
climate

Article

Bottom-Up Drivers for Global Fish Catch Assessed with
Reconstructed Ocean Biogeochemistry from an Earth
System Model

Hyo-Jong Song 1 and Jong-Yeon Park 2,3,*

����������
�������

Citation: Song, H.-J.; Park, J.-Y.

Bottom-Up Drivers for Global Fish

Catch Assessed with Reconstructed

Ocean Biogeochemistry from an Earth

System Model. Climate 2021, 9, 83.

https://doi.org/10.3390/cli9050083

Academic Editor: Forrest M. Hoffman

Received: 11 March 2021

Accepted: 11 May 2021

Published: 14 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Environmental Engineering and Energy, Myongji University, Yongin-si 17058, Korea;
hjsong@mju.ac.kr

2 Department of Earth and Environmental Sciences, Jeonbuk National University, Jeollabuk-do 54896, Korea
3 Department of Environment and Energy, Jeonbuk National University, Jeollabuk-do 54896, Korea
* Correspondence: jongyeon.park@jbnu.ac.kr

Abstract: Identifying bottom-up (e.g., physical and biogeochemical) drivers for fish catch is essential
for sustainable fishing and successful adaptation to climate change through reliable prediction of
future fisheries. Previous studies have suggested the potential linkage of fish catch to bottom-up
drivers such as ocean temperature or satellite-retrieved chlorophyll concentration across different
global ecosystems. Robust estimation of bottom-up effects on global fisheries is, however, still
challenging due to the lack of long-term observations of fisheries-relevant biotic variables on a global
scale. Here, by using novel long-term biological and biogeochemical data reconstructed from a
recently developed data assimilative Earth system model, we newly identified dominant drivers for
fish catch in globally distributed coastal ecosystems. A machine learning analysis with the inclusion
of reconstructed zooplankton production and dissolved oxygen concentration into the fish catch
predictors provides an extended view of the links between environmental forcing and fish catch.
Furthermore, the relative importance of each driver and their thresholds for high and low fish catch
are analyzed, providing further insight into mechanistic principles of fish catch in individual coastal
ecosystems. The results presented herein suggest the potential predictive use of their relationships
and the need for continuous observational effort for global ocean biogeochemistry.

Keywords: marine biogeochemical modeling; data assimilation; reconstructed marine biogeochem-
istry; fish catch prediction; environmental forcing; machine learning

1. Introduction

Climate-driven changes in marine physical and biogeochemical states significantly
impact life in the ocean [1–3]. Albeit with large uncertainty in regional patterns, state-of-the-
art Earth system models (ESMs) project future warming, acidification, deoxygenation and
reduced productivity [4], all of which are known to modify marine habitat distributions,
phenologies, and consequently change the functioning of marine ecosystems [5–8]. These
environmental changes inevitably affect fisheries production, and thus require adaptive
fisheries management in response to climate-driven environmental changes. Given stagnat-
ing world fish catch even with expanding worldwide fishing effort and its socioeconomic
impacts on human society, future changes in fisheries production and their potential pre-
dictability are of particular interest to many scientific communities, policy makers, and
fishery industries.

Historical fish catch variation is known to be affected by both top-down and bottom-
up factors or a combination of them. Top-down factors include fishing effort and harvest
control. Pacific sardine fishery demise in the 1950s and the collapse of the Peruvian an-
choveta fishery in the 1970s are examples of fisheries production affected by human factors,
despite the high sensitivity of their production to changes in bottom-up drivers [9,10].
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Bottom-up factors affecting fisheries production include ocean temperature, phytoplankton
biomass, and dissolved oxygen concentration. Ocean temperature and chlorophyll, as a
proxy for complex changes in recruitment variability, trophic dynamics, and spawning
habitat availability, are acknowledged to be major bottom-up drivers explaining historical
fisheries production in many large coastal areas of global oceans [11–13]. Particularly,
globally observed sea surface temperature explains historical fisheries productions in many
high latitude regions and can be utilized to predict fish catch and to set optimal harvest
guidelines [11,14,15]. Previous studies also suggested that the relative strength of human
and environmental factors varies in space and time and their interactions are important for
historical fish catch variations [16].

