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Abstract: The majority of people in South Africa eat maize, which is grown as a rain-fed crop in
the summer rainfall areas of the country, as their staple food. The country is usually food secure
except in drought years, which are expected to increase in severity and frequency. This study
investigated the impacts of rainfall and minimum and maximum temperatures on maize yield in
the Setsoto municipality of the Free State province of South Africa from 1985 to 2016. The variation
of the agroclimatic variables, including the Palmer stress diversity index (PSDI), was investigated
over the growing period (Oct–Apr) which varied across the four target stations (Clocolan, Senekal,
Marquard and Ficksburg). The highest coefficients of variance (CV) recorded for the minimum
and maximum temperatures and rainfall were 16.2%, 6.2% and 29% during the growing period.
Non-parametric Mann Kendal and Sen’s slope estimator were used for the trend analysis. The result
showed significant positive trends in minimum temperature across the stations except for Clocolan
where a negative trend of 0.2 to 0.12 ◦C year−1 was observed. The maximum temperature increased
significantly across all the stations by 0.04–0.05 ◦C year−1 during the growing period. The temperature
effects were most noticeable in the months of November and February when leaf initiation and kernel
filling occur, respectively. The changes in rainfall were significant only in Ficksburg in the month
of January with a value of 2.34 mm year−1. Nevertheless, the rainfall showed a strong positive
correlation with yield (r 0.46, p = < 0.05). The overall variation in maize production is explained
by the contribution of the agroclimatic parameters; the minimum temperature (R2 0.13–0.152),
maximum temperature (R2 0.214–0.432) and rainfall (R2 0.17–0.473) for the growing period across
the stations during the study period. The PSDI showed dry years and wet years but with most
of the years recording close to normal rainfall. An increase in both the minimum and maximum
temperatures over time will have a negative impact on crop yield.

Keywords: agroclimatic variability; minimum and maximum temperatures; maize yield; rainfall
patterns; Setsoto municipality; climate change; Free State province

1. Introduction

There is a global consensus that climate change trends are real, and a rapidly advancing threat
to millions of livelihoods, by affecting agricultural activities, food security, water resources, health,
social systems and the appropriate functioning of ecosystems Barros, Field [1]. Some studies forecast
that the necessary increase in food production needs to be between 70 and 210% by 2050 and 2100,
to ensure global food security [2,3]. Temperature and rainfall are very important factors that affect
crop production [4], mainly affecting the duration of the growing season [5]. The relationship between
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temperature and rainfall is very variable across the globe [6], this finding is also true for South Africa,
but the model projections for the next 20–50 years show that the eastern portion of the country
will receive approximately the same rainfall with the western parts becoming significantly drier [7].
The relationship between temperature and rainfall is in most cases an inverse relationship; thus,
the higher the temperature the lower the rainfall [8,9]. The study by Dasgupta, Morton [10] indicated
that the mean global temperature has increased by 0.5 ◦C per annum. This rising temperature trend
suggests that there is an increase in warm indices (hot days, hottest days) and a decrease in extreme
cold indices (cold days, cold nights) [9]. Studies across the world show that minimum temperatures
are increasing at a faster rate than the maximum temperatures which may be as a result of global
warming [11–13].

Global warming affects climate change and increases the occurrence of extreme weather events
including flooding and droughts [14]. The surface air temperatures in some areas of Africa have shown
a steady increase of 0.03 ◦C annually [15]. The South African average air temperature has increased by
1.2 ◦C since the 1960s and the warming rate has increased at twice the global average rate [16,17]. Thus,
understanding the underlying factors that influence the climatic change of the region could improve
forecasting and limit the negative impacts in the region (Richard et al., 2001).

Agricultural production is susceptible to climate change variability in the Sub-Saharan region.
Higher temperatures can decrease crop yields and animal production [18]. According to Scholes et al.
(2015) for each one-degree Celsius rise in temperature, there is a 5% decrease in crop yield. Temperatures
raised above optimal levels create biochemical challenges for plant cells, more especially the enzymes
associated with the photosynthetic pathway. The southern and northern parts of Africa are expected to
be about 4 to 6 ◦C hotter by 2080 and the precipitation is projected to decrease by 10–20% by this period
(Collier et al., 2008). Derived variables, e.g., Palmer Stress Diversity index (PDSI), are used across the
globe for monitoring meteorological drought as well as agricultural drought [19,20]. The meteorological
component deals with changes in rainfall, whilst the agricultural drought component indicates changes
in soil moisture. In this research, the self-calibrating PDSI (Sc-PDSI) proposed by Wells [21] was used
as an indicator of agricultural drought, since we are interested in the soil moisture and potential
evaporation without focusing on the impact of agricultural practices, including fertilizer applications
and improved seed and water conservation measures on the yield of maize [22,23].

Maize (Zea mays L.) is the most common staple crop grown in Sub-Saharan Africa (SSA) [24]. It is
a dominant component in the diets of most households in the region. On average, a decreasing trend
of 10–20% in maize yield has been projected by 2050 for the tropics as a result of climate change [25].
Maize grows better at low to medium (20–28 ◦C) temperatures, because that allows for maximum
radiation interception and optimal growth [26].

