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Abstract: The main objective of this paper is to measure the level of household resilience to cyclone
and storm surges in the coastal area of Bangladesh. We draw on four general disaster frameworks in
terms of addressing household-level resilience to cyclones and storm surges. We use a composite
indicator approach organized around four components: (1) household infrastructure (HI); (2) house-
hold economic capacity (HEC); (3) household self-organization and learning (HSoL), and; (4) social
safety nets (SSN). Drawing on a household survey (N = 1188) in nine coastal union parishads in
coastal Bangladesh purposively selected as among the most vulnerable places in the world, we use
principal components analysis applied to a standardized form of the survey data that identifies
key household resilience features. These household index scores can be used for the assessment
and monitoring of household capacities, training, and other efforts to improve household cyclone
resilience. Our innovative methodological approach allows us to (a) identify patterns and reveal the
underlying factors that accurately describe the variation in the data; (b) reduce a large number of
variables to a much smaller number of core dimensions of household resilience, and (c) to detect
spatial variations in resilience among communities. Aggregated to the community level, our new
index reveals significant differences in community cyclone resilience in different areas of the coastal
region. In this way, we can show that shoreline and island communities, in particular, have significant
deficits in terms of household resilience, which seem to be mutually reinforcing one another and
making for lower resilience.

Keywords: disaster risk reduction; vulnerability to environmental hazards; rural livelihoods; social
science survey; principal component analysis; composite index

1. Introduction

The Hyogo and Sendai frameworks for disaster risk reduction [1,2] underscore the
importance of disaster resilience. Resilience has been defined as “the ability of a system to
absorb change while retaining essential function; to have the ability for self-organization,
and; to have the capacity to adapt and learn” [3]. Much of the discussion has focused on the
capacity to cope with external disturbance and still retain basic function and structure [4–7].
Other researchers, however, have addressed proactive adaptations and transformational
change, creating a broader conception of how people respond to, adapt to, and absorb
cyclone disasters, climate change, and other physical and environmental hazards [8,9].
In response to cyclone damage, some may simply cope by borrowing money, selling off
property, and reducing food consumption, while others proactively adapt by acting in
advance to accumulate savings, create secure storage for seeds and household assets,

Climate 2021, 9, 97. https://doi.org/10.3390/cli9060097 https://www.mdpi.com/journal/climate

https://www.mdpi.com/journal/climate
https://www.mdpi.com
https://orcid.org/0000-0002-9494-3645
https://orcid.org/0000-0003-3863-2153
https://doi.org/10.3390/cli9060097
https://doi.org/10.3390/cli9060097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cli9060097
https://www.mdpi.com/journal/climate
https://www.mdpi.com/article/10.3390/cli9060097?type=check_update&version=3


Climate 2021, 9, 97 2 of 19

securing cyclone disaster training, and the like. Still, others may engage in post-disaster
transformational behavior by switching to more resilient crops, creating new businesses,
getting vocational education, and migrating to better jobs [10–13].

A critical tool for measuring people’s capacities is a composite indicator of cyclone
and storm surge resilience that can be used to benchmark, monitor, and guide efforts
to cope, adapt and move forward in the response to a disaster. A key limitation of the
major disaster resilience frameworks for constructing a composite indicator is their high
level of abstractness. Typically, they are designed to deal with multiple types of disasters:
cyclones, flash flooding, earthquakes, tsunami, civil unrest, genopoliticide, etc. While many
capacities and processes that create resilience are generalizable, this abstractness has
significant limits when addressing specific types of disasters. For this reason, our index
focuses on cyclones and storm surges.

Because of its high vulnerability to cyclones and storm surges, coastal Bangladesh
can be seen as a critical test-bed for the study of cyclone resilience. With over 60 million
residents, 12.9 million of whom live below the poverty line [14], the coastal villages are
highly vulnerable to major cyclones and storm surges and confront additional problems
with riverine flooding, severe riverbank erosion, and long-term problems like waterlogging,
salinization, arsenic contamination, land subsidence, and sea-level rise [15]. Nationally,
over 10% of all crops are lost annually to flooding, over 100,000 people are affected, and over
30,000 are displaced by riverbank erosion [16]. In an average year, over 20% of the total
Bangladesh land area suffers significant flood damage with the greatest damage in the
coastal zone [17]. Some of the world’s most powerful and destructive cyclones impact
this area. Globally, Bangladesh is the 5th most vulnerable country in the world to natural
disasters as measured by the deaths and population affected, overwhelmingly due to
cyclones and storm surges [18,19]. In the context of the increased rate of natural disasters
in Bangladesh and new disaster risk management methods that center on strengthening
resilient communities, an enhanced, in-depth understanding of the dynamics of disaster
resilience has become increasingly necessary [5,20].

In this analysis, we address cyclone and related storm surge vulnerability, an item
for which there is significant global data [18]. In literature, most of the frameworks for
measuring disaster resilience are typically framed without reference to specific social actors
or address only the community, regional or societal level. A major limitation of existing
discussions is the lack of research at the household level, which is especially important
in disaster planning and response. After all, the household is the primary social unit
in most disaster response and recovery but this is not adequately reflected in existing
research [20,21]. We focus on households as our primary unit of analysis. In particular,
the paper aims to measure the level of household resilience to cyclone and storm surges
in the coastal area of Bangladesh. This study seeks to improve current knowledge on the
measuring of disaster resilience at the household level for policy-making with respect to
disaster management and planning.

2. A Framework for Analyzing Cyclone Resilience

We develop a composite index of cyclone and storm surge resilience at the household
level that addresses proactive adaptation and transformational possibilities as well as
short-term coping and intermediate recovery efforts. Households need to be examined in
terms of how they relate to key institutions and activities in the community as well as their
control of particular convertible assets.