Global observational data are an indispensable requirement to evaluate the rela-
tionship between bottom-up drivers and fisheries production on a basin or global scale.
Physical variables such as ocean temperature and salinity are globally available due to
well-established global observational platforms, thus their relationship to fisheries pro-
duction across different marine ecosystems is well documented in the aforementioned
studies. In contrast, climate-driven variability of marine biogeochemical and biological
variables and its influence on fisheries production are less documented due to the lack
of global observations of those variables. Satellited-retrieved chlorophyll-a estimates (a
proxy for phytoplankton biomass) since the late 1970s are one of the most important global
marine biogeochemistry observations and the only means of estimating phytoplankton
chlorophyll concentrations on a global scale, enabling a series of attempts to explain and
predict fisheries production [11,17–19]. However, the earlier satellite chlorophyll data are
severely limited in tropical regions and there is a consistency issue when directly calibrating
with contemporary data [20]. Therefore, a consistent chlorophyll data set spans ~20 years
and using these data only may not be enough to elucidate a rigorous linkage between
environmental drivers and fish catch. Moreover, there are other bottom-up drivers of
fisheries, which are potentially better indicators for fish catch estimation but have not
been observed on a global scale. For example, mesozooplankton production represents the
food web process to sustain populations [12,21], and dissolved oxygen also modifies fish
metabolic rates and viable habitats [3].

In this study, we used the reconstructed ocean states from a data assimilative Earth
system model product, taking advantage of globally available ocean biological and biogeo-
chemical variables such as mesozooplankton production and dissolved oxygen concentra-
tion. Using these 24-year-long data together with ocean temperature, we identified regions
where the bottom-up drivers predominate historical fish catch variations in large coastal
areas of the global ocean. We also examined the relative importance of those drivers for
fish catch across different marine ecosystems.

2. Data and Methods
2.1. Reconstructed Ocean Physical-Biogeochemical Field

The historical ocean states (i.e., physical, biological, and biogeochemical variables)
used in this study were generated following a previous work [22]. First, the ESM developed
at GFDL (Geophysical Fluid Dynamics Laboratory) in the NOAA (National Oceanic and
Atmospheric Administration) was coupled to GFDL’s ensemble coupled data assimilation
(ECDA) system that has been used for GFDL’s operational seasonal forecasts [23]. Observed
physical states in the atmosphere and ocean were then assimilated into the ESM and repro-
duced historical ocean state variables for the period 1991–2017, in which the first 24-year
data are only used in this study to match with the fish catch data. Here, we assimilated
6 hourly winds and temperature from NCEP-DOE (National Centers for Environmental
Prediction, Department of Energy) Reanalysis 2 product for the atmosphere [24], while
for the ocean we assimilated NOAA optimum interpolation sea surface temperature v2
high-resolution data, oceanic profiles from the World Ocean Database (WOD), Argo, and
global temperature-salinity profile program (GTSPP) data sets [25–27]. Note that biological
and biogeochemical variables were not assimilated into the data assimilation system due
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to the lack of their global observations. Instead, those biotic variables were indirectly
updated by the data assimilative physics within the ESM. That is, given that biological and
biogeochemical variables in the ocean are, in general, sensitively controlled by physical
states, improved physical ocean states by assimilating observed temperature and salinity
provides a constraint that helps to reduce the bias of biotic variables simulated from the
biogeochemical model. The ECDA system employed an ensemble Kalman filter with
12 ensemble members to estimate the probability distribution function of climate states.

One of the key elements to successfully estimate global biogeochemistry in the present
study is the biogeochemical model incorporated into GFDL’s ESM, named as the Carbon,
Ocean Biogeochemistry and Lower Trophics (COBALT) [28]. COBALT is the most complex
biogeochemical model from a hierarchy of GFDL’s biogeochemical models and it considers
33 tracers, including phytoplankton, zooplankton, organic and inorganic matters, to resolve
global-scale cycles of dissolved organic/inorganic matters and three phytoplankton and
zooplankton groups. COBALT has been implemented in different versions of ESMs and
tested against a diverse set of observations including nutrients and planktonic food web
flux estimates. Simulated marine biogeochemistry by this model has been shown to
capture the observed large-scale mean patterns as well as the site-by-site means, being
ranked highly among Coupled Model Intercomparison Project (CMIP)-class Earth system
models [29]. Previous studies also showed that GFDL’s ESM and its coupled version with
the ECDA system successfully reproduced historical biogeochemical variables [22,30]. For
example, as shown in Figure 1, the mean of ocean biological and biogeochemical variables
(such as nitrate, dissolved oxygen, and chlorophyll concentration) simulated from our data
assimilative model run shows good agreement with the long-term mean globally observed
data from WOD (for nitrate and oxygen) and the satellite-based ocean color sensors (for
chlorophyll), Sea-viewing Wide Field-of-view Sensor and Moderate Resolution Imaging
Spectroradiometer [31,32]. The detailed performance of the assimilative model used in this
study is documented in a previous work, including the comparison with a non-assimilative
run in terms of the mean and variability of ocean biogeochemistry [22].