South Africa is amongst the ten highest maize producing countries in the world [27]. It produces an
average of 12 million tons per year; contributing approximately 2% of the world’s maize production [28].
The Free State province alone produces over 35% of the maize in South Africa [29]. Overall,
the environmental conditions and natural resources of the Free State are conducive for maize production,
but there are concerns of looming agro-climatological hazards which may have a detrimental effect
on production [30]. This is supported by Smale and Jayne [31] who found that the output of maize
production varies yearly in South Africa mostly due to climate variability. Since only 1% of the
cultivated area uses irrigation for maize production [32], there is a particularly high reliance on rainfall
and thus vulnerability to changing rainfall patterns and amounts.

This study investigated the impacts of agroclimatic variability on maize production in the district
of the Setsoto Municipality in the Free State province of South Africa from 1985 to 2016. Droughts and
extreme events are becoming more frequent and the drought characteristics are not well understood,
at this particular local scale. Temperature and rainfall patterns are usually presented over an annual
cycle but this study focusses on this important region, at the time scale of the growing season, October to
April. The spatial variability in the temperature and rainfall trends is high which could negatively
impact the maize yields for this area which are relatively low when compared with other maize growing
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locations. This district may be very close to the threshold where maize can no longer be grown, and this
will have a major impact on rural poverty and unemployment. Currently, all stations studied were
suitable for maize production, but the interaction of increasing temperatures with evapotranspiration
into the future will make some areas in the Free State province less suitable for maize production [33,34].

2. Materials and Methods

2.1. Study Area

The Setsoto Municipality is under the administrative district of Thabo Mofutsanyane in the Free
State province (Figure 1). The seasonal rainfall usually starts in October and ends in April with
more than 80% of the rainfall occurring from October to March [35,36]. The soil type is shallow,
loamy soil with moderate water holding capacity [37]. Soil degradation and overgrazing are prominent
environmental problems which have not received adequate research attention [38].
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Figure 1. Map of the Free State province of South Africa showing the locations of the study area,
the Setsoto Municipality and the target weather stations.

The availability of weather stations and completeness of data played important roles in the
selection of the target stations within the municipality. This study targeted the weather stations in
Clocolan, Marquard, Senekal and Ficksburg based on their spatial location and availability of data.
There were five other stations nearby that were used for infilling missing data, these were selected
based on the availability of data and proximity to the target stations (Table 1).



Climate 2020, 8, 147 4 of 18

Table 1. List of weather stations used for this study with their longitudes, latitudes, elevation,
duration of data availability and their data type. R denotes rainfall and T denotes both the minimum
and maximum temperatures.

Weather Stations Latitude Longitude Elevation (m) Data Type Data Period
(Years)

1 Senekal-AGR −28.32200 27.6200 1433 R 40
2 Ficksburg −28.82700 27.9040 1628 R&T 32
3 Marquard −28.66500 27.4250 1497 R&T 40
4 Clocolan −28.92108 27.5840 1602 R&T 36
5 Senekal-Driepan −28.38900 27.5865 1587 R&T 31
6 Paul Roux −28.29900 27.9480 1569 R 39
8 Lambertianin −28.8200 27.5820 1646 R 32
7 Uintjieshoek −28.5830 27.5200 1600 R 31

The average rainfall of Thabo Mofutsanyana is 600 mm per annum [39]. The province has the
highest number of farming units in South Africa, with large areas of fertile and arable lands resulting
in a significant proportion of the nation’s agricultural production [40].

2.2. Data and Data Management

The daily maximum and minimum temperatures and the daily rainfall data of the study area for
the period from 1985–2016 were obtained from the Agricultural Research Council (ARC) meteorological
database and the South African Weather Service (SAWS). In this study, an agricultural year is defined
from July to June of the following year. This allows the presentation of the growing period from
October to April of the following year as a continuous record.

Meteorological data with the smallest number of missing data values (≤5%) were selected from
stations within the municipality The UK method was used for the infilling of daily Tmax and Tmin

values because of the technique’s ability to accommodate the differences in altitude and its local effects.
Missing rainfall data were estimated using the modified Inverse Distance Weighting method (IDWm),
which allows for the influence of elevation on rainfall [41,42], missing rainfall, Tmin and Tmax values
were less than 10% of the total data set, which satisfies the world meteorological organization (WMO)
criteria for a robust climatic data analysis. Only stations with a complete data set having a duration of
not less than 30 years were used for IDWm (Table 1).

Maize yield data (tons ha−1) for the Setsoto Municipality for the period between 1985 and 2016
were obtained from the South African Department of Agriculture, Forestry and Fisheries [43] for the
four areas except for Ficksberg where data were only available for 1985–2005. Most of the statistical
analyses were computed using quantum XL 2016 and JASP 0.9.0.1 statistical software. Collection and
availability of temperature, rainfall and yield data are very limited in South Africa due to the lack of
infrastructure and compliance, this is a common problem especially in SSA. It would have been ideal
if these data could have been used together with other variables e.g., measurements of evaporation
and radiation but again these data are not collected by the South African Weather Service nor by the
farmer’s unions.

The self-calibrating PDSI (Sc-PDSI) was calculated using monthly temperature and precipitation.
A detailed description of the fairly complex calculation of the Palmer index consisting of five steps
is published in several journals [21,44–46]. The Sc-PDSI accounts for all the constants contained
in the PDSI and includes a methodology in which the constants are calculated dynamically based
upon the characteristics present at each station location. The self-calibrating nature of Sc-PDSI is
developed for each station and changes based upon the climate regime of the location. It has wet
and dry scales. The index was calculated for three decades as well as for the entire data set from
1985–2016. According to Palmer [44], the range of the monthly index time series is between −4 and
+4. Negative (positive) PDSI values indicate dry (wet) periods, while those near-zero presume a state
that is close to the average rainfall. The Palmer hydrological drought index (PHDI), is used to assess
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long-term moisture supply. The Sc-PDSI was calculated using a program developed by researchers in
URL https://github.com/Sibada/scPDSI.