We draw on four leading disaster resilience frameworks by specifying their relevance
to the response of households to cyclones and storm surge: the Sustainable Livelihoods
Framework (SLF) [22], the Community Disaster Resilience Framework [23], the geograph-
ically oriented Disaster Resilience of Place (DROP) framework [24], and the Food and
Agriculture Organization’s (FAO) disaster resilience tool [25,26]. We also supplement these
with our own qualitative interviews in rural communities, leading us to identify four sets
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of resources and processes that households need to cope with, and adapt and respond
proactively to cyclone and storm surges:

(1) Household infrastructure (HI) or the physical features of housing: the basic struc-
ture and materials, sanitation, sources of drinking water, and access to electricity. The Inter-
national Federation of Red Cross (2012) found in their practical disaster relief operations
that well-maintained and accessible infrastructure is critical to the ability of households
to cope with and recover from cyclones and storm surges. Secure housing is important
for surviving the brute force of the storm but also for a place to stay during recovery and
launching proactive change.

(2) Household economic capital (HEC), which captures the ability of a household to
use economic resources to achieve the desired state [27]. These are based on household
income, the ability to produce enough food to have excess to sell, the ability to reduce
dependence on local markets for purchasing food, and the ability to generate income from
non-farm self-employment. The higher the household income, the lower the risk of losing
the basis of the household’s livelihood during a crisis and having savings that tide people
through a bad period. Immediately after a cyclone, household food stocks are quickly
depleted and many households are forced into local food markets where prices rapidly
escalate. Having the ability to produce excess food and to reduce dependence on local food
markets enhances food security. In cyclone disasters, those who are self-employed outside
of agriculture (e.g., construction, trading, services) are often less affected and able to earn
income from repairs and daily activities while farmers have lost crops, livestock, seed,
and equipment. Planting new crops and restoring farming operations may take months or
even years.

(3) Household self-organization and learning (HSoL) means that a household can
plan and initiate new adaptations, both for the individual household and collectively [22].
This facilitates smart coping, proactive adaptation as well as transformational behavior
and discourages dysfunctional coping, such as selling off assets in a dead market. In these
rural communities, the self-organization of households depends on the decision-making
capacity of household heads, household control over land, access to machinery and means
of transport, agricultural knowledge associated with mixed crop cultivation, and the inde-
pendence from the local farming community that comes with having a household member
who migrates elsewhere for earnings. This component is most important immediately after
a cyclone and during recovery [28].

(4) Access to a social safety net (SSN) is based on having social capital in the form
of interpersonal trust networks that can be used to gain help and mobilize resources.
For households, this means access to a phone for making business deals, secure access to
fresh water, access to health care facilities in the local community, the ability to contact local
public authorities, such as the union parishad government or the agricultural extension office,
access to a cyclone shelter, and friendship networks who can provide emergency and short-
term assistance. While these are partially a feature of the local community, households
have different access to these networks and social safety nets, which can provide help and
assistance during cyclone disasters [29] and tools for mitigating the risks of such natural
disasters [25].

Each component is estimated separately, to construct a composite index of household
resilience. The different components of the resilience observed then reflect how all these
factors generate change in a household’s resilience. In algebraic terms, cyclone resilience
for household i can therefore be expressed logically as follows:

Ri =
∫
(HIi, HECi, HSoLi, SSNi)

where Ri = household resilience to cyclone and storm surges, HI = household infrastruc-
ture, HEC = household economic capital (HEC), HSoL = household self-organization and
learning, and SSN = social safety nets. We now turn to a method for constructing such a
resilience index.
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3. Research Design, Methodology, Data

Qualitative interviews. Our first step was to engage in key informant interviews with
local officials and NGO representatives to understand the challenges and immediate
responses of rural people in response to cyclones and storm surges. Because of our
interest in proactive and transformation change, this also including discussions of new
crops and agricultural technology, and other means to improve livelihoods. Once we had
selected our study sites (see below), we interviewed nine local officials and long-term
residents about resilient housing, experiences during and after cyclones, adult education,
and daily practical skills, and six NGO officials about emergency response and recovery
from cyclones and changes in agricultural practices, markets, and technology. As discussed
below, our study area consisted of nine union parishads that experienced greater damage
from cyclones Sidr (15 November 2007) and Aila (25 May 2009), creating a wealth of
experiences with responding to cyclones and storm surges. Cyclone Sidr and Aila were
the two top-most devastating cyclones and storm surges in the coastal area of Bangladesh
to this date. Hence, as this paper aims to measure disaster resilience to cyclones and
storm surges, the large data set, collected five years after Aila, is still a valuable source
to understand the crucial components of households’ disaster resilience of cyclones and
storm surges in the study area.

Household survey. Second, we conducted standardized household interviews in nine
“villages” or union parishads in five districts of coastal Bangladesh between October and
December 2014. A union parishad, which contains multiple settlements or mouzas, is the
smallest governmental administrative unit in rural Bangladesh, superseded by upazilas
(sub-districts), zilas (districts), and bibhag (divisions). Unions are more stable because of
their governmental functions, making them a more viable unit of data collection than
mouzas, for which there is very limited census or other data. The aim was to collect data on
the union level and only one union per study site in order to better compare our survey
data to statistics published by the Bangladesh Bureau of Statistics [14]. In one case, however,
borders between unions were crossed (Koyra; Amadi and Bagali unions, where a major
river divides the settled area).

