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Abstract: Consistent time series rainfall datasets are important in performing climate trend analyses
and agro-hydrological modeling. However, temporally consistent ground-based and long-term ob-
served rainfall data are usually lacking for such analyses, especially in mountainous and developing
countries. In the absence of such data, satellite-derived rainfall products, such as the Climate Hazard
Infrared Precipitations with Stations (CHIRPS) and Global Precipitation Measurement Integrated
Multi-SatellitE Retrieval (GPM-IMERG) can be used. However, as their performance varies from
region to region, it is of interest to evaluate the accuracy of satellite-derived rainfall products at
the basin scale using ground-based observations. In this study, we evaluated and demonstrated
the performance of the three-run GPM-IMERG (early, late, and final) and CHIRPS rainfall datasets
against the ground-based observations over the Ziway Lake Basin in Ethiopia. We performed the
analysis at monthly and seasonal time scales from 2000 to 2014, using multiple statistical evaluation
criteria and graphical methods. While both GPM-IMERG and CHIRPS showed good agreement with
ground-observed rainfall data at monthly and seasonal time scales, the CHIRPS products slightly
outperformed the GPM-IMERG products. The study thus concluded that CHIRPS or GPM-IMERG
rainfall data can be used as a surrogate in the absence of ground-based observed rainfall data for
monthly or seasonal agro-hydrological studies.

Keywords: CHIRPS; GPM-IMERG; rainfall data scarcity; agro-hydrology; Rift Valley Lake Basin

1. Introduction

Climate change and variability trend analyses need consistent and long-term time
series climate data [1–8] that are required to study the impact of climate change on the
agro-hydrological system [9–11]. Such climate studies can benefit from the freely available
Global Climate Models (GCMs) outputs such as rainfall data. In addition, complete and
long-term rainfall data with high spatial and temporal resolutions are of importance for
water resources planning and optimization of crop water productivity especially in water-
scarce areas [12–19].

The application of the GCMs rainfall data requires long-term observed-rainfall data
for the downscaling and bias correction of coarse resolutions GCMs products into fine
resolutions [9,10]. Ground-based rainfall measurement is the most common approach
and well recognized as an accurate dataset [20,21]. However, records from the ground-
based station are inconsistent over several parts of the world, including Ethiopia [22,23].
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Furthermore, available weather stations are inadequate and unevenly distributed to capture
rainfall spatial heterogeneity, including less accessibility in remote areas [1,24]. This
is a prominent problem, especially in developing countries, including the Ziway Lake
Basin [25,26].

The advancement and application of remote sensing technologies offer the possibility
of using remotely sensed rainfall data in places where ground-based observed rainfall data
are not available [24,27–31]. Several satellite-based rainfall products have been developed
with promising approaches for obtaining rainfall estimates at regional and global scales,
including blending the ground-based observed rainfall data with remotely sensed data [32].
Some of those satellite-based rainfall products include Tropical Precipitation Measuring
Mission Multi-Satellite Precipitation Analysis (TMPA) [33], Precipitation Estimation from
Remote Sensed Information using Artificial Neural Networks (PERSIAN) [34], Climate
Hazards Infrared Precipitation with Stations (CHIRPS) [35], and Global Precipitation
Measurement Integrated Multi-SatellitE Retrieval (GPM-IMERG) [36,37].

Globally, several researchers have evaluated the performance of GPM-IMERG rainfall
data using ground-based observations or other existing satellite-based rainfall
products [28,38–41]. For example, Tong et al. [38] evaluated the monthly performance
of the GPM-IMERG rainfall product using gauge observations at both grid and basin
scales for the Nanliu River Basin, Beibu Gulf (Southern coast of China). They concluded
that the IMERG showed a high accuracy when detecting light rainfall. Anjum et al. [28]
demonstrated IMERG-final run rainfall product estimates by comparing it with gauges and
TMPA-based real-time data over the northern highlands of Pakistan at annual, monthly,
seasonal, and daily time scale. Their study report showed that the IMERG-final run reason-
ably well performed than the TMPA-based rainfall estimates. Morsy et al. [40] compared
TMPA and IMERG rainfall datasets in the arid environment of El-Qaa Plain, Sinai. They
concluded that the IMERG data exhibit superior performance than TMPA in all rainfall
intensities. Similarly, Kawo et al. [41] evaluated GPM-IMERG early and late run rainfall
estimates with ground gauged rainfall at monthly and seasonal time scales over the Lake
Hawassa catchment, Ethiopia. They found that both IMERG-early and late run captured
the observed rainfall patterns and values during the rainy season than the dry season.