2.3. Climatic Trend Analysis

The non-parametric Mann Kendall (MK) test [47] was used to determine the significance of the
climate trends, because the climatic data were not independent and normally distributed. The seasonal
trends for Tmin, Tmax and Rainfall during the growing period with yield data were determined using a
linear regression model. The free and open software package developed by the Finnish Meteorological
Institute (MAKESENS) (https://en.ilmatieteenlaitos.fi/makesens) was used for the Mann Kendall (MK)
test and Sen’s slope estimator. The Sen’s slope estimator allows for the significance of the trend
to be analyzed. The MK test is robust, simple and frequently used in climate, environmental and
hydrological studies [13,48–51]. The Sen’s slope is a robust estimate of the underlying trend.

2.4. The Crop Yield Anomalies and Correlation with Climate Variables

The Pearson correlation coefficient which has proven to be an appropriate method for gaining
insights into this type of study [52] was used to determine the relationship between maize yield and
climatic variables. The data were detrended before performing linear regressions which prevents
periodicity in the data. Tmin and Tmax anomalies and rainfall anomalies were correlated with detrended
yield values to investigate the impacts of agroclimatic variables on maize production for the period
of the study. Detrended yield values were used, for only the growing months (October–April),
the coefficient of variance (CV) and standard deviation (SD) were calculated. The CV shows the
variability of data around the mean of the population CV= µ/σ where: σ= standard deviation, µ= mean,
the variability of the data is determined using CVs presented as a percentage. The standard diversion
measures the dispersion of the dataset as relative to its mean. It is the square root of variance.

3. Results and Discussion

3.1. Variation in the Minimum and Maximum Temperatures during the Growing Period (October–April)

The average mean annual Tmin of the area is presented in Table 2. The range of the average mean
Tmin was from 10.4 ◦C to 14.2 ◦C and for Tmax was from 25.6 ◦C to 28.6 ◦C. The lowest Tmin of 5.6 ◦C
and the Tmax of 10.0 ◦C were found in Ficksburg. The highest Tmin and Tmax recorded during the
growing period in Clocolan were 16.4 ◦C and 31.2 ◦C, respectively. The CV of the Tmin and Tmax was
between 5.8% to 16.0% and 3.8% to 8.3%, respectively (Table 2).

Table 2. The mean, minimum, maximum, SD and CV (%), for the minimum and maximum temperatures
during the growing period (◦C) in the Setsoto Municipality for the period between 1985 to 2016.

Tmin (◦C) Tmax (◦C)

Stations Mean Min Max SD CV Mean Min Max SD CV

Marquard 11.6 10 13.4 0.7 6.2 27.1 24.7 29.5 1.1 4
Clocolan 14.2 9.9 16.4 2.1 14.9 28.6 24.1 31.2 2.4 8.3
Senekal 12.1 9.4 13.4 0.7 5.8 27.7 25.1 30.4 1.1 3.8

Ficksburg 10.4 5.6 13.9 1.7 16 11.6 10 13.4 0.7 6.2

3.2. The Growing Period Rainfall from 1985 to 2016

The average rainfall for the growing period in Setsoto ranged from 540.71 mm to 632.38 mm with
CV ranging from 21 to 29% (Table 3). Ficksburg had the highest rainfall during the growing period
(1154.10 mm) while Marquard had the lowest rainfall (204.1 mm). The patterns of rainfall variations of
the growing period were similar between Senekal and Marquard and Clocolan and Ficksburg with
only observed differences of about 3% between them. The rainfall of the growing period accounts for
approximately 88% of the annual rainfall (Table 3).

https://github.com/Sibada/scPDSI
https://en.ilmatieteenlaitos.fi/makesens
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Table 3. Rainfall (mm) during the growing period October–April (mean, minimum, maximum,
standard deviation and coefficient of variation) in Setsoto Municipality (1985–2016).

Stations
Average Rainfall in Growing Period (mm) Annual Rainfall (mm)

Mean Min Max SD CV Mean Min Max SD CV

Marquard 540.7 204.1 969.5 158.5 29 613.4 259.1 1029.7 178.2 29
Clocolan 593.2 329.6 888.7 122.9 21 677.1 386.5 1074.9 149.4 22
Senekal 569.9 310 952 149.9 26 645 386.8 1019.2 167.4 26

Ficksburg 632.4 359.2 1154.1 151.4 24 718.1 397.6 1224.1 168.8 23

Mean annual rainfall over the Setsoto municipality ranged from 613 mm to 718 mm (Table 3).
The summer months from October to April account for most of the annual rainfall in the municipality.
The highest annual rainfall values observed were in Ficksburg with 1224 mm (Table 3). The lowest
value ranged from 259 mm to 397 mm. Ficksburg had the highest mean annual rainfall (718.1 mm)
followed by Clocolan (677.1 mm), while the lowest was recorded in Marquard (613.4 mm) followed by
Senekal (645 mm) The CV of the annual rainfall was very high ranging from 34 to 45 (Table 3).