We purposely selected our nine study sites to maximize cyclone vulnerability based
on the damage in recent cyclones Sidr and Aila and to create variety in terms of ecological
exposures to cyclones and storm surges. We identified four unions from the immediate
shoreline (Lata Chapli, Deuli Subaidkhali, Itabaria, and Char Alexander), three from inland
areas (Bajali, Amadi and Jhojonia/Gabbunia), and two from the coastal islands (Char
Ishwar, Tamarruddin), all of which experienced severe damage from these cyclones. All
these union parishads represent rural communities on poldered land in different areas of
the coastal zone of the Ganges-Meghna-Brahmaputra delta, which as a region features
unique morphological dynamics that cannot be found along the eastern Chittagong coast
of Bangladesh. Figure 1 shows the location of the nine unions where interviews were
conducted with an overlay of cyclone paths over the past century.

At the union parishad level, we used quota sampling to guide household selection
to ensure comparable coverage of each union and social diversity. The target sample
size for interviews in each study site was 150 households, hence generating subsamples
(representing between 1.7 and 2.8% of the union’s population, respectively) which in
themselves allow for relatively meaningful statistical analyses. The final sample was
1188 households. To (geographically) cover the different locations of the settled union
area, field assistants—students and graduates of Rajshahi University—were asked to
identify all mouzas across the union, allocate a similar target subsample (quota of the
150) to each, and approach households by moving from the center of the settlement (e.g.,
market square) towards the outer edges of the settlement along a major road/track and,
depending on the size of the mouza, contacting every third to fifth household (or the
next household if no one was available at the targeted household). Insofar as similar
households are likely to reside close to each other, this should provide greater social
diversity. Participating households were further selected on the basis of a minimum
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residence period of 10 years to capture the affectedness by and perceptions of different
natural events (such as cyclones) and adaptations to livelihood strategies (such as land-use
change) over time. Overall, while covering a large variety of rural livelihood settings across
the delta, the sampling strategy does not generate a representative sample of all coastal
households in Bangladesh.

Figure 1. Study sites, risk areas and cyclone paths in coastal Bangladesh. Source: Own design.

Each interview took approximately 60 to 90 min and consisted of 55 questions which
included fixed choice and open-ended items. The questionnaire covered six sections with
the following themes: (1) information on location and type of house; (2) social-demographic
characteristics of the household members, (3) land access and land use, (4) food security,
consumption, and livelihood adaptation, (5) social interaction and participation, (6) ex-
perience with livelihood problems and cyclone/natural disasters. Field assistants were
trained by the authors prior to and during data collection and conducted face-to-face
interviews in Bangla, asking the questions and recording the respondents’ self-reported an-
swers on the survey sheet. A few variables like GIS locations were observed and recorded
by the interviewer. Both male and female field assistants were employed as it was as-
sumed that, due to cultural etiquette, female interviewers would have better access to
female respondents of households. Interviews were held in most cases with the household
head (85.3% of respondents; 973 male, 40 female) or his/her spouse (11.6% of respondents;
2 male, 136 female). In a small number of cases, other household members were present and
helped to supplement head of household answers. The average number of persons living
in the surveyed households was 5.16. After the data collection, field assistants entered the
data into an online survey mask which exported the data directly into SPSS software.

Measurement and scaling. There is no agreed-upon methodology for measuring dis-
aster resilience with some using indicators, scorecards, and tools of various sorts [30–32].
We favored a composite indicator approach because it provides clear monitoring tools and
can be used to evaluate the return on investments. We used a set of measurement items
from our survey and followed recent precedent [24,25,33] in using Principal Components
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Analysis (PCA) to scale these items so that a composite index could be built. Guided by our
four resilience measurement frameworks and the four defined sets of resources, we used
four to six questions to tap each dimension of a cyclone and related storm surge resilience,
favoring items identified in our qualitative interviews as important to cyclone and storm
surge resilience. Table 1 lists the 19 questions that capture our four dimensions. Each item
has a precedent in previous studies and a clear rationale for why the resource might allow
households to cope and adapt to cyclone/storm surge damage. In a few cases, we used
two questions to ensure a robust measure. All are grounded in our qualitative interviews
with local observers and NGO leaders.

Table 1. Variables selected to measure the four dimensions of household cyclone resilience.

Component Variable & Scale Justification

Household infrastructure (HI)

1. Housing type (1–4)
Akter and Mallick, 2013 [34]; Cutter et al., 2003 [35];
Sutter and Simmons, 2010 [36]; Tierney and Bruneau,

2007 [37]; Twigg, 2007 [38]
2. Presence of sanitation (1–4) Akter and Mallick, 2013 [34]; Campell et al., 2009 [39]
3. Access to clean water (0–1) Akter and Mallick, 2013 [34]; Campell et al., 2009 [39]
4. Access electricity (0–1) Cutter et al., 2003 [35]

Household economic capital
(HEC)

5. Household income (1–4)

Akter and Mallick, 2013 [34]; Cutter et al., 2003 [35];
Enarson, 2012 [40]; Norris et al., 2008 [41]; Ranjan

and Abenayake, 2014 [42]; Sherrieb et al., 2010 [43];
Thulstrup, 2015 [44]; UNDP, 2014 [45]

6. Ability to sell produced food (0–1) FAO, 2013 [46]
7. Less dependence on purchased
food (1–5) Rose and Krausman, 2013 [47]

8. Non-farm self-employment (0–1) Rose and Krausman, 2013 [47]; Sherrieb et al., 2010
[43]

Household self-organization and
learning (HSoL)

9. Temporary migration of household
members for money (0–1) Islam and Walkerden, 2015 [20]; UNISDR, 2015 [2]

10. Access to machinery (0–1) UNFCCC, 2013 [48]
11. Land-use decisions by household
head (0–1) Asadzadeha et al., 2015 [49]

12. Land-use decisions by husband
and wife jointly (0–1) Villamor et al., 2014 [50]; UNISDR, 2015 [2]

13. Application of mixed crop (0–1)
cultivation methods Nibanupudi and Shaw, 2015 [51]

Social safety nets (SSN)