2.2. Fisheries Production Data

To analyze the relationship between bottom-up factors (i.e., temperature (◦C), meso-
zooplankton production (mol m−2 s−1), and dissolved oxygen (mol kg−1)) and fish catch
(tonnage), we obtained annual mean fisheries yield data provided by the Sea Around Us
project [33]. The data consist of the aggregated fish catches that are from bottom trawl,
purse seine, pelagic trawl, longline, gillnet and other unknown sources, and they provide
reconstructed fisheries production in coastal Large Marine Ecosystems (LMEs; Table 1) that
accounts for over 95% of global fish catch [34]. In this study, we used reported fish catch
only by excluding unreported and unregulated fish catch, which is expected to be more
consistent across different products of fisheries production. Given the uncertainty of fish
catch data, we also excluded 12 LMEs that are very poorly resolved in coarse-grid global
ocean models of the ESM (i.e., LME regions such as Baltic Sea, Black Sea, East China and
Yellow Sea) and that are lightly fished polar systems (i.e., LME regions such as Chukchi
Sea, Beaufort Sea, East Siberian Sea, Laptev Sea, Kara Sea, Antarctic, Hudson Bay Complex,
and Central Arctic Ocean LMEs) following previous works, leaving 54 regions in total to
be analyzed [17,21,35]. The significance test for the correlation analysis between bottom-up
drivers and annual mean fish catch is based on the number of effective degrees of freedom
defined by Bretherton et al. [36], which accounts for autocorrelation in each variable and
eventually provides more proper significance testing compared to the conventional one.
In this study, we only consider the concurrent relationship between catch and bottom-
up factors, which indicates rapid catch responses such as immigration during favorable
environmental conditions.
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Table 1. The Large Marine Ecosystem (LME) name corresponding to each LME number.

LME Number LME Name LME Number LME Name LME Number LME Name LME Number LME Name

1 East Bering Sea 18 Canadian Eastern Arctic 35 Gulf of Thailand 52 Sea of Okhotsk

2 Gulf of Alaska 19 East Greenland Shelf 36 South China Sea 53 West Bering Sea

3 California Current 20 Barents Sea 37 Sulu-Celebes Sea 54 Chukchi Sea

4 Gulf of California 21 Norwegian Shelf 38 Indonesian Sea 55 Beaufort Sea

5 Gulf of Mexico 22 North Sea 39 North Australian Shelf 56 East Siberian Sea

6 Southeast U.S. Continental
Shelf 23 Baltic Sea 40 Northeast Australian

Shelf 57 Laptev Sea

7 Northeast U.S. Continental
Shelf 24 Celtic-Biscay Shelf 41 East-Central Australian

Shelf 58 Kara Sea

8 Scotian Shelf 25 Iberian Coastal 42 Southeast Australian
Shelf 59 Iceland Shelf

9 Newfoundland-Labrador
Shelf 26 Mediterranean Sea 43 Southwest Australian

Shelf 60 Faroe Plateau

10 Insular Pacific-Hawaiian 27 Canary Current 44 West-Central Australian
Shelf 61 Antarctica

11 Pacific Central-American 28 Guinea Current 45 Northwest Australian
Shelf 62 Black Sea

12 Caribbean Sea 29 Benguela Current 46 New Zealand Shelf 63 Hudson Bay

13 Humboldt Current 30 Agulhas Current 47 East China Sea 64 Arctic Ocean

14 Patagonian Shelf 31 Somali Coastal Current 48 Yellow Sea 65 Aleutian Islands

15 South Brazil Shelf 32 Arabian Sea 49 Kuroshio Current 66 Canadian High
Arctic

16 East Brazil Shelf 33 Red Sea 50 East Sea

17 North Brazil Shelf 34 Bay of Bengal 51 Oyashio Current
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2.3. Decision Tree Analysis with Monte Carlo Samples

