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Abstract: Crop yield depends on multiple factors, including climate conditions, soil characteristics,
and available water. The objective of this study was to evaluate the impact of projected temperature
and precipitation changes on crop yields in the Monocacy River Watershed in the Mid-Atlantic
United States based on climate change scenarios. The Soil and Water Assessment Tool (SWAT) was
applied to simulate watershed hydrology and crop yield. To evaluate the effect of future climate
projections, four global climate models (GCMs) and three representative concentration pathways
(RCP 4.5, 6, and 8.5) were used in the SWAT model. According to all GCMs and RCPs, a warmer
climate with a wetter Autumn and Spring and a drier late Summer season is anticipated by mid and
late century in this region. To evaluate future management strategies, water budget and crop yields
were assessed for two scenarios: current rainfed and adaptive irrigated conditions. Irrigation would
improve corn yields during mid-century across all scenarios. However, prolonged irrigation would
have a negative impact due to nutrients runoff on both corn and soybean yields compared to rainfed
condition. Decision tree analysis indicated that corn and soybean yields are most influenced by soil
moisture, temperature, and precipitation as well as the water management practice used (i.e., rainfed
or irrigated). The computed values from the SWAT modeling can be used as guidelines for water
resource managers in this watershed to plan for projected water shortages and manage crop yields
based on projected climate change conditions.

Keywords: representative concentration pathways (RCPs); global climate models (GCMs); adaptation;
soil and water assessment tool (SWAT); hydrology

1. Introduction

Water budgets and crop production are affected by climate variability and change, including rising
temperatures, less snowpack, and changing precipitation patterns [1–4]. There is evidence that natural
systems in all continents and most oceans are being affected by regional climate change, with measured
increases in temperature and atmospheric carbon dioxide (CO2) [5]. Ongoing changes and increases
in water demand can have significant effects on anthropogenic water demand water demand by
vegetation, water availability, water stress, and, thus, crop yield [3,6,7]. Projected changes in seasonal
variations in temperature and precipitation patterns and increasing greenhouse gases are expected to
strongly affect hydrological (water budget) and agroecosystem (crop production) processes [3,6,8].
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The impact of climate change on agricultural production varies through space and time,
with positive impacts in some agricultural systems and regions and negative impacts in others [9,10].
For example, in Northern Europe, temperature increases are expected to reduce grain yields of cereals
due to shortening of the grain filling period, while the combined effect of climate change is predicted to
be beneficial in other regions, such as Canada [11]. For moderate changes in climate, the adverse effects
of increased temperature on grain yields are expected to be offset by increased CO2 concentrations [11].
A study by Goldblum [12] in Illinois, USA concluded that corn and soybean yields would decline
under the variable future climate conditions, with a negative correlation between monthly temperature
and yields. Overall, it is expected that future climate changes are likely to improve crop productivity
in some areas and diminish it in others. It is important to assess the impact of climate changes on
future water resources in order to evaluate the adaptive agricultural management needed to maintain
expected crop productivity [13].

In the Mid-Atlantic USA, scientists have predicted a wide range of climate change-induced effects,
including changes in agricultural and forest production, degraded fisheries, and the influx of invasive
plants [14]. The Intergovernmental Panel on Climate Change (IPCC) estimated that by, year 2100,
the average temperatures in the Mid-Atlantic might increase by 1.34 to 5.78 ◦C compared to baseline
conditions, while summer precipitation is expected to decrease compared to baseline conditions [15].
In addition, rapid population growth and development in this region will likely increase the risk of
water insecurity and affect agricultural production. It is predicted that, by year 2040, the Mid-Atlantic
region might experience medium to high water stress driven by high water demand [16]. The water
permit database in the Mid-Atlantic state of Maryland indicated that seasonal variability is driving more
irrigation withdrawals to meet increased crop water demand. For proper water resource management,
regional water resource managers need information on the projected changes in water demand in
response to future climate change.

It is important for researchers, policymakers, and water resource managers to understand
watershed scale hydrological processes to estimate forthcoming water stress and crop water demand.
Researchers estimated water stress and crop productivity under different climate change conditions
using both field experiments and modeling [13,17,18]. Researchers have evaluated the impacts of
climate change on watershed hydrology and crop yield under existing management practices [19] or
the effects of different irrigation conditions, such as irrigation amounts [20], timing, and frequency [21].
Very few studies have evaluated the benefits of adaptive irrigation conditions over existing rainfed
conditions from field-scale experiments [22] to regional scale modeling approaches [21] for limited
climate change scenarios. To the best of our knowledge, no study has evaluated watershed scale
effectiveness of adaptive irrigation strategies on existing rainfed conditions for a broad range of
plausible climate change scenarios.

To address this knowledge gap, we conducted a holistic investigation of Mid-Atlantic USA water
resources to determine the impacts of climate change on different components of water balance and
crop yield. The Monocacy River Watershed was selected as a representation of the Mid-Atlantic USA,
and the hydrologic model was developed for this watershed. The use of hydrologic models in planning
and management of water resources and analyzing the impact of climate change on water components
has become more important and common. Using hydrologic model, managers can choose effective
measures and implement adaptive management strategies to overcome a wide range of plausible
future conditions and events. The main objectives of this study were:

(1) to assess the impact of future climate changes on watershed hydrology;
(2) to investigate the impact of future climate changes on crop yields;
(3) to evaluate the effects of irrigation as an adaptive strategy on crop yields; and
(4) to identify the potential hydrological components that influence the crop yields.
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2. Materials and Methods