3.3. Maize Crop Production 1985—-2016

The average maize yield for Setsoto from 1985 to 2016 ranged from 1.96 tons ha−1 to 2.89 tons ha−1.
The highest maize yield achieved during this period was in 2016 with 6.18 tons ha−1 in Clocolan,
while the lowest of 0.10 tons ha−1 was recorded in 1991 in Senekal (Figure 2). The maize yield CVs
over this period was between 37.8% and 46.2% per annum, with a standard deviation of between 0.91
and 1.31 tons ha−1 across the municipality (Table 4).
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Figure 2. The annual maize yield (tons ha−1) for the four stations in the Setsoto municipality from 1985
to 2016 used for this study.

Table 4. The average maize yield (tons ha−1) for the four stations in Setsoto Municipality from 1985–2016
used for this study.

Average Maize Yield (tons ha−1)

Stations Mean Min Max SD CV

Marquard 2.33 0.47 5 0.98 41.93
Clocolan 2.72 0.64 6.18 1.03 37.75
Senekal 1.96 0.1 4.34 0.91 46.19

Ficksburg 2.89 0.85 5.96 1.33 46.21
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The dataset available for Ficksburg in this study was only for 20 years (1985–2005), as opposed to
32 years in the other three weather stations. Each station showed high inter-annual variation in yield.
All seem to overlap at least in the first few years (1985 to 1995). The yield in Ficksburg showed the
highest inter-annual variation between 1995 and 2005 (Figure 2).

3.4. Climate Trend Analysis

3.4.1. Minimum and Maximum Temperature Trends

The Clocolan monthly and the growing period minimum temperatures showed a negative trend
at the 0.001 significance except in the months of November and April which showed a negative trend
at a significance level of 0.05. The values of the Sen’s slope were all less than zero (Table 5). In Senekal
the Tmin did not show any trend for the period of the study except for the month of January, where an
increase of 0.02 ◦C year−1 was reported, compared to the increasing trend of 0.05 ◦C per annum shown
in Ficksburg at a significance level of 0.05. In Marquard the Tmin trend showed a positive trend for
the months of October, November and December at the rates of 0.09, 0.09 and 0.06 ◦C increase year−1,
respectively during the growing period (0.01 significance level). The February, March, April and the
growing period trends were negative with decreases of minimum temperatures of 0.1, 0.2, 0.25 and
0.05 ◦C year−1 (Table 5).

Table 5. Setsoto monthly growing period minimum temperature annual trends during the growing
period from 1985–2016. Mann Kendall (MK) trend (Test Z) and Sen’s slope estimate (Q).

Months
Marquard Clocolan Senekal Ficksburg

Test z Q R2 Test z Q R2 Test z Q R2 Test z Q R2

OCT 2.72 ** 0.09 0.25 −3.5 *** −0.18 0.55 0.62 0.01 0 −0.05 0 0
NOV 2.64 ** 0.09 0.25 −2.47 * −0.15 0.35 −0.1 −0.01 0 −0.15 −0.01 0
DEC 3 ** 0.06 0.36 −3.61 *** −0.12 0.42 0.73 0.01 0.02 0.58 0.02 0
JAN 0.36 0.01 0 −3.51 *** −0.12 0.43 1.64 * 0.02 0.1 2.3 * 0.05 0.1
FEB −3.71 ** −0.1 0.34 −3.34 *** −0.12 0.46 0.89 0.02 0.05 1.61 0.07 0.06

MAR −3.91 ** −0.23 0.6 −3.57 −0.2 0.5 0.97 0.02 0.04 1.49 0.05 0.03
APR −4.25 ** −0.25 0.61 −2.39 −0.15 0.35 −1.43 −0.04 0.06 0.84 0.03 0
GP −3.52 ** −0.05 0.42 −3.7 *** −0.14 0.42 1.39 0.01 0.01 1.51 0.03 0.03

NB: *** denotes significance when alpha = 0.001, ** denote significance when alpha = 0.01 and * denote significance
when alpha = 0.05.

A commonly occurring pattern in climate change studies shows minimum temperatures to be
increasing globally and more particularly in Sub-Saharan Africa [53]. The trends were very variable,
all stations showing increases, except Clocolan which showed an overall decrease. The projected
mid-altitude minimum temperature increases for subtropical Africa is 2.6 ◦C century−1 [54]. The data
were very variable by the month and in Marquard, there is a significant increase in the trend of Tmin

in the months of October, November and December, likewise in January in Senekal and Ficksburg.
These data are very difficult to explain. It is interesting to note that, Tmin spatial–temporal variability is
just outside the WMO 30 km radius used for justification of infilling of data. There are local factors such
as vegetation cover, topography, slope and aspect of the area which affect the rainfall and temperature
distribution. The IPCC (2014), states that provided the anthropogenic and greenhouse emissions
remain at 2014 levels, these results fall within the projected century temperature increases of 3 ◦C,
but only for extreme events [54].

In the months of October and November in Marquard, Senekal and Ficksburg the growing period
Tmax showed an increasing trend ranging from 0.04 to 0.10 ◦C year−1 at various levels of significance
(Table 6). In Clocolan, Tmax showed a decreasing trend in the months of March and April by 0.16 and
0.14 ◦C year−1 (0.05 significance level).
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Table 6. Monthly Maximum Temperature (◦C) annual trends during the growing period for the study
period from 1985–2016. Mann Kendall MK Test Z denote Mann Kendall trend analysis test, and Q
denotes ‘the Sen’s slope estimate’ for the Setsoto municipality.