The purpose of this study is to examine the impact of three climate-driven bottom-
up factors on fisheries production in different globally distributed ecosystems, thus a
multivariate prediction model is required. In this study, a decision tree algorithm was
used as a methodology to illuminate the multivariate and nonlinear relationship between
bottom-up factors and fish catch [37–39]. The multivariate decision tree analysis used here
creates subgroups of explanatory variables and identifies individual or multiple factors
that are important for fish catch, providing a complex and wide variety of the relationship
including linear and nonlinear features. In a total of 24 years (1991–2014) of the data for
each LME region, we selected 19 training data, 80% of the total, and 5 verification data, 20%
of the total. Note that the test data were not separately set in this study because the purpose
of applying the decision tree analysis is not to predict, but to examine the relationship
between bottom-up drivers and fish catch and the relative importance of individual drivers.
Given the small amount of training data, the selection of training and verification data was
randomly performed 1000 times while allowing duplication to ensure cross-validation.

To perform decision tree classification, the fish catch data at each LME were divided
into three classes: high catch, neutral, and low catch. Each year’s fish catch that fell within
the range of 0.5 standard deviation from the mean was classified as neutral. If it exceeds
+0.5 standard deviation, it is classified as high catch, and if it is less than −0.5 standard
deviation, it is classified as low catch. If high and low catch are correctly predicted in the
verification data, prediction skill is counted as 1, and 0 if not. The skill score that represents
how well bottom-up drivers explain historical fish catch variations is obtained by averaging
prediction skill over the total number of bootstrapping validation samples. The decision
tree model also provides the importance value of each variable from 1000 samples, enabling
the estimation of the probability distribution of variable importance.

3. Results
3.1. LME-Scale Relationship between Environmental Drivers and Annual Fish Catch

We first identified the LME regions where historical annual fish catch variations are
significantly correlated with reconstructed bottom-up factors during the period 1991–2014,
in which both fish catch and reconstructed data are available. The bottom-up factors
used here are ocean temperature, mesozooplankton production, and dissolved oxygen
concentration. This selection of bottom-up factors is based on the rationale that fish catch
can be controlled by temperature and oxygen due to their impacts on fish metabolic
rates and viable habitats, and also that catch is related to the energy available from the
plankton food web via the flux of mesozooplankton. Note that we used subsurface oxygen
concentration instead of upper ocean oxygen because the upper ocean oxygen in general
varies as a function of temperature, which leads to difficulties to ensure the independency
of each variable used in our statistical analysis. Upper ocean oxygen is also generally
saturated through strong air–sea gas exchange; thus, it may not be a limiting factor for fish
catch variations. It is also noted that we performed the analysis with the raw and detrended
(i.e., the raw data from which a linear regression has been subtracted) data to reduce the
potential of an erroneous attribution of fishing effort trends onto bottom-up forcing factors.
In more than 10 LMEs, both raw and detrended bottom-up drivers significantly impacted
historical fish catch variations (Figure 2). For example, upper ocean mesozooplankton
production is the key driver for the LMEs where the upwelling of nutrient-rich waters
and the consequent high productivity appear, such as LME #2 (California Current), LME
#30 (Agulhas Current), and LME #31 (Somali Coastal Current) systems. In these systems,
plankton-feeding small pelagic fish such as sardine and anchovy are abundant, and climate-
driven changes in temperature and phytoplankton biomass are responsible for historical
fish catch variation [40]. Upper ocean temperature is also significantly correlated with
historical catch variations in high latitude LMEs, such as LME #18 (Canadian Eastern
Arctic), and LME #66 (Canadian High Arctic) regions, presumably due to variation in the
thermal tolerance of fish species.
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Figure 2. Correlation coefficients between reported annual fish catch and reconstructed environmental drivers in large
marine ecosystems (LMEs) during 1991–2014. The correlation analysis is repeated with both raw (upper panel) and
detrended (lower panel) data. The environmental drivers used here are annual means of ocean temperature averaged in the
upper 100 m (red bars), mesozooplankton production integrated in the upper 200 m (green marks), and dissolved oxygen
concentration averaged between 200 and 500 m depth (blue marks). Filled marks and bars represent significant (p < 0.10)
correlation coefficients.