2.1. Study Area

The Monocacy River Watershed is in the northeast Potomac River basin and extends to parts of
Adams County in Pennsylvania and Frederick and Carroll Counties in Maryland, USA (Figure 1).
The Monocacy River is the largest Maryland tributary to the Potomac River, and agriculture is the major
land use in this watershed. According to the 2018 United States Department of Agriculture’s (USDA)
Crop Data Layer [23], the Monocacy River Watershed is dominated by agricultural land (51.1%),
followed by forested (36.2%) and urban areas (12.1%). Within this watershed, the most prominent
croplands are corn (13.1%) and soybeans (10.8%) (Table 1). The average temperature in the region is
24 ◦C during the summer and 3 ◦C during the winter [24]. The average annual precipitation is 1105
mm, with monthly averages ranging from 64 to 115 mm. Snow accumulation occurs mainly in January,
February, and March.
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The prominent sources of water for crop production are groundwater and rainfall. A dense network
of streams drains the water through the watershed, and fractured bedrock aquifers underlie this basin,
which continually discharges groundwater into streams to sustain healthy aquatic ecosystems [25].
Groundwater is stored in interconnected fractures of bedrock aquifer and drains the basin rapidly due
to minimal primary porosity and permeability; therefore, future drought (winter or summer) could
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negatively impact both water resources (groundwater and surface water) and crop yields. As with
most watersheds in the Mid-Atlantic, the hydrology of the Monocacy River Watershed, with its
stream/aquifer system, is highly seasonal. The recharge period for the watershed’s aquifer is late fall
and winter, and both aquifer levels and stream flows tend to be highest during the wintertime and
lowest in the summertime due to high evapotranspiration rates [25]. In this region, water availability
problems typically occur in late summer and early fall (July, August, and September) [25].

Table 1. Land use and land cover in the Monocacy River Watershed based on 2018 Crop Data Layer.

Land Use/Cover Area (acres) Area (km2) Watershed Area (%)

Forest 189,307.88 766.10 36.24
Agricultural Land 268,109.67 1085.06 51.33

Urban Area 68,957.65 255.12 12.07
Grassland 1243.05 5.03 0.24

Water 662.31 2.68 0.13

Agricultural Land Area (acres) Area (km2) Watershed Area (%)

Hay 75,540.25 305.70 14.46
Corn 68,321.40 276.49 13.08

Pasture 58,279.52 235.85 11.16
Soybean 56,368.50 228.12 10.79

Winter Wheat 8315.58 33.65 1.59
Alfalfa 935.82 3.79 0.18
Apple 362.05 1.47 0.07

2.2. Hydrologic Model

In this study, the Soil and Water Assessment Tool (SWAT) [26], which is a physically-based,
semi-distributed, hydraulic model, was used to quantify the impact of climate change on the hydrology and
the crop production of the Monocacy River Watershed. In a semi-distributed model, a watershed is broken
down into smaller sub-basins, and a hydrologic system is estimated based on physically based algorithms.
Runoff amounts from methods such as unit hydrograph are used to estimate streamflow from each of
these sub-basins. SWAT was developed to evaluate the impact of climate and land management practices
on watershed hydrology in large and complex watersheds over long periods of time [27]. Worldwide,
the SWAT model has been used to analyze the effects of climate change scenarios on current watershed
conditions and crop production [18,28,29]. Researchers have previously applied the SWAT model to
investigate adaptive management practices to mitigate climate change-induced alterations [6,30].

During model development, the watershed was divided into a number of sub-basins and
categorized into hydrological response units based on homogeneous soil types, land-use types,
and slope classes, allowing for a high level of spatially detailed simulations. The SWAT model uses
a water balance equation (see Equation (1)) to estimate the different water balance components of
water resources (e.g., blue and green waters) at both the subbasin and the hydrological response unit
level [26,27,31]. Blue water includes water flows through or below the land surface and stored in lakes,
reservoirs, and aquifers, and green water includes the portion of precipitation that infiltrates and is
stored as soil water storage and then returns to the atmosphere via transpiration and evaporation.

SWt = SW0 +
t∑

n=i

(P−Qsur f − ET−wseep −Qgw) (1)

where SWt and SW0 are the changes in soil water storage at times t and 0, P is precipitation, Qsurf is
surface runoff flow, ET is evapotranspiration, wseep is aquifer recharge, and Qgw is groundwater flow.

For the water budget, the SWAT model differentiates between solid and liquid precipitation based
on near-surface air temperature. If the air temperature is lower than the snowfall temperature, then the
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precipitation is considered solid, i.e., snow, which will accumulate until it begins to melt [31]. In SWAT,
snowmelt is estimated through a mass balance approach, as shown in Equation (2).

SNO = SNO + Rday − Esub − SNOmlt (2)

where SNO is the total amount of water in the snowpack on a given day (mm H2O), Esub is the amount
of sublimation (mm H2O), and SNOmlt is the amount of snowmelt (mm H2O). Changes in snowpack
volume depend on additional snowfall or release of meltwater in the basin. A more comprehensive
description of the equations used by SWAT can be found in [31].