14. Business partnership by mobile
phone (0–1) Boarini et al., 2014 [52]

15. Social discussion disputes (0–1) Bene et al., 2015 [53]
16. Access healthcare (0–1) Paterson et al., 2014 [54]
17. Access public authorities (0–1) Paul, 2015 [55]
18. Access cyclone shelter (0–1) Paul and Routray, 2011 [56]
19. Help from friends (0–1) Ahsan et al., 2011 [57]

These measures used different scales: 15 were categorical, 2 were ordinal and 1 was
interval. To create comparable reference points, we normalized them using min-max
methods, a common technique in index construction [33,58]. Min-Max assigns a value of 0
to the minimum value and 1 to the maximum value and rescales all other values between
0 and 1 by subtracting the minimum value and dividing by the range (i.e., the minimum
subtracted from the maximum) using the following formula:

TXi =
X − Ximin

Ximax − Ximin
(1)

This makes the scales comparable but has the drawback that the resulting scale is not
an absolute measurement of resilience.
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All variables were also adjusted in orientation so that larger values corresponded to
theoretically higher resilience. For example, housing condition is expressed in four ordinal
categories: (1) pacca (made of concrete), (2) semi-pacca (floor and wall made of concrete and
roof made of tin), (3) kaccha (made of bamboo/straw), and (4) others. Based on min-max
scoring, pacca housing has the highest score (1) and “others” has the lowest score (0) with
other values scaled in-between by subtracting the minimum value and dividing by the
range. So semi-pacca scores 0.66 and kaccha 0.33.

A composite index. Disaster resilience is a multifaceted concept comprising many factors.
Developing a comprehensive approach to assessing disaster resilience incorporating all its
dimensions is challenging. Currently, there is no widely accepted methodological approach
to assess disaster resilience [59]. Various methods exist to build composite indices, with the
choice of method depending upon the type of problem, the nature of the data, and the
objective of the analysis [60]. However, social scientists agree that the initial point for
measuring disaster resilience in communities or households is to use benchmark tools for a
better understanding of the components of resilience [24,49]. The widely accepted tool to
measure disaster resilience is the composite index, for instance, Cutter et al.’s (2003) [35]
Social Vulnerability Index (SoVI) [31], which is an aggregation of a set of variables from
particular components used to summarize the characteristics of resilience to a specific
disaster. Constructing a composite index is an effective way to assess the extent of disaster
resilience with accuracy [53].

Composite indices have been constructed in multiple ways, including additive scales,
structural equation models [61], and 2-stage latent variable models [25]. Additive scaling
assumes that items have equal weight, which seems implausible without stronger theory
and experience to guide this decision. A structural equation approach is appealing by
combining factor analysis with regression but in this application is violated by the 15 mea-
sures which are categorical and mixed with ordinal and continuous measures. While a
generalized latent variable model might be used [62], this assumes no earlier knowledge
of the deterministic relationships among the observed variables. But our qualitative inter-
views gave us information on how the observed measures should fit together. Another
approach is the 2-step factor analysis model used by Alinovi et al. (2010) [25] to measure
Palestinian food security by first applying factor analysis and optimal scaling to separate
subdimensions and then factor analysis to the results. Our approach is to use principal com-
ponents, which aims to create a maximal linear combination of a set of variables or principal
components. This involves minimal assumptions and can be seen as an informed inductive
approach to finding the best linear combination to summarize the maximal variance in
the data. In the PCA presented below, the first stage results generate a two-factor solution
for each dimension, which fits the conceptual complexity and overlap of measurement
items that discussions of disaster resilience dimensions suggest [20]. This leads to a second
stage PCA of the four dimensions, similar to Alinovi et al. (2010) [25]. Figure 2 provides a
conceptual outline of the logic.

Different multivariate techniques can be used in this type of two-staged estimation,
such as factor analysis, PCA, correspondence analysis, multidimensional scaling, and op-
timal scaling [63]. We used PCA to construct the four dimensions and then again in the
second stage to construct the overall composite index. PCA relies on the variation and
co-variation of the data matrix to construct weights in the component index [41]. Vyas and
Kumaranayake (2006) argue that the PCA weighting method is objective, computationally
easy, and compatible with survey data and databases [64]. It is a widely used technique in
the construction of composite scales such as ours.
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Figure 2. Path diagram of the household disaster resilience composite index Source: Adapted by Abdullah Al-Maruf from
Alinovi et al. (2010) [25].

4. Results and Discussion

Numerous methods have been used to construct composites, such as hierarchical and
similar deductive approaches, principal components analysis (PCA), stakeholder-focused
methods, and relational analyses [31]. This study uses a transparent weighting system to
account for the variance in the data through PCA. The literature finds that PCA can handle
multiple scales in the input matrices (e.g., categorical, ordinal, interval, etc.). Our input
measures also met other conditions for PCA, such as sample size [65], factorability of the
correlation matrix of variables, meaning that there are at least some correlations among
the variables such that coherent factors can be extracted [49]. PCA identified patterns and
revealed the underlying factors that accurately described the variation in the data [66].
PCA was performed on each component to identify the variables with the highest variance
in this study. The first step in calculating the resilience index is constructing the four
latent variables for each resilience dimension treated as a block. PCA was applied to the
four to six observed variables used to represent each of the four resilience dimensions for
household infrastructure, household economic capital, household self-organization and
learning, and household social safety nets.

Several preconditions need to be met for PCA to be an appropriate method. The sam-
ple size needs to be over 200 [67]. The correlation matrix of the observed variables needs to
display at least modest correlations so that coherent factors can be extracted [49]. To test
this, the Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy (≥0.60) and Bartlett’s
Test of Sphericity (p < 0.001) were used, both of which indicated acceptable [68] correlation
matrices, as indicated below in our tables.