Many studies have also evaluated the performance of CHIRPS and compared it with
ground-based observations at different spatial and temporal scales [31,42–50]. For instance,
Wu et al. [50] evaluated the performance of the CHIRPS rainfall dataset against ground-
based observed rainfall data over the Yunnan Province, China at monthly, annual, and
seasonal scales. They found that CHIRPS data performed well in estimating annual and
monthly precipitation. Luo et al. [43] evaluated TRMM and CHIRPS rainfall products in the
Lower Lancang-Mekong River Basin. They reported that TRMM rainfall products outper-
formed the CHIRPS rainfall products. Further, Taye et al. [44] evaluated the performance of
CHIRPS and Multi-Source Weighted-Ensemble Precipitation (MSWEP) at a monthly time
scale over the upper Blue Nile Basin, Ethiopia. They found that CHIRPS better simulated
the magnitude of drought than MSWEP in the different elevation zones of the Upper Blue
Nile Basin. Goshime et al. [46] conducted a performance evaluation of CHIRPS rainfall
product with the gauged rainfall at monthly and daily temporal resolutions over the Lake
Ziway Basin, Ethiopia, and concluded that CHIRPS performed better at the monthly time
scale. While several studies have been conducted on evaluating the performance of IMERG
and CHRIPS, the previous studies have not simultaneously evaluated and compared the
performance of the three IMERG runs (early, late, and final) and CHIRPS at different time
scales (monthly and seasonal). Therefore, evaluating and comparing the performance of
the recently available different rainfall products at two-time scales is of interest for in-depth
and better understanding of their performance and appropriately choosing them as a sur-
rogate when ground-based rainfall observations are lacking. Such studies might also help
to identify at what time resolution the satellite-based rainfall estimates can appropriately
be used as they play a key role in simulating long-term agro-hydrological modeling and in
forecasting changes in freshwater supply and agricultural crop yields [51,52]. Thus, the
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objectives of this study were to evaluate the accuracy of the satellite-based areal rainfall
data over the Ziway Lake Basin at different time scales. We evaluated and compared the
CHIRPS and GPM-IMERG of early, late, and final runs with the ground-based observed
rainfall data from 12 gauging stations. The evaluation was performed at monthly and
seasonal time scales from 2000 to 2014. This study might be useful for the alternative
application of remotely sensed precipitation products in simulating the agro-hydrological
modeling and climate change trend assessment of the Ziway Lake Basin and elsewhere
with similar agro-hydrological conditions, in the Central Rift Valley Lake Basin of Ethiopia.

2. Data and Methods
2.1. Study Area Description

Lake Ziway Basin (LZB) is located between 38◦00′−39◦30′ East longitude and
7◦00′−8◦30′ North latitude in the Adami Tullu-Jiddo Kombolcha Woreda of the East
Shewa Zone, Oromia region, Ethiopia. The basin is about 150 km south of the capital city,
Addis Ababa. The town of Ziway (recently named Batu) is situated on the lake’s western
shore. The altitude of Lake Ziway is approximately 1636 m above mean sea level (amsl),
with a maximum water depth of 4 m, a total basin area of about 7300 km2 (Figure 1) and
a lake volume of 1.5 million cubic meters [53]. The majority of the basin is characterized
by low to moderately undulating topography but bounded by a steep slope and abrupt
faults in the eastern and southeastern escarpments, ranging from 4200 to 1600 m (Figure 1).
Lake Ziway Basin experiences the monsoon agro-climate zone characteristics. The rainfall
patterns are generally affected by the annual oscillation of the inter-tropical convergence
zone that forms wet summer from June to September [54]. The mean annual rainfall of
the basin spatially varies from 500 to 1150 mm, with a noticeable temporal variation at a
monthly time scale. The mean annual temperature ranges from approximately 15 ◦C for
the highlands to 25 ◦C close to the lake.
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Figure 1. A map of the Ziway Lake Basin, including elevation, rivers, rainfall stations, and Lake
Ziway itself.