The added value of using globally reconstructed data over previous observation-
based works is the inclusion of mesozooplankton production and dissolved oxygen into
the bottom-up factors to determine fisheries in each LME. As seen in the significant blue
marks in Figure 2 (i.e., with both raw and detrended), subsurface oxygen concentration
turned out to be a key driver in a couple of LMEs, such as LME #2 (Gulf of Alaska), LME
#4 (Gulf of California), and LME #52 (Sea of Okhotsk). Given that the global mean and
regional variability of observed dissolved oxygen are well captured in the reconstructed
data used in this study [17,22], the result obtained from this simple correlation analysis
suggests the oxygen-driven forcing for fisheries and its potential utility for fish catch
prediction in these LMEs.
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3.2. Relative Importance of Environmental Drivers

The correlation analysis assumes a linear relationship between the bottom-up factors
and fisheries production, which is often limited to illuminate the nonlinear relationship
between the factors and to examine the relative importance of each bottom-up driver. To
supplement the linear approach, a nonlinear decision tree analysis was performed for the
bottom-up driven LMEs identified from the correlation analysis above. There are 10 LMEs
where a pronounced nonlinear relationship between the three environmental factors and
fisheries production exists (shaded areas in Figure 3): LME #2 (Gulf of Alaska), LME #3
(California Current), LME #15 (South Brazil Shelf), LME #18 (Canadian Eastern Arctic),
LME #26 (Mediterranean Sea), LME #30 (Agulhas Current), LME #31 (Somali Coastal
Current), LME #43 (Southwest Australian Shelf), LME #52 (Sea of Okhotsk), and LME
#66 (Canadian High Arctic). In these LMEs, the skill score that measures how well the
environmental drivers explain fish catch variations from the bootstrapping decision tree
analysis is in the range of 0.50–0.83 (see Methods; Figure 3).
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temperature, mesozooplankton production, and dissolved oxygen. Skill scores, defined from a bootstrapping decision tree
method, are represented by the density of shading for each LME. Pie charts indicate the relative importance of environmental
factors for historical fish catch variations in the 10 LMEs in which environmental forcing proved to be of considerable
importance for fisheries (LME #2: Gulf of Alaska, LME #3: California Current, LME #15: South Brazil Shelf, LME #18:
Canadian Eastern Arctic, LME #26: Mediterranean Sea, LME #30: Agulhas Current, LME #31: Somali Coastal Current, LME
#43: Southwest Australian Shelf, LME #52: Sea of Okhotsk, and LME #66: Canadian High Arctic LMEs).

The relative importance of each bottom-up driver for fish catch obtained from the
nonlinear bootstrapping analysis is generally consistent with that from the linear correlation
analysis (cf. Figures 2 and 3). That is, the driver exhibiting the highest correlation coefficient
with fish catch shown in Figure 2 matches with the variable with the highest importance.
An exception exists: for example, LME #15 (South Brazil Shelf) was temperature-driven
in the correlation analysis, while oxygen-driven in the decision tree analysis, indicating a
potential nonlinear dynamic of fisheries to multiple bottom-up drivers.

The dominant drivers for fish catch at some LMEs are also largely consistent with
previous works, showing that the plankton food web (represented by mesozooplankton
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production) dominates fish catch variations in LME #3 (California Current), LME #30
(Agulhas Current), and LME #31 (Somali Coastal Current) systems [11,17], as shown in
Figure 3. However, LME #2 (Gulf of Alaska) was previously known as a temperature-driven
region, while both linear and nonlinear analysis conducted here shows that oxygen better
explains fish catch variations in this region than temperature. This may imply that the
nonlinear analysis with the inclusion of oxygen further illuminates the relative dominance
of different factors and also better isolates bottom-up driven signals in a certain LME.

Although 7 out of 10 environmentally driven LMEs feature a single dominant driver for
fish catch, the most dominant driver is not significantly separated from other drivers in LME #3
(California Current), LME #26 (Mediterranean Sea), and LME #31 (Somali Coastal Current), as
shown in the probability distribution of variable importance (Figure 4). Previously, plankton
production was known to be the key factor for fish catch in LME #3, the California Current
system [11], but temperature and oxygen also turned out to be important drivers from the
current analysis. Similarly, fish catch in LME #31, Somali Coastal Current, is dominated
by two factors, plankton production and oxygen, although this region was previously
identified as a plankton production driven region. These different results are presumably
attributed to the relatively short data period of satellite chlorophyll used in the previous
study or possible bias in aggregated catch statistics and the influence of other factors such
as fishing efforts, which are not considered in the present study [41,42].
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3.3. Thresholds of Multiple Environmental Forcing for High and Low Fish Catch