Months
Marquard Clocolan Senekal Ficksburg

Test z Q R2 Test z Q R2 Test z Q R2 Test z Q R2

OCT 3.71 ** 0.12 0.4 −0.68 −0.05 0.02 3.91 *** 0.12 0.38 3.02 ** 0.11 0.26
NOV 1.9 + 0.08 0.11 −0.31 −0.03 0 2.38 * 0.08 0.15 2.09 * 0.1 0.14
DEC 0.76 0.04 0.04 0.13 0 0 0.44 0.02 0.03 1.52 0.06 0.12
JAN 0.26 0.01 0.01 −1.01 −0.04 0.02 −0.05 0 0.01 1.28 0.04 0.02
FEB 0.83 0.03 0.01 −1.1 −0.1 0.01 0.66 0.03 0.05 1.96 * 0.09 0.19

MAR 1.61 0.06 0.1 −2.01 * −0.16 0.14 1.12 0.04 0.07 2.5 * 0.06 0.02
APR 1.1 0.05 0.03 −2.11 * −0.14 0.06 0.7 0.04 0.01 −0.29 −0.01 0
GP 2.38 * 0.04 0.23 −1.23 −0.06 0.24 2.29 * 0.05 0.22 2.12 * 0.04 0.21

NB: + denote significance when alpha = 0.1, *** denote significance when alpha = 0.001, ** denote significance when
alpha = 0.01 and * denote significance when alpha = 0.05.

The maximum temperatures over most of SSA are expected to increase above the global average [55].
The increasing trend of maximum temperature for Southern Africa is non-linear and its intensity is
expected to increase drought and crop failure [14]. In this study, the maximum temperatures in the
period between 1985 and 2016 showed an overall significant increase, during the maize growing period
across the stations in the Setsoto municipality. The only months with significant decreases in Tmax

were March and April in Clocolan, while for the rest of the months either it remained unchanged
or showed a significant increase (Table 6). The annual maximum temperatures increased by 0.08 ◦C
year−1, giving an increase of 2.56 ◦C for the entire study period of 32 years. These results also agree with
the findings published by the IPCC (2014). The results also fall within the projected SSA temperature
increases of 6.5 ◦C for the century [55–58].

3.4.2. Rainfall Trend Analysis

For all the stations used in this study only the month of January showed a positive trend of
increasing rainfall in the Ficksburg station with 2.34 mm year−1 at a 0.05 significance level (Table 7).
The rainfall trends for the study period of 32 years (from 1985 to 2016) in the Setsoto Municipality
showed no significant changes. This statement applies to the seasonal distribution of the rainfall,
the total amounts of rainfall and yearly distributions. The only significant data found were for the
month of January in Ficksburg, where the rainfall significantly increased by 2.34 mm year−1 (Table 7).
Rainfall in the Free State province shows high variability with the patterns, distribution, intensity and
duration of rainfall varying spatially and temporally across different scales [59].

Table 7. Monthly rainfall (mm) and its annual trends during the growing period from 1985–2016 for
the Setsoto municipality. MK Test Z denotes Mann Kendall trend analysis test, and Q denotes ‘the Sen’s
slope estimate’.

Months
Marquard Clocolan Senekal Ficksburg

Test z Q R2 Test z Q R2 Test z Q R2 Test z Q R2

OCT −1.44 −1.09 −1.38 −1.38 −1.38 0.049 −1.36 −1.00 −1.31 −1.31 −0.88 0.014
NOV 0.63 0.69 −0.68 −0.68 −0.41 0.002 −0.05 −0.08 −0.26 −0.26 −0.39 0.039
DEC 0.00 0.00 0.97 0.97 1.12 0.031 0.19 0.33 0.65 0.65 0.52 0.039
JAN −0.02 −0.02 1.12 1.12 1.62 0.042 1.62 2.11 2.06 2.06 * 2.34 0.179
FEB 0.73 0.60 0.44 0.44 0.43 0.011 −0.78 −0.59 −1.04 −1.04 −0.69 0.011

MAR −0.94 −1.05 −0.99 −0.99 −0.64 0.037 −0.58 −0.56 −0.41 −0.41 −0.46 0.033
APR −1.09 −0.74 −1.09 −1.09 −0.46 0.005 −0.10 −0.05 −0.44 −0.44 −0.45 0.134
GP −1.36 −3.22 0.05 0.05 0.11 0.002 0.19 1.05 0.21 0.21 0.55 0.027

NB: * denote significance when alpha = 0.05.
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3.5. Maize Yield Trends

Maize yield showed a positive trend in the three stations (Marquard, Clocolan and Senekal)
increasing by different magnitudes. The maize yield in Marquard and Clocolan showed a positive
trend increasing by 0.05- and 0.039-tons ha−1y−1, respectively. In Senekal, maize yield showed an
increasing trend of 0.043 tons ha−1 (Table 8).

Table 8. Annual maize yield trends during the study period from 1985–2016. MK Test Z denotes the
Mann Kendall trend analysis test, and Q denotes ‘the Sen’s slope estimate’.

Test Z Q R2

Marquard 2.76 ** 0.050 0.218
Clocolan 2.45 ** 0.039 0.196
Senekal 2.92 * 0.043 0.183

Ficksburg 1.27 0.054 0.119

NB: ** denote significance when alpha = 0.01 and * denote significance when alpha = 0.05.