2.2. Data
2.2.1. Ground Observed Data

In this study, the monthly and seasonal rainfall ground-based observed data from
2000 to 2014 were used as a point of reference for evaluating the CHIRPS and GPM-IMERG.
We obtained the data from the Ethiopian National Meteorological Agency (NMA). We
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originally obtained nineteen climate stations distributed over the Ziway Lake basin with
different elevation. However, after performing quality and checking consistency of the
data, we selected 12 stations that had good quality and consistent temporal coverage
(Table 1). Then, we applied Thiessen polygon method in order to calculate the areal
weighted rainfall values of the Ziway Lake Basin (ZLB) from the 12 selected stations. Such
approach accounts for the areal coverage of each rain gauge station, the spatial distribution
and variability of rainfall for the basin [55]. The areal coverage (Thiessen polygon) of the
12 stations is shown in Figure 2.

Table 1. List of the twelve rainfall stations over the Ziway Lake Basin.

Station Name Latitude
(in Degree)

Longitude
(in Degree) Elevation (m)

Adamitulu 7.86 38.70 1653
Arata 7.98 39.06 1777
Assela 7.96 39.14 2413

Bui 8.33 38.55 2020
Butajira 8.15 38.37 2000
Etheya 8.13 39.33 2129

Kulumsa 8.01 39.16 2211
Meki 8.15 38.82 1662

Merero 7.45 39.37 2940
Sagure 7.77 39.15 2480

Tora 7.86 38.42 2001
Ziway 7.93 38.70 1640
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Figure 2. Thiessen Polygon network of the Ziway Lake Basin.

2.2.2. Satellite Precipitation Products

In this study, we considered and evaluated two Satellite Precipitation Products (SPPs).
These are CHIRPS and GPM-IMERG.

CHIRPS Database

CHIRPS was launched in early 2014 by the Climate Hazards Group at the University
of California, Santa Barbara (UCSB). The CHIRPS precipitation dataset globally covers
50◦ S−50◦ N with a horizontal resolution of 0.05◦ for both daily and monthly time scales.
CHIRPS datasets were originally developed to support the United States Agency for
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International Development Famine Early Warning Systems Network (FEWS NET) [35] and
African Rainfall Climatology [55,56]. Nowadays, the CHIRPS dataset is available in two
sets of spatial resolutions i.e., 0.25◦ × 0.25◦ and 0.05◦ × 0.05◦ from 1981 to the present.

The CHIRPS dataset is developed based on a blend of three data sources [35]:
(i) the Climate Hazards Precipitation Climatology (CHPclim) [57], a global precipitation
climatology at 0.05◦ latitude and longitude resolution (estimated for each month based
on station data, averaged satellite observations, elevation, latitude and longitude) [35,58];
(ii) quasi-global geostationary Thermal Infrared Radiation (TIR) satellite observations,
TMPA 3B42 product [33], and (iii) atmospheric model precipitation fields from the National
Oceanic and Atmospheric Administration (NOAA) Climate Forecast System (CFS) version
2.0 [59].

According Funk et al. [35], the CHIRPS algorithm encompasses four development
processes: (i) a pentad (5 day) rainfall estimate, which is generated from the three-hourly
quasi-global geostationary TIR data of Climate Prediction Center (CPC) and the Na-
tional Climatic Data Center; (ii) a TMPA-3B42 rainfall product, which is used to calibrate
the IR pentad estimate; (iii) the calibrated IR pentad product is then multiplied with
the Climate Hazards Precipitation Climatology and subsequently divided by the long-
term mean to produce the Climate Hazards Group (CHG) IR Precipitation (CHIRP) data;
(iv) the pentadal CHIRP values are disaggregated to daily precipitation estimates based on
the daily NOAA Climate Forecast System (CFS) fields rescaled to 0.05◦ resolution. Finally,
CHIRPS is produced through blending the rainfall stations with the CHIRP data sets and
using a modified inverse distance-weighted algorithm [35].

The CHIRPS datasets include rainfall information from a large number of gauges,
which is about 1200 stations globally. It should be mentioned that a relatively large number
of rain gauge stations were used in East Africa [35]. More than 50 rain gauge stations from
the Ethiopian NMA were blended with the CHIRPS products for up-to-date evaluations of
the rainfall conditions throughout the major growing seasons of the country. The 50 stations
are updated every 10 days [60] and used to correct the CHIRPS datasets [35,49,61] Detailed
information regarding the CHIRPS rainfall products was provided in Funk et al. [35].
In this study, we used a higher resolution CHIRPS dataset with a spatial resolution of
0.05◦ × 0.05◦ and a daily time scale, which was freely downloaded from (ftp://ftp.chg.
ucsb.edu/pub/org/chg/products/CHIRPS-2.0/).