2.2.1. Model Input and Data Collection

The adapted workflow applied in this study is shown in Figure 2. The ArcSWAT 2012 version [32]
was used to delineate the watershed. The SWAT model requires elevation, soil, land use, and climate
data to simulate physical processes of watershed hydrology, such as streamflow, evapotranspiration
rates, surface runoff, and groundwater storage. The required input data were extracted as follows: 30 m
digital elevation model from United States Geological Survey (USGS) National Elevation Dataset [33],
30 m land use data from the 2018 Crop Data Layer [23], and 1:250,000 scale State Soil Geographic Data
(STATSGO) included in the SWAT 2012 database. Daily precipitation and daily maximum and minimum
temperature data for 35 years (1981–2015) were obtained from the National Climatic Data Center (NCDC)
for the climate stations that fall within or are adjacent to the watershed boundary. Other related climatic
data (e.g., wind velocity, relative humidity, and solar radiation) were used from the internal weather
generator of the ArcSWAT database. For model calibration and validation, the observed average monthly
streamflow was obtained from the USGS streamflow stations (USGS 01643000) located at the outlet of
Monocacy River Watershed at the Jug Bridge near Fredrick, Maryland (Figure 1).
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Figure 2. Comprehensive approach of future climate model application in the Soil and Water Assessment
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respectively, showing the digital elevation model (DEM), the hydrologic response units (HRU), and the
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2.2.2. Future Climate Data

While assessing hydrological processes in response to climate change is challenging, the impact of
climate change on water resources and crop yields can be estimated using future climate projections
from general climate models (GCMs). Various hydrologic models have incorporated projections from
GCMs to simulate watershed hydrology and agricultural production [8,11,34].

Among the family of GCMs available from U.S. Reclamation [35], only 11 GCMs have both
historical and all three future RCPs climate scenarios included. Four GCMs were selected that were
representative of overall climate conditions in our study region. The four downscaled GCMs from 2016
to 2099 were then used as future climate data to run the model (Table 2). For each GCM, three emission
representative concentration pathways (RCPs) scenarios (RCP 4.5, RCP 6, and RCP 8.5) were used.
Each RCP is defined in the IPCC special report [36]. RCPs 4.5 and 6 are intermediate scenarios where
radiative forcing is stabilized at approximately 4.5 and 6.0 W m−2 (Watt per m2) with temperature
increases of about 2.4 and 2.8 ◦C by 2100, respectively. RCP8.5 is a high GHG emission scenario where
radiative forcing reaches greater than 8.5 W m−2 and temperature increase of 4.3 ◦C by 2100 [36].
The downloaded downscaled data (daily maximum and minimum temperature and precipitation)
were bias corrected using the climate model data for the hydrologic modeling (CMhyd) tool where the
distribution mapping method was used.

Table 2. Coupled Model Intercomparison Project Phase 5 (CMIP5) model descriptions and their origins,
collected from U.S. Reclamation [35].

CMIP5 Model Description

CCSM4 US National Centre for Atmospheric Research, Community Climate
System Model

GFDL-ESM2M National Oceanic and Atmospheric Administration (NOAA)
Geophysical Fluid Dynamics Laboratory Earth System Model

MIROC-ESM
University of Tokyo, National Institute for Environmental Studies,

and Japan Agency for Marine-Earth Science and Technology (MIROC)
Earth System Model

IPSL-CM5A-LR Institute Pierre-Simon Laplace Climate Model 5A, Low-Resolution

The downscaled CMIP5 climate data available from Bureau of Reclamation [36] were used in this
study. The climate data from GCMs (with resolution > 1◦) were downscaled to continuous US (1/8◦

i.e., ~14 km) using bias-correction constructed analogues (BCCA) method [36]. To provide the general
estimate of GCM projections, an ensemble mean of all GCMs was used during the analyses.

2.2.3. Management Scenarios

According to crop data layer data, grain crops such as corn and soybean are the most prominent
cultivated crops in the Monocacy River Watershed [23]. This study calibrated and validated crop yields
for only corn and soybean to evaluate future climate change impacts on these crop yields. Corn is
typically planted by the end of April through mid-May. Full season soybeans are planted in early-May,
with double-crop soybeans planted after wheat harvest, typically mid to late June. Agricultural
practices in this region are mainly rainfed agriculture, which was included as the baseline condition
(i.e., during calibration and validation).

To evaluate future climate change impacts on watershed hydrology and water availability for crop
production, crop yields were simulated under current conditions (rainfed). After evaluating future
climate change impacts on crop yields under rainfed conditions, a modified management practices
(irrigation) was used to evaluate crop yield variation compared to the baseline condition. The irrigation
practice in the SWAT model can be assigned in two ways: (a) “auto-irrigation” or (b) scheduled
irrigation, which does not consider soil moisture and plant water demand. The auto-irrigation scheme
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uses plant or water stress to determine the timing of irrigation for optimum crop yield. In this study,
we applied the “auto-irrigation” based on plant water demand approach, which was suitable for
determining impact of climate on future irrigation demand and crop yield in the region. According to
this approach, the SWAT model applies the water based on a user-defined water stress or “plant stress”
(ratio of actual to potential plant transpiration). Plant stress is varied over the growing period, such as
0.5–0.95 during early and late season and 0.4–0.6 during mid-season [37]. In this study, an average of
0.75 was used, which assumes that, if the plant is experiencing 25% water stress, an additional amount
of water (user-defined) will be applied from the assigned water source (groundwater, surface water,
or reservoir). If no value is provided, the SWAT assigns a default irrigation amount of 25.4 mm (1 inch).