Agroclimatic and maize yield variability in Sub-Saharan Africa (SSA) depends on the interactions
between the combination of temperature, rainfall, and adaptive strategies [60]. The results from this
study agree with other studies in SSA particularly with respect to temperatures and yield [61–66].
There were positive trends in all the stations for maize yield from 1985 to 2016 (Table 8). Marquard had
the highest increasing trend of 0.05 tons ha−1 year−1, followed by Senekal with 0.043 tons ha−1 year−1

and Clocolan with 0.039 tons ha−1 year−1. This general positive trend agrees with those found by [40]
on a comparative analysis of maize yields for South Africa. The average maize yield for Setsoto during
the period of this study was between 1.96 tons ha−1 to 2.89 tons ha−1 per year with an inter-annual
variability between 38–46% (Table 4). Even though no agronomic data are available for these locations,
it seems logical that some of these increases could have been accounted for by changed farming
practices e.g., the addition of more inorganic fertilizers and changed maize varieties. The maize yield
in the Setsoto municipality is below the free-state provincial average maize yield of 3.8 tons ha−1 [67]
Maize production is said to be economically viable if 3.6 tons ha−1 is produced [40,67], the data from
this study showed that maize yield is below this limit. The yield trends in this study were low and it is
only marginally economical to produce maize in these areas. The contribution to GDP from farming
in the Setsoto municipality is decreasing [68,69] and it has been suggested that some farms are no
longer being planted with maize or alternate crops. Yield variability was high across the stations,
with Senekal having the highest variability of 46.1% per year and it also recorded the lowest yield
among the stations.

3.6. Maize Yield Correlation with Climatic Variables

3.6.1. De-trended Maize Yield Correlation with rainfall, Tmin and Tmax Anomalies

The Pearson correlation coefficient (r) and confidence interval levels of 0.05, 0.01 and 0.001 were
used in this study to determine the relationship between yield and agroclimatic variables. Rainfall was
positively correlated with yield during the growing period in Clocolan and with Tmax in Senekal
(r = 0.46 and 0.48 respectively) (p = 0.008 and 0.0005 respectively) (Table 9). In November, only the
Tmin in Marquard correlated with yield (r = 0.39, p < 0.027). During the month of January, the yield at
this station is positively correlated with Tmin (r = 0.37 and p = 0.038 at 0.05 confidence level).
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Table 9. The correlation matrix for the monthly and growing period Tmin, Tmax and Rainfall variables with Maize yield in the three stations (the fourth station,
Ficksburg, lacks sufficient data for analysis) of the Setsoto municipality from 1985–2016 (* p < 0.05, ** p < 0.01, *** p < 0.001). GP denotes growing period.

Marquard Clocolan Senekal

Pearson’s r p-Value VS-MPR+ Pearson’s r p-Value VS-MPR+ Pearson’s p-Value VS-MPR+

GP Tmin 0.03 0.87 1.00 0.12 0.52 1.00 0.02 0.90 1.00
Tmax −0.18 0.33 1.01 0.12 0.51 1.00 −0.40 * 0.02 4.43

Rainfall 0.03 0.86 1.00 0.46 ** 0.01 8.97 0.23 0.20 1.14
OCT Tmin 0.07 0.69 1.00 −0.12 0.52 1.00 −0.03 0.89 1.00

Tmax 0.06 0.74 1.00 0.02 0.93 1.00 −0.02 0.93 1.00
Rainfall 0.01 0.95 1.00 0.22 0.24 1.08 0.15 0.40 1.00

NOV Tmin 0.42 * 0.02 5.69 0.04 0.84 1.00 0.07 0.69 1.00
Tmax 0.07 0.73 1.00 0.07 0.70 1.00 0.08 0.69 1.00

Rainfall −0.08 0.67 1.00 0.11 0.55 1.00 0.18 0.32 1.01
DEC Tmin 0.42 * 0.02 5.69 0.05 0.80 1.00 −0.05 0.78 1.00

Tmax 0.09 0.61 1.00 0.23 0.20 1.14 −0.09 0.62 1.00
Rainfall −0.04 0.83 1.00 −0.18 0.33 1.01 −0.05 0.80 1.00

JAN Tmin 0.37 0.04 3.04 −0.22 0.23 1.10 0.25 0.16 1.24
Tmax −0.35 0.05 2.38 −0.02 0.90 1.00 −0.37 * 0.04 2.95

Rainfall 0.05 0.77 1.00 0.22 0.23 1.09 0.25 0.17 1.22
FEB Tmin −0.07 0.71 1.00 0.15 0.42 1.00 0.20 0.28 1.03

Tmax −0.51 ** 0.00 19.83 0.13 0.49 1.00 −0.42 * 0.02 5.43
Rainfall 0.45 * 0.01 7.64 0.68 *** <0.001 2118.11 0.17 0.34 1.00

MAR Tmin −0.20 0.27 1.04 −0.28 0.13 1.40 0.02 0.93 1.00
Tmax −0.03 0.87 1.00 −0.09 0.63 1.00 −0.47 ** 0.01 11.76

Rainfall −0.19 0.29 1.03 0.00 0.99 1.00 −0.12 0.51 1.00
APR Tmin −0.15 0.41 1.00 −0.08 0.67 1.00 −0.20 0.27 1.04