IMERG Database

The GPM-IMERG algorithm combines information from the GPM satellite group to
estimate precipitation over the majority of the Earth’s surface. The GPM-IMERG was
launched by the National Aeronautics and Space Administration (NASA) and the Japan
Aeronautics and Exploration Agency (JAXA) in 2014 [62]. This algorithm is particularly
valuable over the majority of the Earth’s surface that lacks precipitation-measuring in-
struments on the ground. In the latest release of IMERG (Version 06; V06), the algorithm
fuses the early precipitation estimates based on the TRMM satellite (2000−2014) with more
recent precipitation estimates collected during the operation based on the GPM satellite
(2014–2021). The three gridded products are commonly used for scientific research and op-
erational purposes. There are three different daily IMERG products, which include IMERG
Day 1 Early Run (near real-time with a latency of 6 h), IMERG Day 1 Late Run (reprocessed
near real-time with a latency of 18 h), and IMERG Day 1 Final Run (gauged-adjusted with
a latency of four months) products. In this study, we used the three IMERG products
(IMERG-early IMERG-late and IMERG-final run products, with a fine spatial resolution
(0.1◦ × 0.1◦), a high temporal resolution (30 min), and a spatial coverage from 60◦ S to
60◦ N, which was freely downloaded from (https://giovanni.gsfc.nasa.gov/giovanni/
(accessed on 4 February 2021)).

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/
https://giovanni.gsfc.nasa.gov/giovanni/
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2.3. Performance Evaluation Criteria

To identify the best datasets in the study area, we evaluated the performance of
CHIRPS and three IMERG (early, late, and final) products against the ground-based rainfall
data. We evaluated the monthly and seasonal time scale. We obtained monthly and seasonal
rainfall by adding up the daily values on a monthly and seasonal basis in Microsoft Excel
2019 [63], Jupyter Notebook and ArcMap used to visualize data. In Ethiopia, the climate
varies mostly with altitude. The lowland areas have hot and arid climatic conditions while
plateau areas experience a cold climate, and the season category does not constant over the
regions [64,65]. Therefore, in this study, we characterized the performance of CHIRPS and
IMERG rainfall datasets for the four seasons of the ZLB. These include Kiremt (summer;
from June to August), Tseday (spring; from September to November), Bega (winter; from
December to February), and Belg (Autumn; from March to May). Then, we evaluated the
temporal variations of rainfall for each product.

We consistently used four statistical metrics that include Percent Bias (PBIAS), Root
Mean Square Error (RMSE), Nash–Sutcliffe Efficiency (NSE), and Pearson linear Correlation
Coefficient (r) to quantitatively compare the performance of the CHIRPS and the three GPM-
IMERG rainfall products. PBIAS describes the systematic bias of the CHIRPS and IMERG
products. Positive values of PBIAS indicate an overestimation of the rainfall quantity,
whereas negative values show an underestimation of the rainfall quantity [28,66,67]. RMSE
measures the absolute error magnitude of the CHIRPS and IMERG products, with the
smaller the RMSE value, the closer the CHIRPS and IMERG measurements to the ground-
observed rainfall. NSE is a normalized statistic that determines the relative magnitude of
the residual variance compared to the measured data variance. NSE values range between
−∞ and 1, with value 1 indicating a perfect fit between the satellite-based and observed
rainfall [42,68]. The degree of linear correlation between the CHIRPS and IMERG and the
ground-based rainfall evaluated with r values ranging from −1 to 1 r value of 0 indicates
no correlation between the CHIRPS and IMERG products and the observed rainfall. On
the other hand, r values of 1 and −1 show perfect positive and negative correlations,
respectively [69,70], as summarized in (Table 2). In addition to statistical metrics, we used
graph for comparison of SPPs and observed rainfall.

Table 2. List of the statistical metrics, used for the evaluation of satellite rainfall products.

Evaluation Metrics Description Equation Unit Range Best Value

Percent Bias (PBIAS) Measure the average
tendency of the SPPs PBIAS =

n
∑

1=1
(PSi − PGi)

1
∑n

i=1 PS
× 100 NA (∞~∞) 0

Root Mean Square
(RMSE)

Measure the average
magnitude of errors RMSE =

√
n
∑

i=1
(PSi − PGi)

2 × 1
N

mm [0~∞) 0

Nash–Sutcliffe Efficiency
(NSE)

Determines the
magnitude of the
residual variance

NSE = 1− ∑n
i=1(PSi−PGi)

2

∑n
i=1(PGi−PGmean)

2
NA (∞~1] 1

Correlation Coefficient
(r)

Indicate the relationship
between observed

rainfall data and the
SPPs products

r = ∑n
i=1(PGi−PGmean)∑n

i=1(PSi−PSmean)√
(PG−PGmean)

2
√
(PS−PSmean)

2
NA [−1~1] 1

where: PSi is rainfall from satellite and PGi the observed rainfall at ith time step (daily, weekly, monthly, or seasonal) with N pairs of data,
PGmean and PSmean are mean observed rainfall and mean satellite rainfall, respectively.

