculating ρ using equation(61)
6: while True do
7: if ρ = 1 or ||δx||2 ≤ ε

8: return X, U
9: else
10: if ρ ≤ ρ0 then
11: δx = δx/α

12: else
13: X̂ = X, Û = U
14: if ρ ≤ ρ1 then
15: δx = δx/α

16: else if ρ ≥ ρ2 then
17: δx = δx · β
18: end if
19: break
20: end if
21: end if
22: end while
23: update the problem PNC
24: end for
25: return X, U
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Algorithm 2: hp-Legendre Pseudospectral Convex Method with Trust Region Strategy
(hp-LPCM-TRS)

Input: a optimal control convex problem PNC, a total number of mesh H, a list of the number of
points Nhp, a list of the interval time Thp, other parameters δx, δu, X̂, Û, ε, η, β, ρ0, ρ1, ρ3
Output: X and U

1: for each h ∈ [1, H] do
2: N = Nhp[h]
3: t0, t f = Thp[h]
4: To calculate pseudospectral differential matrix D using Equation (31)
5: To create a equality constraints using Equation (52)
6: To link next mesh using Equations (53) and (54)
7: end for
8: To transform PNC into a multi-mesh problem Phpc

9: for each i ∈ [1, η] do
10: Getting solution X and U by solving Phpc

11: Calculating ρ using Equation (61)
12: while True do
13: if ρ = 1 or ||δx||2 ≤ ε then
14: return X,U
15: else
16: if ρ ≤ ρ0 then
17: δx = δx/α

18: else
19: X̂ = X, Û = U
20: if ρ < ρ1 then
21: δx = δx/α

22: else if ρ ≥ ρ2 then
23: δx = δx · β
24: end if
25: break
26: end if
27: end if
28: end while
29: update the problem Phpc

30: end for
31: return X,U

The convergence of the LPCM-TRS and hp-LPCM-TRS algorithms will be theoretically
discussed in the next subsection.

4.2. Convergence Analysis

In reference [5], it has been demonstrated that the NLP PN , obtained using the Legen-
dre pseudospectral method, satisfies the KKT conditions. Building upon this foundation,
we can analyze the KKT conditions for the relaxed SOCP PC and the relaxed SOCP of mesh
division PhpC. The KKT conditions for problem PN are as follows:

∇x J +
N

∑
k=0

γk∇x

(
N

∑
i=0

DkiXi − f (Xk, Uk)

)
+

N

∑
k=0

ηk∇xC1(Xk, Uk) +
N

∑
k=0

ψk∇xC2(Xk, Uk) = 0 (67)

∇u J +
N

∑
k=0

γk∇u

(
N

∑
i=0

DkiXi − f (Xk, Uk)

)
+

N

∑
k=0

ηk∇uC1(Xk, Uk) +
N

∑
k=0

ψk∇xC2(Xk, Uk) = 0 (68)
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N

∑
k=0

N

∑
i=0

DkiXk = f (Xk, Uk) (69)

ψk ≥ 0, ψk · C1(Xk, Uk) = 0 (70)

C1(Xk, Uk) = 0 (71)

C2(Xk, Uk) ≤ 0 (72)

where γk, ηk, and ψk represent Lagrange multipliers and k = 0, 1, .., N. Assuming that C1
and C2 are linear, we will discuss the linearized dynamical equations. The KKT conditions
for problem PC are as follows:

∇x Jc +
N

∑
k=0

γk∇x

(
N

∑
i=0

DkiXi −
(

L(Xk, Uk) + R
(
X̂k, Ûk

)))
+

N

∑
k=0

ηk∇xC1(Xk, Uk) +
N

∑
k=0

ψk∇xC2(Xk, Uk) = 0 (73)

∇x Jc +
N

∑
k=0

γk∇u

(
N

∑
i=0

DkiXi −
(

L(Xk, Uk) + R
(
X̂k, Ûk

)))
+

N

∑
k=0

ηk∇uC1(Xk, Uk) +
N

∑
k=0

ψk∇uC2(Xk, Uk) = 0 (74)

N

∑
i=0

DkiXi −
(

L(Xk, Uk) + R
(
X̂k, Ûk

))
− vk = 0 (75)

L(Xk, Uk) + R
(
X̂k, Ûk

)
= f

(
X̂k, Ûk

)
+∇x f

(
X̂k, Ûk

)(
Xk − X̂k

)
+∇u f

(
X̂k, Ûk

)(
Uk − Ûk

)
(76)