Tmax 0.03 0.86 1.00 0.00 1.00 1.00 −0.17 0.36 1.00
Rainfall −0.16 0.38 1.00 −0.19 0.29 1.02 0.07 0.69 1.00
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The minimum temperatures were correlated with maize yield only for the Marquard station in the
months of November and February, this relationship was also found to be the case in studies conducted
by Adisa, Botai [70]. Temperature drives the physiological and morphological development of the
maize plant, with each process requiring a different minimum and maximum temperature. For instance,
the study by Sanchez, Rasmussen [71] showed that leaf initiation needs a minimum of 7 ◦C, while shoot
growth takes place above 14 ◦C and root growth above 13 ◦C. These minimum temperature conditions
were not met for all cases except for the leaf initiation process in November (Table 5 above). However,
in January the minimum temperature requirements for leaf initiation and shoot and root growth were
met even for the late planting cultivars. Minimum temperatures, especially in November, seem to be
critical for the early establishment and growth of the seedlings which ultimately influences the yield.
The correlation and the regression analyses provided evidence for the significance of the minimum
temperature on yield in Marquard, especially in the months of November and January. However,
the November minimum temperature trend showed an increase of 0.09 ◦C per annum (see Table 5
above), which showed an increase of 1% in Tmin in November increasing the yield by 0.274 tons ha−1 in
Marquard. Climate change predictions for semi-arid regions of SSA have changed from earlier studies
which gave values of 1.6 ◦C to recent projections of above 2.4 ◦C by 2050, depending on emissions and
other anthropogenic activities [72]. Increasing trends in minimum temperatures are predicted for SSA,
and extreme climate events, especially the frequency and severity could negatively impact yields [73].

The February Tmax was negatively correlated with yield in Marquard and positively in Senekal
(r = −0.49 and 0.657; p = 0.005 and <0.001 and 835.835, respectively) at 0.01 and 0.001 confidence levels,
respectively. Similarly, the February rainfall in Marquard was positively correlated with yield (r = 0.42,
p = 0.018) at 0.05 confidence level. There was also a strong correlation between them in Clocolan
(r = 0.69, p < 0.001 and) in the month of February, while in March, the Tmax in Senekal showed a
positive correlation (r = 0.4512 p = 0.003) at 0.01 confidence level with yield (Table 9).

The results from this study showed that the maximum temperatures for the entire growing season
were significantly correlated with maize yield only for Senekal. This was as a result of the significant
correlation in the months of February and March. The stations of Clocolan and Ficksburg showed no
correlation between the Tmax and maize yield, while those in Marquard showed a significant negative
correlation. The results in Marquard were also similar to other studies which showed that temperatures
above 30 ◦C have a negative impact on maize production in southern Africa [74]. Senekal had the
lowest maximum temperatures and a 1% increase of Tmax in the months of February, March and the
entire growing period (October–April) could increase the maize yield by 0.029, 0.408 and 0.536 tons ha−1

(Table 9). On the other hand, Marquard had the highest maximum temperatures and a 1% increase of
Tmax could decrease maize yield by 0.290 tons ha−1. Lobell, Bänziger [74] showed that a 1% increase
of maximum temperature above the optimal temperature for growth under drought stress could
result in a maize yield decline of 1.7%. Clocolan had the highest mean Tmax value and SD value of
28.6 ◦C and 2.4 ◦C respectively. There are several other studies that showed that high temperatures,
together with soil and plant water stress lead to a decline in crop yield [75,76]. Maize yield in Marquard
will be most vulnerable to water stress if the maximum temperatures continue to increase, especially
at the anthesis stage, where the optimal temperature is 32 ◦C and the maximum tolerable Tmax is
36 ◦C [58]. Muchow (1990) showed that temperatures outside the range of 13–32 ◦C decrease the
yield by shortening the period of the kernel filling. These conditions also apply in Marquard with
high February maximum temperatures which prevailed when kernel filling would have taken place if
planting took place in November.

3.6.2. Maize Yield Relationship with Rainfall, Minimum and Maximum Temperature Anomalies

The monthly minimum, and maximum temperatures, as well as the rainfall that showed a
significant correlation with maize yield (see Table 9 above) were subjected to regression analysis.
The yield was the dependent variable while monthly Tmin, Tmax and rainfall were the independent
variables used across the different stations of the Setsoto Municipality. The influence of the Tmin on
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maize yield during the months of November and January in Marquard were significant (p < 0.00027
and p < 0.038, respectively) (Table 10). The Tmax during the month of February showed a significant
negative impact on maize yield when regression analysis was conducted (p < 0.005, R2 = 0.23) whilst
for the same month, rainfall showed a positive impact on the maize yield in Marquard. An increase of
one unit of rainfall in (mm) can increase the yield by 0.0921 tons ha−1 (Table 10).

Table 10. A summary of regression results between detrended maize yield and the climatic (Tmin, Tmax

and Rainfall) anomalies. Note: p = p-value at 0.05.

Months
Marquard Clocolan Senekal

Intercept p R2 Intercept p R2 Intercept p R2

Nov Tmin 0.274 0.0027 0.152 Nil Nil Nil Nil Nil Nil
Jan Tmin 0.572 0.038 0.135 Nil Nil Nil Nil Nil Nil
Feb Tmax −0.290 0.005 0.238 Nil Nil Nil 0.0290 0.000 0.432
Mar Tmax Nil Nil Nil Nil Nil Nil 0.408 0.003 0.262
GP Tmax Nil Nil Nil Nil Nil Nil 0.005 0.008 0.214

GP Rainfall Nil Nil Nil 0.005 0.008 0.214 Nil Nil Nil
Feb Rainfall 0.0094 0.018 0.174 0.015 0.000 0.472 Nil Nil Nil

GP Nil Nil Nil Nil Nil Nil Nil Nil Nil

In Senekal, maximum temperatures in the months of February, March as well as the entire growing
period (October–April) had a significantly positive impact on the maize yield (p < 0.05) (Table 10).
In February, for every increase in degree Celsius of Tmax above the base temperature led to an increase
of the yield by 0.3459 tons ha−1 year−1, while an increase in Tmax in March and the whole season of
the growing period (October–April) led to an increase of maize yield by 0.367 and 0.592 tons ha−1

respectively in Senekal (Table 10).
The effect of rainfall during the growing period and the month of February in Clocolan, showed a

significant and positive relationship with the maize yield (p < 0.05) (R2 = 0.214 and 0.472, respectively).
An increase in rainfall by a unit (mm), increased the yield from 0.1028 to 0.1179 tons ha−1 year−1

(Table 10).