3. Results and Discussion
3.1. Spatial Rainfall Pattern Evaluation

The Ziway Lake Basin seasonal average rainfall distribution of the CHIRPS and
IMERG map was compared visually from the 2000–2014 period. Figure 3 shows the
seasonal average rainfall distribution for the main rainy (summer) and dry (winter) seasons.
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In summer (Figure 3a,b), both CHIRPS and IMERG show that the western part of the basin,
which is the eastern highlands of Gurage Zone, receives more rainfall than the eastern
part of the basin, which is the western highlands of the Arsi Zone. The spatial rainfall
distribution of both CHRIPS and IMERG is consistent with ground-observed rainfall [64].
During the winter season (DJF), a similar rainfall pattern was observed in the western and
eastern parts of the basin (Figure 3c,d). Up to 105 mm of rainfall amount is received for the
eastern and western part of the basin whereas the central and southern part of the basin
receives rainfall up to 45 mm. Overall, both CHRIPS and IMERG showed a decreasing
rainfall pattern towards the center i.e., from west to the central part of Ziway Lake Basin
(lowland). According to Hailesilassie et al. [64], the observed rainfall is mainly concentrated
in the southern and western parts of the basin, while the eastern and central rift valley (low
land areas) where the lake is located generally experience low rainfall amounts. CHIRPS
relatively well captured that pattern when compared to IMERG, which is probably due to
its high spatial resolution and blending of more stations’ data [47].
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3.2. Monthly Rainfall Evaluation

Comparison of the CHIRPS and IMERG (early, late, and final run) monthly rainfall
data showed a good performance over the Ziway Lake Basin. CHIRPS rainfall generally
showed a stronger correlation with the observed rainfall when compared to the three-run
IMERG’s rainfall (Table 3). The Correlation Coefficient between the early, late, and final
IMERG run rainfall and the observed rainfall was high i.e., 0.93, 0.92, and 0.85, respectively.
Compared with all IMERG (early, late, and final) products, CHIRPS products showed the
highest Correlation Coefficient (0.96) and low Percent Bias (2.22%). In comparison with the
IMERG products, the monthly CHIRPS product relatively better represented the ground-
observed rainfall values over ZLB with relatively higher r and NSE; and lower RMSE and
RBIAS. This is consistent with the previous studies of that confirmed the applicability of
CHIRPS precipitation datasets at a monthly time scale in ground-observed data-scarce
regions [22,31,46,49,64].
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Table 3. Monthly statistical performance evaluation satellite rainfall products for the Ziway Lake Basin.

SPPs r NSE RMSE (mm) PBIAS (%)

CHIRPS 0.96 0.92 17.45 2.22
IMERG-E 0.92 0.72 28.19 9.67
IMER-L 0.93 0.76 26.12 8.48

IMERG-F 0.85 0.60 34.47 13.0

Figure 4a shows the monthly rainfall values while Figure 4b, c shows the cumulative
and scatter values, respectively. The CHIRPS and IMERG-L rainfall product showed the
best performance to capture the temporal pattern of monthly rainfall. However, both
IMERG-E and IMERG-F products did not well capture the temporal variability of observed
rainfall over the study area, indicating that both somehow overestimated the observed
rainfall values. As visualized from the cumulative rainfall (Figure 4b), the CHIRPS and
IMERG-L captured the monthly cumulative observed rainfall values. The IMERG-E and
IMERG-F run smoothly captures the temporal cumulative observed rainfall compared to
the CHIRPS and IMERG-L product. As the scatter plot (Figure 4c) indicated, the monthly
CHIRPS and IMERG-L rainfall values are close to the monthly observed rainfall values.
The CHIRPS data showed capability to represent the monthly maximum observed values
compared to all the IMERG’s runs. IMERG-L data generally outperformed the IMERG-E
and IMERG-F data (Table 3).
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Figure 4. Monthly areal rainfall (a), cumulative rainfall depths (b), the correlation between monthly satellite-derived (CHIRPS and
IMERG-(early, late, and final) run) and observed rainfall (c) from (2000–2014) over the Ziway Lake Basin.