We extract only factors with an eigenvalue of 1.0 or more in line with Kaiser’s assump-
tion (see Table 2 below). We report factor loadings for each observed variable, indicating the
correlations between the observed variables and the latent factors [69]. To minimize the
number of variables with high loadings on particular factors and to adjust for multiple
scales in our measurement items, a varimax rotation was performed. To understand the in-
fluence of variables on each component of cyclone resilience, we checked the communality
for 19 variables which consistently exceed a threshold value of 0.50. The loadings reported
in Tables 3, 5, 7 and 9 from the structure matrix, which represent the correlations between
the variables and the factors.



Climate 2021, 9, 97 9 of 19

Table 2. Eigenvalues and variances explained with extracted factors of household infrastructure (HI).

Component
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total Variance % Cumulative % Total Variance % Cumulative % Total Variance % Cumulative %

1 1.369 34.231 34.231 1.369 34.231 34.231 1.275 31.871 31.871
2 1.167 29.168 63.400 1.167 29.168 63.400 1.261 31.529 63.400
3 0.839 20.964 84.363
4 0.625 15.637 100.000

KMO Measure of Sampling Adequacy: 0.67; Bartlett’s Test: X2 = 1036, p < 0.001.

Table 3. Factor loadings on HI.

Variable
Component

Factor 1 Factor 2

Housing type 0.719 0.339
Sanitation 0.547 0.468

Access to electricity 0.544 0.609
Sources of drinking water 0.506 0.679

Household Infrastructure. HI relates to a household’s ability to weather cyclones and
storm surges relatively intact and to protect household possessions and anyone remaining
in the house during the storm. It also captures the household’s likely post-disaster access
to safe drinking water, sanitation, and electric power. As mentioned, we use four observed
measures: housing type, sanitation, sources of drinking water, and availability of electricity.
All aimed at measuring household infrastructure, so that a high correlation among them
produced a latent variable that fit the common pattern of the data.

The eigenvalues and variances suggest that there are two factors that represent these
observed measures. These two latent factors are produced from a linear combination
of the weights of the four observed variables, which explain 63.4% of the total variance.
Table 3 shows the factor loadings of the observed variables on the latent Factors 1 and 2.
All are positively correlated to the two factors with housing type playing a stronger loading
in Factor 1 (0.719) and drinking water a stronger loading on Factor 2 (0.679).

Our understanding of this result is that housing and sources of drinking water are
key attributes of the infrastructure of flood resilience. Well-designed affordable housing
provides more than the provision of safe, decent, and inexpensive shelter; it is central to
flood resilience [70]. A robust housing condition (e.g., pacca) and access to safe drinking
water support the community social structure and economic livelihoods of households,
minimizing the vulnerability of people to environmental stresses and health risks, and in-
creasing personal security against threats of displacement linked to housing. In addition,
better sanitation and access to electricity are important as well. Many GO’s (Upazila health
complex) and NGO’s (ActionAid, CARE Bangladesh) have worked on this area to ensure
sanitation and return electric power to the area after storms [71].

Household Economic Capital. The PCA extracted two factors as underlying latent factors
that measure latent HEC. Table 4 shows eigenvalues of 1.497 and 1.023. These two factors
explain 63% of the cumulative variance.

Table 5 presents the factor loadings of each observed HEC variable, showing that
all positively correlate with Factor 1. But non-farm self-employment has a low loading,
suggesting it is not important to this factor. Instead, it loads strongly on Factor 2 but
neither of the food self-sufficiency measures loads strongly. Interestingly, household
income makes an almost equal contribution to both factors. There may be two major
groups—farmers, many of whom can produce subsistence food needed during a disaster,
and non-farm self-employed, who may have good earnings during recovery but depend on
local food markets during a disaster [46]. These two groups seem to have different sources
of economic resilience.
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Table 4. Eigenvalues and variance explained with extracted factors of household economic capital (HEC).

Component
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total Variance % Cumulative % Total Variance % Cumulative % Total Variance % Cumulative %

1 1.497 37.423 37.423 1.497 37.423 37.423 1.469 36.732 36.732
2 1.023 25.583 63.006 1.023 25.583 63.006 1.051 26.273 63.006
3 0.848 21.205 84.211
4 0.632 15.789 100.000

KMO Measure of Sampling Adequacy: 0.61; Bartlett’s Test: X2 = 1200, p < 0.001.

Table 5. Factor loadings on HEC.

Variable
Component

Factor 1 Factor 2

Household income per month 0.561 0.316
Ability to sell excess produced food 0.777 0.156
Less dependency on purchased food 0.748 −0.241

Non-farm self-employment 0.136 0.917

Household Self-Organization and Learning. HSoL is important to the capacity to resist,
absorb, and recover from a disaster [72]. The observed variables were short-term migration
of household members, ability to use machines, household head’s ability to make decisions
about land use, the ability of the husband and wife to make land-use decisions, and
experience with mixed-crop cultivation (e.g., rice with shrimp or shrimp with freshwater
fish). The PCA retained two factors for the HSoL as presented in Table 6, which accounted
for 54.6% of the cumulative variance.

Table 6. Eigenvalues and variance explained with extracted factors of household self-organization and learning (HSoL).

Component
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total Variance % Cumulative % Total Variance % Cumulative % Total Variance % Cumulative %

1 1.565 31.290 31.290 1.565 31.290 31.290 1.532 30.632 30.632
2 1.165 23.295 54.585 1.165 23.295 54.585 1.198 23.953 54.585
3 0.978 19.554 74.139
4 0.824 16.486 90.625
5 0.469 9.375 100.000

KMO Measure of Sampling Adequacy: 0.67; Bartlett’s Test: X2 = 1631, p < 0.001.