3.6.3. Self-Calibrating Palmer Drought Stress Index

The average Self-calibrating Palmer Drought Severity index (ScPDSI) values for the growing
period October–April are shown in Table 11. The first decade (1885–1994) had normal rainfall in
Ficksburg, with a dry period in Clocolan and a wet period in Marquad and Senekal. The second decade
showed three of the stations having a dry period and in the third decade, again three stations showed
a dry period, with an extremely dry period being measured in Marquad. These decadal data support
the maize yield data shown in Figure 2 with the first decade having the least variable maize yield.

Table 11. The average Self calibrating Palmer Drought Severity index (Sc_PDSI) values.

Period Index Stations

Marquard Ficksburg Clocolan Senekal

1985–1994 Sc-PDSI 1.170776 0.097271 −1.52128 1.924278
1995–2004 Sc-PDSI 1.959666 −0.61539 −0.31812 −2.03299
2005–2016 Sc-PDSI −3.02268 −1.11227 2.235037 −0.10628

Rainfall is a key driver of yield [77]. The amount of rainfall in the month of February was
particularly strongly correlated (with r = 0.69) with yield in Clocolan and Marquard, adding further
support to earlier evidence that the rainfall and temperatures in February have a strong influence on
yield. The rainfall received in Clocolan had the lowest variability (CV 21%) when compared with the
other stations (CVs up to 49%). Clocolan receives an average rainfall of 593 mm, which was similar to
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the 500 mm rainfall reported by for the eastern part of the Free State province. The CV associated with
the total rainfall of 21–49% across the four stations was high and if either the total rainfall decreases,
or variability increases then the risk of crop failure will increase. The results in this study support the
findings of [78] who identified November as critical for the start of the growing season in Senekal.
Maize planted later than November becomes susceptible to the frost from May onwards before the
crops reach maturity [36] and expose the crop to increased rainfall variability. Maize planted in early
November, will allow for maximum tasseling and grain-filling in February, which is the most sensitive
period for water stress, even more, sensitive than the early establishment stages [79]. This study
showed that a 1% increase in the rainfall amount in February and the overall growing period can
increase the yield by 0.015- and 0.005-tons ha−1 respectively (Table 4). In most African countries
agricultural production depends solely on rainfall pattern, distribution and duration [80,81]. This study
confirmed the research by who indicated that high variability of rainfall threatens rain-fed agriculture
in South Africa. These findings are similar to other previous work showing declining rainfall patterns
in southern Africa.

4. Conclusions

The Tmin and Tmax trends showed variation across the weather stations used in this study.
For instance, the Tmin in Clocolan, showed a declining trend throughout the growing period between
October and April, while in Marquard the minimum temperature increased between October and
December. The maximum temperature was consistently increasing in all the stations except for
Clocolan, where a decline was only reported for the month of March. The November and February
trends are important for maize production that involves planting (leaf initiations, leaf and root growth)
and development (tasseling and grain filling) of maize, respectively. The entire growing period
(October–April) minimum and maximum temperatures for the period from 1985 to 2016, varied across
the four different stations of the Setsoto municipality. The increasing minimum and maximum
temperatures in all the stations of this study showed that: (1) where the minimum temperature is
currently too low for optimal growth, an increase in these temperatures will increase yield and (2) the
overall increase in both the minimum and maximum temperatures over time can negatively impact
yield, but the magnitude of the effect is dependent on when exactly the increases are taking place
during the growing season. November and February have been highlighted as specific times at which
the crop is most at risk.

The changes in rainfall were significant only in Ficksburg in the month of January with a value
of 2.34 mm year−1 Nevertheless, the rainfall showed a strong positive correlation with yield (r 0.46,
p ≤ 0.05). This study indicates that the rainfall variability is increasing in parts of the study area,
which could be attributed to several global and regional rainfall phenomena. There were some
periods where it did appear that the yield was below average, similarly, there were periods from
2006–2012, where the yield was above the average maize yield per hectare (2.42 tons ha−1). There are
some concerns, especially in the Senekal area, that it will be no longer economically viable for maize
production. Yield is not just a product of climatic variables, but also a combination of other agronomic
factors. The average rate of increase of yield in the Setsoto Municipality is 0.044 tons ha−1 per annum
across the stations.

The strongest positive correlation (46–68%) with yield and rainfall was during the growing period
in Clocolan. The changes in minimum temperature are having two different effects on the yield in
the area where: if it is colder, the yield will be negatively impacted; if it is getting warmer, where the
minimum temperature has previously limited yield, the yield will be positively impacted. Increasing
maximum temperatures still shows no negative impacts on maize yield except for a single month of
February in Marquard. Palmer drought stress indices should be explored further to help support more
accurate forecasting. This study serves as an important baseline of the impacts of agroclimatic variables
on maize yield at this local scale which is a key area of production. Farmers cannot make rapid
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decisions about farming practices, where to plant or whether to sell the land. This study contributes to
raising awareness about the risk of ongoing maize production in this area.
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