Climate change impacts on specific management practices, such as precise irrigation timing and
frequency and manure application, were not included in the SWAT model due to the lack of reliable
field data sources. The RCP scenarios project changes in precipitation and temperature based on the
future CO2 emissions. Beside the changes in temperature and precipitation, the elevated atmospheric
CO2 concentration in future climate as projected by RCP scenarios is likely to affect growth, physiology,
and chemistry of plants (e.g., elevated CO2 tends to reduce stomatal opening in plants, reducing the
transpiration rate), which could affect the overall water cycle. However, the SWAT model uses a
constant CO2 concentration, with the default value of 330 ppm for an entire simulation run. This limits
the model from incorporation the influence of elevated CO2 concentration on water cycle and crop
yield in this study.

2.3. Model Setup, Calibration, and Validation

The watershed was discretized into 29 sub-basins using 3% flow accumulation area threshold,
and all sub-basins were further discretized into hydrologic response units using 2, 5, and 5% thresholds
for land use, soil, and slope classes, respectively. The Penman–Monteith method [38] was used to
compute potential evapotranspiration. The modified soil conservation service (SCS) curve number
method [27,31] and the Muskingum routing method [31] were used to estimate the surface runoff and
the channel routing of the watershed.

A set of 17 parameters were selected for calibration representing surface, subsurface, and channel
hydrologic responses (Table 3). The parameters and their initial ranges were selected based on the
suggestions from model developers presented in the SWAT 2012 manual [26] and a literature review of
existing studies in areas with close proximity [39–42].

To represent the hydrological response of the watershed, hydrographs between observed and
model-simulated monthly streamflow were compared at the watershed outlet (Figure 1). The model
was calibrated for 15 years (1986–2000) with a 5-year warm-up period and was validated for another
15 years (2001–2015). For the calibration process, the Sequential Uncertainty Fitting version 2 (SUFI-2)
algorithm [43] was applied, following the calibration protocol [28] and the technique described in Paul
and Negahban-Azar [44]. Nash–Sutcliffe efficiency (NSE) was used as an objective function to measure
the agreement between simulated and observed streamflow hydrographs. To evaluate the goodness
of fit between the observation and the best simulation, three statistical criteria—correlation coefficient
(R2), Nash–Sutcliffe coefficients (NSE), and percent bias (PBIAS)—were calculated. R2 evaluates fit,
NSE evaluates the peak flows, and PBIAS with low-magnitude values indicate accurate model simulation
(positive and negative values indicate model overestimation and underestimation bias, respectively) [44].
According to [45], the streamflow for a monthly time-step has a satisfactory NSE greater than 0.50,
a satisfactory R2 greater than 0.60, and a satisfactory PBIAS should be ±15%. (Table 4).

After obtaining the best estimates of the parameters for streamflow calibration, the model was
calibrated and validated for annual crop yield for two major crops (corn and soybean) in the Monocacy
River Watershed. Observed crop yields were collected for 1980–2015 from the USDA National
Agricultural Statistics Service (USDA-NASS) [23]. Crop yields are reported by NASS at the county
level in bushels/ac unit; however, the SWAT estimates in kg/ha (dry yield) with 20% moisture content at
harvest time [46]. Since the Monocacy River Watershed lies within three counties, the average observed



Climate 2020, 8, 139 8 of 20

yield conversion from county level was averaged to watershed scale and presented here in kg/ha unit.
For crop yield simulation, standard deviation (SD) and PBIAS were used as the evaluation criteria
following methods used in previous studies [46,47].

Table 3. The list of parameters used for model calibration for the study watershed.

Parameter Definition Initial Range Calibrated Value

Soil Water
SOL_K Soil saturated hydraulic conductivity (mm/hr) −25 to 25 7.15

SOL_AWC Available soil water capacity (mm H2O/mm soil) −25 to 25 19.15

Groundwater
ALPHA_BF Baseflow recession constant (days) 0.01 to1 0.878
GW_DELAY Groundwater delay (days) 1 to 500 32.50
GW_REVAP Groundwater “revap” coefficient 0.01 to 0.2 0.087
REVAPMN Re-evaporation threshold (mm H2O) 0.01 to 500 495.5
GWQMN Threshold groundwater depth for return flow (mm H2O) 0.01 to 5000 3745

Surface Runoff
CN2 Curve number for moisture condition II −0.3 to 0.3 0.064

EPCO Plant uptake compensation factor 0.01 to 1 0.643
ESCO Soil evaporation compensation factor 0.01 to 1 0.939

Channel Flow
CH_N(2) Main channel Manning’s n 0.01 to 0.15 0.023
CH_K(2) Main channel hydraulic conductivity (mm/hr) 5 to 500 491.5

Snow
SFTMP Snowfall temperature (◦C) 0 to 5 2.1

SMFMN Melt factor for snow on December 21 (mm H2O/◦C-day) 0 to 10 7.1
SMFMX Melt factor for snow on June 21 (mm H2O/◦C-day) 0 to 10 7.3
SMTMP Snow melt base temperature (◦C) −2 to 5 3.1

TIMP Snow pack temperature lag factor 0 to 1 0.35

Table 4. Evaluation criteria for calibration and validation performance for the hydrologic model.
Adapted from Moraisi et al. [44].

Measure Very Good Good Satisfactory Not Satisfactory

R2 =
[
∑

i(Yobs,i
−Yobs

mean)(Ysim,i
−Ysim

mean)]
2

∑
i

√
(Yobs,i

−Yobs
mean)

2∑
i

√
(Ysim,i

−Ysim
mean)

2
R2 > 0.85 0.0.75 < R2

≤ 0.85 0.60 < R2
≤ 0.75 R2

≤ 0.6

NSE = 1−
∑

i(Yobs
−Ysim)

2∑
i(Yobs

−Yobs
mean)

2 NSE > 0.80 0.70 < NSE ≤ 0.80 0.50 < NSE ≤ 0.70 NSE ≤ 0.50

PBIAS(%) =
∑n

i=1(Y
obs
−Ysim)∑n

i=1 Yobs × 100 PBIAS < ±5 ±5 ≤ PBIAS < ±10 ±10 ≤ PBIAS < ±15 PBIAS ≥ ±15

R2: correlation coefficient, NSE: Nash–Sutcliffe coefficients, PBIAS: percent bias.