Table 7 shows that all the observed variables are positively correlated with the two
latent factors, except for land-use decisions being made by the household head. Although
land-use decisions by the household head and land-use decisions made jointly with the
wife strongly correlate with Factor 1, land-use decisions made by the household head
negatively correlate with Factor 2. This suggests that land-use decisions made by the
household heads might reduce disaster resilience [71]. Factor 2 is strongly correlated with
the household head engaging in temporary migration for wages and the use of machinery,
suggesting that these are more adaptive households. Temporary migration of household
members is an effective coping and sometimes proactive adaptation strategy widely used
in response to flooding disasters in rural Bangladesh [73].

Social Safety Nets. The estimation of the SSN variable involved five observed variables:
(1) access to business partners by mobile phone, (2) fresh water, (3) access to health facilities,
(4) access to public authorities, (5) access to cyclone shelters, and (6) help from friends in
past disasters. Two factors were extracted from our PCA, which accounted for 49.5% of the
cumulative variance (Table 8).
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Table 7. Factor loadings on HSoL.

Variable
Component

Factor 1 Factor 2

Temporary migration 0.139 0.744
Using machines 0.297 0.655

Land-use decisions by the household head 0.856 −0.155
Land-use decisions by husband and wife jointly 0.839 0.250

Application of mixed crops 0.143 0.308

Table 8. Eigenvalues and variance explained with extracted factors of social safety nets (SSN).

Component
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total Variance % Cumulative % Total Variance % Cumulative % Total Variance % Cumulative %

1 1.471 29.414 29.414 1.471 29.414 29.414 1.468 29.362 29.362
2 1.009 20.184 49.598 1.009 20.184 49.598 1.012 20.237 49.598
3 1.000 19.998 69.597
4 0.949 18.983 88.579
5 0.571 11.421 100.000

KMO Measure of Sampling Adequacy: 0.68; Bartlett’s Test: X2 = 1246, p < 0.001.

Table 9 shows that business partnerships via mobile phones are the only factor with
a strong loading on Factor 2 and that all other factors are correlated more strongly with
Factor 1. Households can conduct business quickly by sending money through bKash (mo-
bile bank) to their business partners [14,21,74], access current market information on crops
and purchases, and use current information in making business decisions. This, however,
is unrelated to the other factors, especially access to public authorities, cyclone centers,
health facilities, and help from friends in past disasters, which are correlated strongly
with Factor 1. During declared disasters, union parishad officials are often critical to the
allocation of emergency assistance. Agricultural extension officers provide emergency seed
and advice about replanting crops and restoring a farm to operations. Access to health and
disaster centers both depend on where the household is located. Past help from friends
and neighbors suggests integration into local community networks.

Table 9. Factor loadings on SSN.

Variable
Component

Factor 1 Factor 2

Business partnership by mobile 0.088 0.986
Discussions about access to fresh water 0.312 −0.083

Access to health facilities 0.337 0.054
Access to public authorities 0.807 0.153

Access to cyclone shelter 0.775 0.057
Help from friends 0.665 0.240

Constructing household disaster resilience. The final step is to construct a latent index for
overall cyclone/storm surge resilience based on a PCA of the eight factors representing
the four dimensions. Since all eight latent factors are normally distributed with means
of zero and variances of one, PCA is an appropriate technique. A factor analysis was
performed through the iterated principal factor method among the retained eight factors,
which repeatedly re-estimated communalities. The PCA identified five factors, as shown in
Table 10. Factor 1 alone explained over 21% of the cumulative variance. Factor 2 explained
more than 15% with Factors 3, 4, and 5 accounting for 13%, 12%, and 11%, respectively,
cumulatively accounting for 76% of the total variance (Table 10).
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Table 10. Eigenvalues and variance explained with extracted factors (shaded) of HI, HEC, HsoL, and SSN on the overall
cyclone resilience index.

Component
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total Variance % Cumulative % Total Variance % Cumulative % Total Variance % Cumulative %

1 1.688 21.094 21.094 1.688 21.094 21.094 1.465 21.071 21.071
2 1.238 15.477 36.571 1.238 15.477 36.571 1.084 15.355 36.426
3 1.111 13.765 50.336 1.111 13.765 50.336 1.213 13.563 49.989
4 1.013 12.314 62.650 1.013 12.314 64.984 1.110 12.171 64.984
5 1.001 11.400 74.050 1.001 11.400 76.237 1.255 11.253 76.237
6 0.804 10.049 84.099
7 0.690 8.626 92.726
8 0.582 7.274 100.000

KMO Measure of Sampling Adequacy: 0.69; Bartlett’s Test: X2 = 2208, p < 0.001.

Table 11 shows that all latent factors of household resilience except for HSoLfactor1 (ac-
cess to authorities, shelters, help) are positively correlated with Factor 1. Both HEC factors—
independence from local food markets and non-farm self-employment—are strongly corre-
lated with Factor 1 and moderately correlated with Factors 2 and 3. HECfactor2 (non-farm
self-employment) is also strongly correlated with Factor 5. HSoLfactor1 (land use deci-
sions) has stronger loadings on Factor 1 while HSoLfactor2 (migration and machinery) is
more strongly related to Factors 2 and 5. HIfactor1 (housing type) is strongly correlated
with Factor 1 while HIfactor2 (water and electricity) is more strongly related to Factor 4.
SSNfactor1 (access to authorities, shelters, health care, help) is more strongly correlated with
Factors 2 and 3. The negative correlation of SSNfactor2, which is rooted in mobile phone use
for business, seems to reflect this distinctive sector of the rural community.

Table 11. Factor loadings of HI, HEC, HSoL, and SSN on the overall cyclone resilience index.