3.3. Seasonal Rainfall Evaluation

Figure 5 shows statistical metrics used for seasonal rainfall evaluation of the SPPs
versus the ground stations. There were some slight differences between these products on
r, RMSE, NSE, and PBIAS (Figure 5a–d). The figure shows that the CHIRPS, the IMERG-E,
IMERG-L, and IMERG-F performed well. Moreover, the IMERG-E, IMERG-L, and IMERG-
F performance indicated a better relationship during the summer season with an r and NSE
values of (0.96 and 0.9 and (0.95 and 0.96), respectively, whereas CHIRPS well-performed
with a high r value of 0.92 and low bias error (−2.6) (Figure 5a–d). The three IMERG runs
underestimated the summer rainfall by −2.9% to −10%, while CHIRPS underestimated
the summer season rainfall by −12% (Figure 5d). All IMERG runs overestimated observed
rainfall by 4% to 9.7% in the winter season, whereas CHIRPS underestimated the observed
values by −2.6% (Figure 5d). When compared to IMERG runs, CHIRPS achieved higher
correlations with observed rainfall during spring, winter, and autumn seasons with r values
of 0.93, 0.97, and 0.93 (Figure 5a), respectively. The RMSE values indicated that the CHIRPS
data relatively had a small value compared to all IMERG runs, especially during the winter
and autumn seasons (Figure 5b). During the spring season, the three IMERG runs had the
same r values (0.92) and CHIRPS had (0.93) (Figure 5a).
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Figure 5. Seasonal performance evaluation indices of CHIRPS, IMERG-E, IMERG-L, and IMERG-F
run: Correlation Coefficient (a), Root Mean Square Error (b), Nash–Sutcliffe Efficiency (c), and Percent
Bias (d) for the period 2000–2014.
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A number of previous studies reported the good performance of SPPs at monthly
time scales [25,28,41,46,50,68–70]. In general, CHIRPS showed slightly better performance
than the other three IMERG runs for monthly and seasonal time scales. Previous studies
have already confirmed the superiority of CHIRPS than IMERG runs for different parts
of the world [40,71–73], including Ethiopia [31,47,49]. For example, Wedajo et al. [47]
reported better rainfall estimation by CHIRPS compared with IMERG and TAMSAT3 and
3B42/3 products for the Dhidhessa River Basin, Ethiopia. Dinku et al. [49] reported better
rainfall estimation capability of CHIRPS for east Africa compared to the African Rainfall
Climatology version 2 (ARC2) and TAMSAT3 products. The better performance of CHIRPS
has been attributed to the capability of the algorithm to integrate satellite, rain gauges,
and reanalysis products, combined with its higher spatial and temporal resolutions than
IMERG products [35].

Overall, the statistical evaluation results indicate that both CHIRPS and IMERG are
capable of estimating and detecting observed monthly and seasonal rainfall values of the
ZLB. Therefore, the monthly and seasonal CHIRPS and IMERG-F data are a reliable source
for simulating monthly and seasonal agro-hydrological processes, estimating the seasonal
crop water requirement, and accounting the stocks and fluxes of water in the Ziway
Lake Basin.

4. Conclusions

In this study, we evaluated and compared the performance of IMERG and CHIRPS
rainfall products against ground-observed rainfall data over the Ziway Lake Basin. The
analyses covered the period from 2000 to 2014 at monthly and seasonal time scales. We used
four statistical evaluation parameters: Correlation Coefficient, Nash–Sutcliffe Efficiency,
Percent Bias, and Root Mean Square Error. The two rainfall products performed well
for both monthly and seasonal time scales. Overall, while the CHIRPS’s rainfall datasets
showed slightly better performance over the IMERG’s datasets, both datasets can be used at
a monthly or coarser temporal resolution when ground-based rainfall data are not available.
This can greatly contribute to continuous spatiotemporal monitoring of drought and
helping the water managers and agricultural planners implementing mitigation measures
and improving the livelihood of the stakeholders in the basin.

The follow up research should focus on the evaluation and comparison of the grid
point satellite dataset with interposed ground station data, considering point to point
performance evaluation at daily time basis. Future evaluation studies should also include
the Climate Hazards Group Infrared Precipitation (CHIRP) satellite-only product.
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