2.4. Simulation Scenarios for Future Evaluation

After a successful calibration and validation process, the calibrated model was simulated for
the combination of four GCMs, three RCPs, and two management approaches (Table 5). The model
configurations were designed in a logical way to evaluate the reasonable future impacts with respect
to a current baseline condition. First, the SWAT model was calibrated for 15 years (1986–2000) and
validated for another 15 years (2001–2015) using observed data from NCDC. Every GCM has their
own historical climate data (1950–2000) from which each projection (RCPs 4.5–8.5) was estimated.
The historical climate data were then used within the calibrated model as “reference data” for the
baseline period (1986–2000) (Table 5). Three RCPs for the four GCMs were run with two sets of
management conditions (24 scenarios in total, Table 5). To evaluate the climate change effects on
watershed hydrology and crop yields results, all the scenarios were compared with the baseline period.
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Table 5. Evaluation criteria for calibration and validation performance for the hydrologic model.
Adapted from Moraisi et al. [45].

Categories Model Simulation Period Climate Data

Baseline Scenario

Calibrated

1986–2000

NCDC Data

CCSM4

GFDL-ESM2M

MIROC-ESM

IPSL-CM5A-LR

With “Current Rainfed” and
“Adaptive Irrigation”

Management
RCPs 4.5/6.0/8.5 2025–2099

CCSM4

GFDL-ESM2M

MIROC-ESM

IPSL-CM5A-LR

The simulation results were presented for two future time periods (2035–2049 and 2085–2099),
representing mid- and late-century, respectively. All the results were compared to the baseline condition
(1986–2000) to evaluate the impacts of climate change on irrigation demand. The relative changes
in average monthly evapotranspiration, surface runoff, and water yield simulated from the SWAT
model were evaluated under three RCPs and for both mid and late-century. The impact on future crop
yields is also presented for both mid- and late-century for “current rainfed” and “adaptive irrigated”
conditions. To analyze future impacts, all the results were shown as percent changes so that modeling
uncertainties would not strongly affect the overall perspective.

To identify the potential hydrological components that influence crop yield, multiple machine
learning techniques were evaluated, including decision tree and random forest. The decision tree
approach was used in this study, as decision trees and/or their variants have been applied in water
science and management sectors to predict the multitude of water-related predictor variables [48–50].
The decision tree is a non-parametric machine learning modeling method that splits the tree into
branches based on the predictor variables according to the local optimal decision rule to predict the
variable of interest [50]. The technique is more interpretable and fast to compute. Random forest is
based on the fitting of an ensemble of uncorrelated decision trees to randomly subset the input data to
get an optimum prediction by choosing the majority among the decision trees [50] but can be hard to
interpret [48,49] and therefore was not used in this study.

3. Results and Discussion

3.1. Evaluation of SWAT Performance

3.1.1. Model Performance for Hydrology

The observed monthly streamflow was captured well by the model simulation during both the
calibration and the validation periods (Figure 3). The goodness of fit scores R2, NSE, and PBIAS values
were 0.78, 0.78, and 3.78 for calibration and 0.65, 0.65, and 5.8 for the validation period, respectively.
According to the performance criteria suggested by [45], the calibration performance was “good”,
and validation was “satisfactory” for predicting monthly streamflow in the Monocacy River Watershed
(Table 4). From the hydrograph (Figure 3), it was noticeable that, during the validation period,
the Monocacy River Watershed experienced drier periods than the calibration period, which resulted in
comparatively low R2 and NSE values for the validation period. After the successful model calibration,
the calibrated parameters (Table 3) were inserted to the 28 models (Table 5) to simulate the streamflow
under future climate projections.
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Figure 3. Hydrographs showing the comparison of observed and simulated average monthly streamflow
during (a) calibration (1986–2000) and (b) validation (2001–2015) period at the outlet of the Monocacy
River Watershed.

3.1.2. Model Performance for Crop Yield

The annual crop yields for corn and soybean were simulated and compared with the observed
yields collected from USDA-NASS. The model was able to simulate the annual corn and soybean yields
for both the calibration (1986–2000) and the validation (2001–2015) periods satisfactorily (Figure 4).
The calibration and validation PBIAS values were −14.38% and 7.83% for corn yields and 3.21% and
15.58% for soybean yields, respectively.Climate 2020, 8, x FOR PEER REVIEW 11 of 22 
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Figure 4. Comparison of National Agricultural Statistics Service (NASS)-observed and SWAT-simulated
crop yields for corn and soybean for the (a) calibration (1986–2000) and the (b) validation period
(2001–2015).

The model’s prediction showed higher variations with wetter years and extremely dry years.
The SD was estimated for simulated and observed corn and soybean yields in both the calibration
and the validation periods to capture the interannual variability. During the calibration and the
validation periods, the SD values for the observed corn yields were 1192.37 and 1421.18 kg/ha,
respectively, which shows a larger difference than the observed soybean yields (157.1 and 329.15 kg/ha).
Comparatively, the SWAT simulated crop yields showed less interannual variability for both corn
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and soybean yields. Smaller SD values were found for simulated corn yields, with 138.85 and
75.2 kg/ha during the calibration and the valuation periods, respectively. The lowest variability was
obtained for the simulated soybean yields, with 43.35 and 20.9 kg/ha during calibration and valuation
periods, respectively.