Component Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

HEfactor1 0.660 0.283 0.338 0.285 0.006
HSLfactor1 0.611 0.333 0.114 −0.342 0.366
HIfactor1 0.559 0.444 0.138 0.062 0.243

HSLfactor2 0.293 0.561 0.204 0.345 0.578
SSNfactor1 0.160 0.526 0.654 0.243 −0.042
SSNfactor2 0.379 0.341 −0.634 0.027 0.047
HIfactor2 0.353 0.156 0.242 0.766 0.229
HEfactor2 0.433 0.343 0.160 0.135 0.659

Household disaster resilience is not a one-dimensional concept. Several of the dimen-
sion factors load on multiple factors of the overall index and none seem to be a product of
a single dimension, which is suggested in the literature. Although Factor 1 explains the
largest share of the total variance, these other four factors are still important. The experi-
ence of building the FAO resilience tool [46] suggests that one way to address this is to use
a weighted sum of the five factors presented in Table 10 to construct household-specific
scores for the overall disaster resilience index. These factors are orthogonal to each other
(as based on the PCA) and so there is no multicollinearity. To estimate general household
disaster resilience, the five factors can be used in line with Thomson’s (1951) regression
method (see Endnote) [75,76], by multiplying the household score by its own proportion of
the variance explained.

Using the explained variance associated with each of the five dimensions, this suggests
the following equation for estimating the household scores for general disaster resilience:

Household cyclone resilience = 0.211 ∗ Factor 1 + 0.155 ∗ Factor 2 + 0.138 ∗ Factor 3 + 0.123 ∗ Factor 4 + 0.114 ∗ Factor 5 (2)

This formula provides a household resilience score which can be used for assessing
and benchmarking individual households to indicate their relative resilience.
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5. Discussion of Spatial Characteristics—Assessing Resilience at the
Community Level

Our resilience index can also be used to capture the relative cyclone/storm surge
resilience of whole communities by looking at the share of households that are at or above
the mean in cyclone resilience. We first categorized all households based on whether
their general resilience score was above or below the mean index score for all households.
To simplify this for purposes of visualization, we then classified all households with
values above the mean as “high” and those below the mean as “low”. Indicating the wide
disparities in cyclone resilience, over two-thirds (68%) of all households were below the
mean and slightly under a third (32%) were above mean resilience. Table 12 shows the
number of high and low cases and their respective shares in each of the nine study sites,
which are grouped by the three ecological zones and indicate significant disparities among
these communities.

Table 12. Level of cyclone resilience of households in the study sites at the union level (N = 1188).

Study Site Number of Cases (n)
and Percentage (%)

Level of Disaster Resilience
Total

Low High

Inland Unions:

Jhonjonia, Gabbunia N 79 73 152
% 52 48 100.0

Amadi
N 27 47 74
% 32 68 100.0

Bagali N 43 43 86
% 50 50 100

Shoreline Unions:

Lata Chapli N 95 61 156
% 61 39 100.0

Itabaria
N 111 24 135
% 82 18 100.0

Deuli Subdikhali
N 127 28 155
% 82 18 100.0

Char Alexander
N 123 25 148
% 83 17 100.0

Island Unions:

Tamaruddin
N 103 35 138
% 74 26 100.0

Char Ishwar
N 109 35 144
% 76 24 100.0

Total
N 817 371 1178
% 68 32 100.0

p < 0.001; Chi-square = 636.49 (8).

Five of the nine unions had greater than the mean number of low-resilient households.
Char Alexander, Deuli Subidkhali, and Itabaria have the highest shares of low-resilient
households (83%, 82%, 82%, respectively). All three unions experienced major destruction
and subsequent population loss after cyclones Sidr and Aila struck these areas hard,
destroying housing, sanitation, and access to safe drinking water [14]. Aila left considerable
farmland in Deuli Subikdhali and Itabaria flooded with saltwater, which destroyed crops
and salinized the soil for many years [5]. There still remains significant farmland that
has been abandoned since it cannot support crops. Char Alexander has suffered chronic
riverbank erosion including cyclone damage, which has swept away acres of farmland,
destroyed polders and roads protecting farming communities, and threatens to engulf
the only hospital in the Upazila (authors interview 2016). The island communities of
Char Ishwar and Tamaruddin are remote from markets and communications, are off the
electric grid and rely on diesel generators for power [20]. The agricultural people rely
on cultivating peanuts, pulses, and mustard seeds, which have provided little income in
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recent years. Severe river erosion in Char Ishwar has in the past decade displaced over
10,000 people to Tamaruddin and other areas (author’s interviews 2016).

By contrast, Amadi, Bagali, and Jhonjhonia/Gabbunia have a relatively higher level
of high resilience households to cyclones with 68, 50, and 48% of households respectively.
All three unions are in the shrimp growing region and are proximate to Khulna, the 3rd
largest city in Bangladesh which has a metro area population of just under 1 million.
These inland rural communities have ecological, economic, and social service advantages.
Being inland blunts the force of the storms. They also have little riverbank erosion and
only moderate levels of soil salinity. Farmers are more likely to use high-yield varieties of
rice (T. Aman-Transplanted Aman; T. Aus-Transplanted Aus) and mixed-crop cultivation,
which boosts farm incomes and economic security [77]. Proximity to Khulna also means
that NGOs are more likely to have permanent offices with field staff, to make rural visits,
provide disaster training, and better agricultural extension [55]. Proximity also provides
market access and better farm income.

Interestingly, the overall level of cyclone resilience is relatively high in Lata Chapli,
when compared to that in other shoreline areas, such as Char Alexander, Itabaria, and Deuli
Subidhkhali. Despite its high vulnerability to cyclones and storm surges, these people have
developed greater household resilience than the other highly exposed shoreline and island
villages. Why? We can only speculate here but it would seem that Lata Chapli provides
economic and other advantages. It has access to mangrove forests where residents can
collect wood, housing straw, honey, and other food [34]. They also have access to deep
water fishing in the Bay of Bengal and tourist attractions, like Kuakata Beach, which draws
visitors from all over the country and creates additional employment opportunities (e.g.,
renting boats, biking, consumer spending for food and lodging, etc.) for the rural residents.