ψk ≥ 0, ψk · C1(Xk, Uk) = 0 (77)

C1(Xk, Uk) = 0 (78)

C2(Xk, Uk) ≤ 0 (79)

∣∣Xk − X̂k
∣∣ ≤ δx (80)

∣∣Uk − Ûk
∣∣ ≤ δu (81)

It can be seen that when δx = 0, δu = 0, vk = 0, the KKT conditions of problem PN
are equivalent to the KKT conditions of problem PC. The KKT conditions for problem PhpC
are as follows:

∇x Jc +
H
∑

s=0

(
N
∑

k=0
γs

k∇x

(
N
∑

i=0
Ds

kiX
s
i −

(
L
(
Xs

k, Us
k
)
+ R

(
X̂s

k, Ûs
k

))))
+

H
∑

s=0

N
∑

k=0
ηs

k∇xC1
(
Xs

k, Us
k
))

+
H
∑

s=0

N
∑

k=0
ψs

k ∇xC2
(
Xs

k, Us
k
)
= 0

(82)

∇x Jc +
H
∑

s=0

(
N
∑

k=0
ηs

k∇u

(
N
∑

i=0
Ds

kiX
s
i −

(
L
(
Xs

k, Us
k
)
+ R

(
X̂s

k, Ûs
k

))))
+

H
∑

s=0

N
∑

k=0
ηs

k∇uC1
(
Xs

k, Us
k
))

+
H
∑

s=0

N
∑

k=0
ψs

k ∇uC2
(
Xs

k, Us
k
)
= 0

(83)

H

∑
k=0

N

∑
i=0

Ds
kiX

s
i −

(
L(Xs

k, Us
k) + R

(
X̂s

k, Ûs
k

))
− vs

k = 0 (84)
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L(Xs
k, Us

k) + R
(

X̂s
k, Ûs

k

)
= f

(
X̂s

k, Ûs
k

)
+∇x f

(
X̂s

k, Ûs
k

)(
Xs

k − X̂s
k

)
+∇u f

(
X̂s

k, Ûs
k

)(
Us

k − Ûs
k

)
(85)

ψs
k ≥ 0, ψs

k · C1(Xs
k, Us

k) = 0 (86)

C1(Xs
k, Us

k) = 0 (87)

C2(Xs
k, Us

k) ≤ 0 (88)

∣∣∣Xs
k − X̂s

k

∣∣∣ ≤ δx (89)

∣∣∣Us
k − Ûs

k

∣∣∣ ≤ δu (90)

where s = 0, 1, . . . , H. Here, the superscript s indicates that it is in the s-th mesh interval,
and it is evident that the KKT conditions of problem Phpc consist of multiple mesh KKT
conditions. Each mesh can be viewed as a scaled-down problem Pc.

To ensure that the KKT conditions of these problems are as equal as possible, the trust
region updating based on the nonlinear error and linear error of the system is proposed.
Then, its convergence is analyzed as follows:

When ρ < 1, Q is larger than the L error. It is necessary to scale down the trust region
size to confine X and U to the vicinity of X̂ and Û. In general, a solution is considered
invalid if ρ is less than 0.25. When ρ > 1, it means that Q is smaller than L. In this case,
the problem might be unsolvable, and there is a need to scale up the trust region size to
search for a credible solution. When ρ = 1, it indicates that Q is equivalent to L. Only
when X̂− X = 0 and Û −U = 0, the solution of SOCP is the globally convergent solution
of NLP.

The practical solution capability of the proposed method, although theoretically ana-
lyzed for optimality, will be verified through numerical experiments in the next section.
P-iSc [7] is a pseudospectral convexification method based on the Radau pseudospectral ap-
proach, without mesh division. To facilitate a more meaningful comparison, we introduce
mesh division to the original P-iSC algorithm, resulting in a new method called hp-P-iSc.
We then proceed to compare it with LPCM-TRS and hp-LPCM-TRS.

5. Numerical Simulation

In this section, numerical experiments on 6-Degree-of-Freedom rocket landing were
conducted to validate the effectiveness of the proposed method. The method’s performance
is compared with hp-P-iSC for solving the rocket-powered landing. The simulations were
implemented using Python, and the simulation parameters and boundary conditions are
presented in Table 1. The method’s parameters are provided in Table 2.

The methods compared with hp-P-iSC include LPCM-TRS and hp-LPCM-TR. The total
number of collocation points is 50, with each mesh containing 10 points, and a maximum
of 20 iterations are allowed.