In this study, the model was designed for rainfed corn and soybean. Although the watershed
is dominated by non-irrigated (rainfed) management system, minimal irrigation is applied based
on the field requirements (soil condition, crop requirement). In addition, due to lack of field data,
we used a fixed amount of fertilizer application throughout the simulation period. Therefore, irrigation
application during seasonal droughts and different amount of fertilization application were not
considered during the model development.

3.2. Future Climate Projections

The projected climate changes were analyzed for two distinct periods (2035–2049 and 2085–2099)
across all four GCMs and three RCPs and compared to the baseline condition (1986–2000). Figure 5
shows the relative percentage changes of average monthly precipitation for 2035–2049 and 2085–2099
under the three RCP scenarios. Figure 6 shows the relative change in the monthly maximum
and minimum temperatures for three RCPs compared to the baseline period. It was noticeable
that, compared to baseline period, the average monthly precipitation and maximum and minimum
temperatures were varied among all three RCPs, with a higher uncertainty for late-century compared
to mid-century.

During mid-century, the monthly precipitation increased largely from December to March and
from June to August, ranging from 9 to 35% and 6 to 36% increases, respectively, across all RCPs
(Figure 5). Similarly, during late-century, the monthly precipitation increased largely during November
to March and June to August, ranging from 15–48% across all RCPs, except in June for RCP 6, when the
mean precipitation decreased (−3%). However, monthly precipitation was projected to decrease in
October for all RCPs in both mid (−15 to −26%) and late-century (−1 to −7%). Larger uncertainties for
the monthly precipitation were found during January and March during mid-century and February
and March during late-century. However, the largest anomaly in precipitation was found for RCP 6
during mid-century.
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3.3. Impact of Future Climate Projections 

3.3.1. Impact on Water Balance 

Figure 5. Seasonal variation of monthly precipitation during mid (2035–2049) and late century
(2085–2099) relative to baseline period (1986–2000) for three RCPs (4.5, 6, and 8.5). The straight lines
show the mean monthly precipitation, and the shaded area shows the range of the precipitation
variation within the global climate models (GCMs).
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3.3.1. Impact on Water Balance 

Figure 6. Seasonal variation of monthly maximum and minimum temperatures during mid (2035–2049)
and late century (2085–2099) relative to baseline period (1986–2000) for three RCPs (4.5, 6, and 8.5).
The straight lines show the mean monthly maximum and minimum temperatures, and the shaded area
shows the range of the temperature variation within the GCMs.

Predictions by the ensemble of four GCMs showed the highest monthly temperature change
during the summer months of June, July, and August. From Figure 6, it was noticeable that both
maximum and minimum temperatures during late-century (2085–2099) would be much higher than
mid-century (2035–2049). The largest monthly maximum (10.7 ◦C) and minimum temperature (8.8 ◦C)
changes were found during the 2085–2099 period under the RCP 8.5 scenario. The magnitude of the
projected maximum temperature varies widely during the late-century. These combined effects of
precipitation and temperature changes indicate that wetter fall and spring and a drier late summer
(harvest period) can be anticipated in the future.

3.3. Impact of Future Climate Projections

3.3.1. Impact on Water Balance

A water balance provides crucial information about the hydrological characteristics of the
watershed [51]. The changes in water balance in response to climate change can have a profound
impact on agricultural productivity and irrigation requirements [47]. Since seasonal variability
influences the crop productivity and yield, monthly water balance components were analyzed to
understand the changes at the seasonal scale. The comparison of water balance components between
two management scenarios (rainfed and irrigated conditions) are shown in Figures 7 and 8. The SWAT
simulated outcomes showed that the differences among the GCM projections led to differences in
water balance across all emission scenarios and between the management scenarios.

In response to increased precipitation and temperature (Figures 3 and 4), there was an overall
increase in the average monthly surface runoff and water yield for both mid and late-century
(Figures 7 and 8). Water yield is defined as total amount of blue water that is leaving the HRU and
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entering into the main channel and was estimated as the sum of surface runoff, lateral flow, and base
flow. Average monthly surface runoff showed increases up to 21, 254, and 97% for mid-century and
increases up to 98, 82, and 163% for late-century under RCPs 4.5, 6, and 8.5, respectively. Similar
results were found for water yield where, on average, water yield increased under all three RCPs.
According to all four GCMs, the water yield increase at the largest scale under RCP 6 was up to
103.86% for mid-century (Figure 7) and up to 83% under RCP 8.5 for late-century (Figure 8) compared
to the baseline condition. During mid-century, higher precipitation under RCP 6 contributed to higher
surface runoff, which resulted in higher water yields compared to other RCPs (Figure 7). The average
monthly evapotranspiration showed comparatively smaller increments up to 21, 16, and 23% for
mid-century and 26, 34, and 57% for late-century under RCPs 4.5, 6, and 8.5.