Figure 3 summarizes these comparisons by showing bar charts of the shares of high
and low resilient households in these nine communities placed next to their locations on
a map of the coastal area. Overall, these differences suggest that the more modernized
areas (inland, Lata Chapli) have greater cyclone/storm surge resilience than the more
remote shoreline and island communities. Further analysis is needed to sort out the
importance of these different factors, especially ecological and economic, in explaining
these community differences.

Figure 3. Level of household disaster resilience in study villages. Source: Own design Abdullah
Al-Maruf; cartography Ulrike Schwedler.
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6. Conclusions

In this paper, we have aimed to show that resilience to disasters caused by cyclones
and storm surges is best represented by a multi-dimensional scale that combines measures
of household infrastructure, economic capital, self-organization and learning, and social
safety nets. These four major sets of resources interact with the ecological vulnerabilities
of specific local communities to shape the resilience and livelihoods of people that live in
rural coastal areas of Bangladesh. Most of our indicator items came from frameworks that
have focused on sustainable livelihoods and related ideas about how coastal households
and local communities respond positively to cyclones and other disasters. Based on the
measures and variables derived from a comprehensive household survey, we were able
to construct a composite index that identified the cyclone resilience of households that
could be used in an aggregated form to compare the resilience of nine coastal communities
representing the inland, island, and immediate coastline ecologies.

These measures provide benchmarks which can be used to identify deficits that
need to be addressed at the household level as well as at the community level. To cope
effectively, proactively adapt, and invest in transformational behavior requires that these
households have better physical, economic, self-organization capacities, and social safety
nets. These same issues show up at the community level. The shoreland and island
communities have major deficits on all four of these indicators that seem to be mutually
reinforcing and making for lower cyclone resilience. In contrast, communities with a larger
share of employment opportunities in non-traditional economic sectors, such as tourism or
shrimp farming, tend to have a larger share of relatively resilient households. This may be
explained by better overall infrastructure, a wider range of income-generating activities,
and a generally greater openness to change.

Improving physical infrastructures such as housing structures, sanitation, drinking wa-
ter access, and access to electricity would improve the ability of less resilient households to
weather storms and recover afterward. At the same time, they face economic deficits in
terms of secure income, the ability to produce their own food, and their access to non-farm
sources of income. They are also less likely to have household members migrating for
wages, to use machinery or mixed crop methods [12]. Due in part to their geographic
remoteness, they are less likely to have access to health care or cyclone shelters. While some
in the community benefit from access to public authorities and help from friends, these ben-
efits are unlikely to counterbalance these other disadvantages. Policymakers and NGOs
can make use of these index results to guide programs and investments to improve the
cyclone and storm surge resilience of the coastal peoples.

Because our focus has been on households, our resilience analysis has not emphasized
capacities and processes that address the power-linked “root causes” of disasters or the
mobilization of groups for transformational change. These aspects of disaster resilience are
more relevant for the community, regional, and/or societal level analyses where groups,
institutions, and larger societal developments shape the context within which these house-
holds cope, adapt, and absorb change. The type of disaster resilience assessment that we
have provided needs to be complemented by analyses of these larger societal contexts
where transformational changes might be devised and initiated. At the same time, house-
holds are a primary unit in disaster response and as such need to be considered in any
attempt to benchmark, monitor, and assess disaster resilience.

Discussions of disaster resilience typically focus on one aspect of resilience: inputs,
processes, outcomes, or outputs, each of which constitutes a legitimate object of inquiry [30].
Our primary focus has been on the resource inputs or capacities of households. Obvi-
ously, this is a limited focus that needs to be complemented by work on other aspects.
An important direct extension of this work would be to see whether these capacities con-
tribute to resilient outcomes or outputs for these households when faced with a cyclone
disaster. Will they make good use of household infrastructure, livelihood alternatives,
better organization, and available social networks? Only longitudinal assessment using a
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standardized framework of indicators, scorecards, or other assessment tools can provide a
compelling answer.

A second direct extension would be to analyze the sources of the community differ-
ences in cyclone resilience, assessing how important ecological vulnerabilities are relative to
the socio-economic capacities that we have emphasized. As our brief comparison showed,
vulnerability and resilience are not identical. Lata Chapli displayed greater cyclone re-
silience than similarly exposed villages, suggesting the importance of untangling ecological
and socio-economic factors in resilience.

How generalizable is our framework for disaster resilience assessment? Many of the
measurement items that we have used are relevant for responding to cyclones and storm
surges among rural households in coastal Bangladesh but would not be that relevant in
urban slums or in responding to earthquakes or flash flooding. Disaster resilience always
needs to be assessed relative to specific hazards, exposures, and vulnerabilities of specific
places and peoples. Only through cumulative assessment across a variety of disasters can
we assess how generalizable any particular framework or set of items is. In an analysis of
five marginal livelihood groups in coastal Bangladesh, Mutahara et al. (2016) found that
the resources identified by these groups as critical to their past survival of cyclones varied
widely [78]. Although there were common features, such as having livelihood alternatives,
some of the coping and adaptive methods that have proven their value are group and
context-specific. Discussions of resilience need to be aware of these limitations and take
them into account in framing any specific program of assessment, remedy, and action.

7. Note

“Factor scores reveal the composite (latent) scores for each subject on each factor” [75,76].
Factor scores are analogous to the Ŷ (Yhat) scores in the regression equation and are calculated
by applying the factor pattern matrix to the measured variables. Factor scores are most
commonly used for further statistical analyses in place of measured variables, especially when
numerous outcome scores are available.
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