Quantitative thresholds of the three environmental factors determining high and
low fish catch potentially provide guidance for marine resource management. Here, as a
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proof-of-concept study, a decision surface showing the boundaries of high and low fish
catch is constructed by using two leading environmental drivers (Figure 5). The max
depth of the tree was limited to two to avoid over fitting and to obtain straightforward
thresholds for fish catch estimation. The high and low catch at each LME are well separated
by conditional thresholds of multiple drivers. For example, in LME #30 (Agulhas Current)
region, mesozooplankton production over 6.2 µmol m−2 s−1 and temperature over 24.35 ◦C
provide high fish catch, while mesozooplankton production below 6.2 µmol m−2 s−1 and
temperature below 24.68 ◦C provide low catch. The overlap in the temperature threshold
for high and low catch implies nonlinear dynamics in the relationship with fisheries.
In LME #3 (California Current), where all of three environmental drivers turned out
to be important for fish catch estimation, the decision boundary for high catch is an
oxygen level of 0.027 µmol kg−1, and that for low catch is mesozooplankton production of
12 µmol m−2 s−1 and oxygen level of 0.027 µmol kg−1. The negative relationship between
oxygen concentration and fish catch may represent either the larger subsurface oxidation
due to the larger surface primary production or the vertical contraction of metabolically
viable habitats due to the upwelling of the oxygen minimum zone and the consequent high
catch in the upper ocean layer [43].
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4. Discussion

There are ten LMEs (out of 54 analyzed LMEs after excluding 12 regions due to data
reliability issues) that meet the criteria for bottom-up forcing for fish catch variations, which
resulted from a stringent test using both raw and detrended data. In other LME regions,
fish catch variations are probably predominated by top-down drivers such as fishing effort
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and harvest control or are influenced by factors not considered in our study. Given that
expanding fishing effort and subsequent effects of overfishing may create general trends
over the time period analyzed here, LMEs where a significant relationship is evident only
in the analysis with the raw (i.e., non-detrended) data may reflect top-down driven regions,
which is one of the approaches used to disentangle the top-down impact on fisheries [11].

Although only a limited number of LMEs are identified in the present study, many
significant relationships for individual climate-sensitive fish stocks may also underlie
aggregate catch relationships. For example, pelagic and demersal species are quite different
in life traits and catch variation scale, thus the similar analysis with species level can better
isolate bottom-up signal in other LME regions. In fact, the bottom-up signals and the
thresholds for high and low catches become much more useful when the information can
be provided in a fishery- or species-dependent manner. Moreover, further applications of
global-scale relationships to regional fisheries production are also possible if one uses other
fish catch analysis models (e.g., Gordon–Schaefer model) [44,45]

Another limitation of the present study is that there are generally long-lag relationships
in fisheries and other ecological systems given the cumulative integrations of environmental
forcing and the consequent low frequency variability of large marine organisms. Previous
studies already showed this in both observations and models [46,47]. Given that the
significant relationship between bottom-up drivers and fish catch at longer time lags
probably comes from long-lived large species, significant correspondence to individual
species or functional types may be possible in other LMEs with an extended time lag
correlation. Nevertheless, the main focus of the present study is to capture signals linked
to contemporaneous signals for which the predictive use of them would be most useful
for fisheries management and to show potential bottom-up driven linkage by using the
long-term data assimilative model data.

5. Conclusions

Revisiting bottom-up forcing for fish catch with newly developed long-term recon-
structed data reveals that historical fish catch variations in some large coastal areas are
significantly explained by biotic and abiotic factors, including temperature, zooplankton
production, and dissolved oxygen concentration, all of which are based on physiology
and trophodynamics of marine biology. With the aid of a nonlinear and multivariate
machine learning analysis and the inclusion of reconstructed oxygen and zooplankton
production data, this study provides richer information on the potential relationship be-
tween bottom-up drivers and fisheries production across globally distributed ecosystems.
Additional coastal ecosystems are identified as being driven by oxygen, which has not
been investigated before due to the lack of globally available oxygen data. Moreover, the
relative importance of each driver and thresholds for high and low fish catch can provide
further insight into mechanistic principles of fish catch in individual coastal ecosystems.

Despite the complexity of marine ecological systems that is not fully considered in the
present study, the results presented herein suggest the mechanistically consistent linkage
between bottom-up forcing and fish catch and can be utilized to facilitate the ecosystem-
based fisheries management strategies in a changing climate. Moreover, given that the most
critical assessment in our study is the capacity of the data from the assimilative models to
connect with fish catches across different global ecosystems, the result shown here provides
a meaningful global assessment that will spur further refinements of research methods.
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