Under irrigated conditions, it was noticeable that potential temperature and precipitation change
resulted in higher plant stress, with irrigation needed to mitigate this plant stress. This indicates
that higher temperatures may induce more evaporative loss that elevates water stress and thus
increases the demand for irrigation. The irrigated condition model simulations showed that corn
production had mean annual irrigation needs of 127–146 m3/ha and 131–137 m3/ha for mid-century and
late-century, respectively. The mean annual irrigation needs for soybeans production were projected to
be 131–155 m3/ha and 147–161 m3/ha during mid-century and late-century, respectively.Climate 2020, 8, x FOR PEER REVIEW 14 of 22 
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Figure 7. Changes in monthly precipitation, evapotranspiration, surface runoff, and water yield for
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Climate 2020, 8, 139 14 of 20

Climate 2020, 8, x FOR PEER REVIEW 15 of 22 

 

Figure 8. Changes in monthly precipitation, evapotranspiration, surface runoff, and water yield for 
late-century (2085–2099) under three scenarios: RCP 4.5, RCP 6, and RCP 8.5. The results are presented 
as the relative percentage change compared to the baseline period (1986–2000). 

3.3.2. Impact on Crop Yield 

The simulated results suggest that, under the “current rainfed” condition, future climate changes 
might contribute to a wide variation in corn and soybean yields (Figure 9). During the mid-century, 
a small increase in mean annual corn yields was found under RCP 6 (+3.2%) with slight declines 
under RCP 4.5 (−3.8%) and 8.5 (−1.9%) scenarios relative to the baseline period. Unlike the corn yield, 
the mean soybean yield increased during mid-century by 11.2%, 46.3%, and 19.3% under RCP 4.5, 
RCP 6, and RCP 8.5, respectively.  

Both corn and soybean yields decreased across all RCPs in the late-century, except in RCP 4.5, 
where soybean yields slightly increased. For corn, the mean annual yield declined by 3.4, 4.5, and 
13% under RCP 4.5, RCP 6, and RCP 8.5, respectively. Meanwhile, the mean annual soybean yield 
decreased by 12.6 and 20.5% under RCP 6 and RCP 8.5, respectively, and increased by 2.6% under 
the RCP 4.5 scenario.  

These results indicate that the higher temperatures during April to May may result in overall 
decline in corn yields during mid- and late-century and soybean yields during late-century. 
However, during mid-century, the combined effect of precipitation and temperature change might 
lead to a positive impact on soybean production in this region. Overall, the aggregate impact of four 
GCMs shows that the relative decline in yield for both corn and soybeans was larger for RCP 6 and 
8.5 in the late-century. The less water availability during the crop growing period due to higher 
temperatures may result in a substantial decline in corn and soybean production in the late-century. 
A previous study showed that dry conditions in the corn planting period are crucial for seed 

Figure 8. Changes in monthly precipitation, evapotranspiration, surface runoff, and water yield for
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as the relative percentage change compared to the baseline period (1986–2000).

As a result of additional irrigation application, average monthly surface runoff increased, especially
between June to September (Figures 7 and 8). Higher surface runoff resulted in higher water yield
during mid- and late-centuries across all emission scenarios compared to the rainfed condition
(Figures 7 and 8). Compared to baseline condition, the corresponding water yield increased up to
113% and 100% during mid-century and late-century, respectively.

3.3.2. Impact on Crop Yield

The simulated results suggest that, under the “current rainfed” condition, future climate changes
might contribute to a wide variation in corn and soybean yields (Figure 9). During the mid-century,
a small increase in mean annual corn yields was found under RCP 6 (+3.2%) with slight declines
under RCP 4.5 (−3.8%) and 8.5 (−1.9%) scenarios relative to the baseline period. Unlike the corn yield,
the mean soybean yield increased during mid-century by 11.2%, 46.3%, and 19.3% under RCP 4.5,
RCP 6, and RCP 8.5, respectively.

Both corn and soybean yields decreased across all RCPs in the late-century, except in RCP 4.5,
where soybean yields slightly increased. For corn, the mean annual yield declined by 3.4, 4.5, and 13%
under RCP 4.5, RCP 6, and RCP 8.5, respectively. Meanwhile, the mean annual soybean yield decreased
by 12.6 and 20.5% under RCP 6 and RCP 8.5, respectively, and increased by 2.6% under the RCP
4.5 scenario.
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These results indicate that the higher temperatures during April to May may result in overall
decline in corn yields during mid- and late-century and soybean yields during late-century. However,
during mid-century, the combined effect of precipitation and temperature change might lead to a
positive impact on soybean production in this region. Overall, the aggregate impact of four GCMs
shows that the relative decline in yield for both corn and soybeans was larger for RCP 6 and 8.5 in the
late-century. The less water availability during the crop growing period due to higher temperatures
may result in a substantial decline in corn and soybean production in the late-century. A previous
study showed that dry conditions in the corn planting period are crucial for seed germination and
higher yield [52]. A study by Kukal and Irmak [9] also found that temperature increases have negative
impacts on soybean yields in the US Great Plains.
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The frequency and the intensity of irrigation can significantly influence plant growth and watershed
hydrology [53]. Irrigation application did not show any clear improvement in crop growth in this case
study compared to the rainfed condition, except for increased corn yield during mid-century as a result
of irrigation. Under adaptive irrigated conditions, the mean corn yield increased by 11, 25, and 13% for
RCPs 4.5, 6, and 8.5, respectively, in mid-century. Some crops, such as corn, are highly sensitive to
plant water stress [54], thus, additional irrigation during critical stages of maturity results in higher
yield [55]. As a result of supplementary water through irrigation during water stress, the corn yield
improved compared to the rainfed condition. However, during late-century, under irrigated condition,
corn yields declined up to 17% compared to the rainfed condition (Figure 9, Late-century).