To facilitate a comprehensive comparison of the optimization results’ accuracy, the
discrete control and state quantities obtained from the optimization are utilized in the
nonlinear dynamic equation. This yields discrete differential values, which are then inte-
grated through time-stepping to produce continuous state quantity curves. To maintain
consistency in the subsequent legends, the discrete numerical solutions in the figures are
denoted by red triangles and green circles corresponding to hp-LPGM-TR and LPCM,
respectively. The integrated continuous solutions are represented by red lines and green
lines for hp-LPCM-TRS and LPCM-TRS, respectively. Additionally, the blue diamonds and
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lines represent the discrete numerical solutions and integrated continuous solutions of the
hp-P-iSC method.

Table 1. Simulation parameters.

Parameter Value Unit

mwet 3× 104 kg
mdry 2.2× 104 kg
Tmax 8× 105 kg ·m/s2

Tmin 3.2× 105 kg ·m/s2

Wmax 90 deg
rb [0,0,−14] m
jb [4× 106,4× 106,1× 105] kg ·m2

R0 [0,200,500] m
V0 [20,7,−78] m/s
Q0 [1,0,0,0] -
W0 [0,0,0] deg
R f [0,0,0] m
Vf [0,0,−5] m/s
Q f [1,0,0,0] -
W f [0,0,0] deg

Table 2. Algorithm parameters.

Parameter Value Unit

wv 1× 105 -
δx 5 -
δu 5 -
α 2.0 -
β 3.2 -
H 10 -
p 50 -

Observing the discrete points and continuous curves of the same-colored mass in
Figure 1, it is evident that they generally align well. The difference between hp-P-iSC and
hp-LPCM-TRS is minimal, with LPCM-TRS having the lowest performance index.
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curves exhibit a good fit. When examining their respective terminal positions, it is evident
that LPCM-TRS gradually approaches the target point several time points in advance,
displaying a smoother trajectory. On the other hand, hp-LPCM-TRS and hp-P-iSC reach
the target point with steeper changes in their trajectories.
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Figure 2. The changes in the position coordinates of the rocket in three dimensions are described
as follows: (a) The position component rx represents the changes along the x-axis. (b) The position
component ry represents the changes along the y-axis. (c) The position component rz represents the
changes along the z-axis.

In Figure 3, the quaternion change curve for the rocket’s control attitude change is
depicted. The discrete points and continuous curves of q0, q1, and q2 exhibit a good fit.
However, in the case of q3, there is a significant deviation in the middle part between the
discrete points and the continuous curves for hp-P-iSC.
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Figure 3. The quaternion change curve for rocket control attitude change is depicted in Figure 3,
highlighting the changes in each component of the quaternion. The subgraphs are organized as
follows: (a) Comparison of the solutions for the first component of quaternion q0. (b) Comparison of
the solutions for the second component of quaternion q1. (c) Comparison of the solutions for the third
component of quaternion q2. (d) Comparison of the solutions for the last component of quaternion q3.
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In Figure 4, we observe the fundamental alignment between discrete points and
continuous curves in Figure 4a. However, it is noticeable that as we approach the end,
there are deviations and discrepancies in the discrete points and continuous curves of
hp-P-iSC. Interestingly, the positions of the discrete points in hp-P-iSC closely resemble
those of hp-LPCM-TRS. In Figure 4b, the fitting between discrete points and continuous
curves is excellent, and the trend remains consistent as we approach the end. Meanwhile,
in Figure 4c, the changes in discrete points and continuous curves of hp-LPCM-TRS closely
resemble those of LPCM-TRS, particularly near the end positions. However, hp-P-iSC
exhibits a relatively steep change in trend as it approaches the end condition.
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Figure 4. The speed of the rocket moving in three dimensions is illustrated. The three subgraphs
represent (a) the speed of movement along the x-axis, (b) the speed of movement along the y-axis,
and (c) the speed of movement along the z-axis.