In the case of soybeans, the effect of irrigation on mean soybean yields varied across climate
scenarios and time periods. In mid-century, irrigation marginally improved the soybean yield by 1.4%
and 1% under RCPs 4.5 and 8.5, respectively, compared to rainfed condition, while a 5% decline was
found under RCP 6. During the late-century, the mean soybean yields declined up to 20.5% compared
to baseline conditions.
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Increased surface runoff due to additional irrigation practices has the potential to increase nutrient
transport to surface waters. A study by Sun et. al. [56] found that continuous irrigation without soil
conservation practices could reduce soil quality and crop production. The decline in both corn and
soybean yield during late-century could be due to the effect of prolonged irrigation on soil properties
(i.e., nutrient content). This suggests that watershed management efforts should focus on developing
other adaptation strategies, including irrigation timing and frequency, with fertilization application based
on soil characteristics to address the effects of climate change on sustainable agricultural production.

3.4. Selecting Important Predictors for Adaptation

The future projections of corn and soybean yields based on the three RCP scenarios were further
interpreted with the decision trees to provide clear guidance to decision makers. Within the decision
trees, variables were partitioned based on a set of rules embedded in a decision tree, where each node
splits according to a decision rule. The algorithm selects the best feature among the randomly selected
attributes (e.g., precipitation, temperature, soil moisture) to predict the optimum crop yield under these
conditions. Figure 10 shows the decision tree results for corn and soybean yields for both irrigated and
rainfed conditions under RCP 4.5. Each decision tree was based on precipitation, soil water storage,
evapotranspiration, temperature, and irrigation requirement (during irrigated condition) as predictor
variables. The regression tree was applied for each RCP that resulted in the most simulated values in
the terminal nodes (i.e., crop yield).Climate 2020, 8, x FOR PEER REVIEW 18 of 22 
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The constructed decision trees showed that, for RCP 4.5, the first split was always based on soil
water storage (Figure 10). For both management practices, the right node (interested boxes) was used
as a decisive split for corn (SW ≥ 421 and 420) and soybean (SW ≥ 434 and 420) yields. Moving down
the right nodes (inserted boxes), the larger portions of the crop yields (i.e., corn and soybeans) were
found in all decision trees. The right nodes represent the largest percentage of the total crop yields,
and thus were used as decisive splits. For example, under RCP 4.5, the corresponding percentages of
these right nodes were sums of 79.8, 71.5, 71.4, and 72.6%.

Unlike RCP 4.5, temperature was found as the most important variable for RCPs 6 and 8.5,
which was placed in the right node after the first split under both runs (rainfed and irrigated)
(Supplementary Figure S1). However, for corn yields under RCP 6 and rainfed condition, precipitation
was found as the most important variable.

It is also notable that, with irrigation application, a slight mitigation (i.e., higher yield) may
be achieved for corn production (Figure 10). For example, a similar split (SW > 420) in the right
node showed irrigation application could have resulted higher corn production (5188–6844 kg/ha)
compared to rainfed (5081–5514 kg/ha). Under all RCPs, “crop irrigation” variable was used to
split the node where higher irrigation application showed higher corn yield compared to rainfed
condition (Figure 10). Similar results were found by Vogel et al.’s [57] analysis of a global crop yield
dataset, where temperature-related extremes showed a stronger association with maize, soybeans, rice,
and spring wheat yield anomalies, and irrigation partly mitigated negative effects of these extremes.

4. Conclusions

This study evaluated future climate change impacts on hydrology and crop yields in Monocacy
River Watershed as a representative agricultural watershed in the Mid-Atlantic. Downscaled and bias
corrected climate projections from four GCMs and three RCP scenarios were used as climate inputs to
the SWAT model. The SWAT model was successfully applied to capture the hydrologic conditions
of the watershed and simulate future climate change impacts on annual crop yields. The hydrologic
components (water yield, evapotranspiration, and surface runoff) and crop yields (corn and soybean)
were assessed for mid-century (2035–2049) and late-century (2085–2099) periods.

Results indicated that crop yields in this watershed will be affected by projected climate change,
subject to the uncertainty of the modeling results. Precipitation increases in the watershed resulted in
greater surface runoff, although evapotranspiration changes were minimal. Under the current rainfed
condition, corn yield is expected to decline in both mid- and late-centuries across all RCP scenarios.
Whereas, soybean yield is predicted to increase for mid-century but decline by late-century. To examine
the impact of irrigation as an adaptive measure for future climate change scenarios, irrigation practices
were applied to the model and compared with current rainfed management practices. The results
suggest that irrigation may be helpful in improving corn yield during mid-century across all scenarios,
however, prolonged irrigation has a negative impact on both corn and soybean yields compared to
rainfed conditions possibly due to soil nutrient depletion following extended periods of irrigation.

The crop yields were analyzed further using a decision tree algorithm. The results indicated that
corn and soybean yields were mainly influenced by soil moisture, temperature, and precipitation as
well as by management practices (i.e., rainfed or irrigated). The outcomes from this study can be used
as a guideline for water resource managers to plan the required adaptive management strategies to
maintain expected corn and soybean yields in the coming century.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1154/8/12/139/s1,
Figure S1: Outcomes from decision tree analysis for corn and soybean yield variations for rainfed and irrigated
conditions under RCP 6. Precipitation (Prcp), evapotranspiration (ET), and soil water (SW) storage are presented
in mm, and temperature (temp) is presented in ◦C. Corn and soybean yields are represented by orange and green
color, respectively. Crop yields are presented in kg/ha, and the percentages are the fraction of total crop yield in
each node.
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