In Figure 5, there is a deviation in the fitting of discrete points and continuous curves
for hp-P-iSC in Figure 5a, leading to a significant deviation of continuous curves at the end,
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despite the discrete points being consistent with hp-LPCM-TRS. Figure 5b shows a good fit
between the discrete points and continuous curves. In Figure 5c, the value is small enough
to be considered as zero.
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Table 3 presents various indicators, including the average error, objective function
value, objective function error, relaxation value v f , and CPU time. In this study, we have
introduced two novel methods, namely LPCM-TRS and hp-LPCM-TRS, and conducted
a comparative analysis with hp-P-iSC, which incorporates existing methodologies. As
elucidated in the convergence analysis within Section 4.2, the proximity of the relaxation
value to zero signifies a closer alignment between the solved problem and the original
problem, ultimately resulting in a more dependable solution. In Table 3, it becomes evident
that both LPCM-TRS and hp-LPCM-TRS exhibit relaxation values of 10−8, while hp-P-iSC
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demonstrates a relaxation value of 10−5. Despite hp-P-iSC boasting a shorter computing
time, it regrettably fails to converge, as discerned from the algorithm’s convergence analysis.

Table 3. The comparison of objective value, average error, and CPU time.

Method Average Error Objective Value Objective Error Relaxation Value vf CPU Time

LPCM-TRS 3.197× 10−4 9.080× 10−1 1.223× 10−5 1.041× 10−8 1.532× 102

hp-LPCM-TRS 4.052× 10−4 9.114× 10−1 7.050× 10−5 2.093× 10−8 7.045× 101

hp-P-iSC 2.771× 10−3 9.128× 10−1 3.007× 10−4 9.300× 10−5 5.692× 101

Another pivotal metric to consider is the average error. It is noteworthy that both
LPCM-TRS and hp-LPCM-TRS showcase remarkable precision in optimizing both spatial
positioning and attitude control during rocket landing. Conversely, hp-P-iSC manifests
a larger average error. This discrepancy can be attributed to the relatively significant
attitude control errors in hp-P-iSC, while spatial position state accuracy remains consistently
high, aligning with the findings presented in the original paper. Upon a comprehensive
evaluation of the average error and objective function error indices, hp-LPCM-TRS and
LPCM-TRS display comparable levels of accuracy,10−4 and 10−5. Nevertheless, when
evaluating CPU computing time, hp-LPCM-TRS remarkably expends only 45.9% of the
time required by LPCM-TRS. Consequently, hp-LPCM-TRS emerges as the optimal choice,
excelling in terms of accuracy, computational efficiency, and problem-solving optimality.

In summary, the optimal control problem of 6-Degree-of-Freedom rocket-powered
landing was solved under the same iteration step and the same termination condition.

Based on the data from the Figures 1–5 and Table 3, it is apparent that hp-P-iSc has
a relatively short calculation time. However, when examining the relaxation amount,
it becomes evident that hp-P-iSC has a larger relaxation value compared to the other
two algorithms. This larger relaxation value leads to relatively large average errors and
objective function errors, ultimately resulting in a lack of solution accuracy. An analysis of
the figures suggests that the poor calculation performance of hp-P-iSC is primarily due to
the inadequate calculation of attitude control state variables.

The calculation results of hp-P-iSC in the spatial position state do not significantly
differ from the other two algorithms. The average error and objective function error of
LPCM-TRS and hp-LPCM-TRS are within the same order of magnitude, with very minimal
actual differences between them. Moreover, the problem solved by the proposed algorithm
closely approximates the original problem, given a relaxation value of 10−8. Interestingly,
the computational time of hp-LPCM-TRS is only 45.9% of the computational time required
by LPCM-TRS.

6. Conclusions

The hp-LPCM-TRS method is introduced as an extension of the Legendre pseudospec-
tral method for optimal control problems. In theory, it offers a general approach for solving
linear optimal control problems, with the ability to address nonlinear optimal control
problems by utilizing first-order Taylor series approximation for linearization. Specifically,
the study focuses on solving the 6-Degree-of-Freedom rocket dynamic landing problem,
creating and solving linear optimal control problems PNLC and Php

NLC using LPCM-TRS,
hp-LPCM-TRS, and hp-P-iSC.

The simulation results highlight that hp-LPCM-TRS emerges as an optimal choice for
tackling the powered landing trajectory problem of a 6-Degree-of-Freedom rocket. It not
only demands less computational time but also maintains a high level of accuracy in its
solutions. The process of mesh division exhibits the potential to significantly enhance com-
putational efficiency while upholding a commendable level of precision with an equivalent
number of collocation points. The utilization of a trust region update strategy enables an
iterative approach to closely approximate the original problem, thereby ensuring the ro-
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bustness and fidelity of the solution. Within the framework of the Legendre pseudospectral
method, PCM effectively preserves the coherence among multiple mesh partitions.
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