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Abstract: Incomplete climate records pose a major challenge to decision makers that utilize climate
data as one of their main inputs. In this study, different climate data infilling methods (arithmetic
averaging, inverse distance weighting, UK traditional, normal ratio and multiple regression) were
evaluated against measured daily minimum and maximum temperatures. Eight target stations that
are evenly distributed in Limpopo province, South Africa, were used. The objective was to recommend
the best approach that results in lowest errors. The optimum number of buddy/neighboring weather
stations required for best estimate for each of the approaches was determined. The evaluation
indices employed in this study were the correlation coefficient (r), mean absolute error (MAE), root
mean square error (RMSE), accuracy rate (AR) and mean bias error (MBE). The results showed high
correlation (r > 0.92) for all the stations, different methods and varying number of neighboring stations
utilised. The MAE [RMSE] for the best performing methods (multiple regression and UK traditional)
of estimating daily minimum temperature and maximum temperature was less than 1.8 ◦C [2.3 ◦C]
and 1.0 ◦C [1.6 ◦C], respectively. The AR technique showed the MR method as the best approach
of estimating daily minimum and maximum temperatures. The other recommended methods are
the UK traditional and normal ratio. The MBEs for the arithmetic averaging and inverse-distance
weighing techniques are large, indicating either over- or underestimating of the air temperature in
the province. Based on the low values for the error estimating statistics, these data infilling methods
for daily minimum and maximum air temperatures using neighboring stations data can be utilised to
complete the datasets that are used in various applications.

Keywords: Imputation methods; interpolation methods; missing climate data; data patching

1. Introduction

Climate monitoring is a crucial exercise that is carried out by national meteorological and
hydrological services, government agencies and international bodies [1]. Weather and climate data
are used by decision makers for different reasons depending on the field of interest [2]. For example,
in agriculture, it can be used to delineate a portion of land that is suitable to plant a particular crop,
the right timing of planting and harvesting, and crop yield estimation [3]. Climate data can also be
utilized to estimate the impact of climate hazards on agricultural production [4,5]. In sustainable water
management, climate data can be utilized to model both runoff and groundwater levels and assist in
design of drainage systems [6–8], and historical data can be used to design drainage systems in civil
engineering [9]. Historical climate data contain gaps, which usually increase with the length of the
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dataset. The frequency of gaps in the climate data in most cases makes it difficult for the data users
to make sound conclusions, since some of the important climatological events were not sufficiently
covered by the records [10,11]. In some instances, there might have been faulty recordings, which
further increase the uncertainty in the use of archived climate data. Several circumstances contribute
to the prevalence of missing data or faulty recordings [12]. For example, loss of records, vandalism,
instrument malfunctioning, poor observation techniques or observer negligence [10,13,14].

Climate data patching and infilling are common phrases used to fill and complete missing climate
and hydrological data in a dataset [12,15–19]. There are three common approaches that are often
used to manage missing climate data: (a) use of continuous records and ignoring the prior events,
(b) ignoring of gaps based on the assumption that the data is one continuous series of records [10]
and (c) data infilling [11,20]. The main disadvantage of the first approach is that it wastes valuable
and previous information and that true statistical inferences cannot be made, whereas the second
approach will reduce the period of recorded events available for the analysis and these can over- or
under-estimate the likelihood of occurrence of climatic events [10]. Data infilling is considered the
viable option, but it has to be approached in a manner that will eliminate biasness and conform to the
climatological variation at the target region [11].

Data infilling methods utilize a number of techniques used to estimate missing or defective
climatological data [7,21]. According to Campozano et al. [18], Wagner et al. [22] and Xiao et al. [23],
there are four main classes of data infilling methods: (i) the deterministic, (ii) stochastic, (iii) artificial
intelligence and (iv) geostatistical methods. The deterministic and geostatistical methods are very
common in most studies and they include arithmetic averaging method (AA), single best estimator
(SBE), normal ratio method (NR), inverse distance weighting method (IDW), correlation coefficient
method (CC) and multiple regression method (MR) [10,24–26]. However, the challenge still lies in
selecting the right method to be used for the climate data infilling [12,18]. The performances of
these methods differ from region to region based on variances in climate and they are dependent on
the weather element to be estimated [25]. Climate elements are influenced by local factors such as
topography and slope and aspect of the surface and micrometeorology conditions [18]. These techniques
generally produce reliable estimates in a well distributed and representative station network [27].

This study investigates methods of estimating daily minimum (Tmin) and maximum (Tmax)
temperatures in selected stations in Limpopo Province of South Africa. The purpose of this study is to
test the accuracy of different methods that use neighboring stations to estimate missing data at the
target station. The second objective is to investigate the optimum number of neighboring stations to
use when infilling temperature data.

2. Materials and Methods

2.1. Study Area and Data

Limpopo is South Africa’s northernmost province, with a total area of 125 755 km2 or 10.2% of the
national total land area. It is divided into five district municipalities that are further subdivided into
25 local municipalities. In most parts of the province, evapotranspiration exceeds rainfall and annual
average temperature is mostly above 18 ◦C, which makes it to be identified as a predominantly hot
semi-arid region according to the Köppen–Geiger climate classification system [28]. Climate elements
in the province are highly influenced by the variable topography [29,30]. The province marks the
boundary of tropical and subtropical climate zones [31]. Limpopo is a generally dry region, especially
in the northern parts, and rainfall is highest in the high-lying areas in the south [30,32]. Rainfall season
in the province is short and lengthy dry periods often expose the province to hot temperatures [33].

The data used in this study was obtained from the Agricultural Research Council (ARC)
Agroclimate Information System [34]. Three, five and eight target stations with daily temperature for
both Tmin and Tmax were used and their distribution over the province is shown in Figure 1. Table 1 also
shows geographical and data recording information of these weather stations. The neighboring stations
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should not be further away from the target station in order to minimize errors of estimate. In this
study, 50 km was used as the maximum radius for determining a neighboring station for all the target
stations used in this evaluation. Weather stations selected had a missing data percentage of less than
40% and more than twenty years of data. Hundred and seventy-six neighboring stations distributed
all over the province were used in estimating daily temperature at all target stations (Figure 1).
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Figure 1. Spatial distribution and topographical variation of target and neighboring stations used to 
evaluate methods of infilling temperature data in Limpopo Province. 
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Figure 1. Spatial distribution and topographical variation of target and neighboring stations used to
evaluate methods of infilling temperature data in Limpopo Province.

Table 1. Geographical and data information of eight of target stations used to evaluate methods of
infilling temperature data in Limpopo Province.

Station
Lat. Long Alt Aspect StartDate

(Year-Month-Day)
EndDate

(Year-Month-Day) Years
Missing

(%)Name Number

Letsitele 1 −23.867 30.317 623 235 1974-01-01 2008-02-29 34 10.2
Polokwane 2 −23.836 29.694 1226 38 1984-07-01 2010-08-09 26 18.3

Mara 3 −23.150 29.567 894 43 1949-01-01 2004-03-31 55 22.7
Towoomba 4 −24.900 28.333 1143 108 1937-01-01 2004-03-31 67 22.7
Macuville 5 −22.267 29.900 522 100 1933-10-01 2004-01-31 70 24.3
Tshiombo 6 −22.801 30.481 650 0 1983-01-01 2006-03-31 23 28.4

ElandsKloof 7 −24.283 28.050 1215 62 1979-03-01 2001-09-30 23 33.6
Hoedspruit 8 −24.414 30.784 573 65 1985-07-01 2005-01-31 20 38.0

2.2. Methodology

Even though there are many methods that can be employed to estimate missing temperature
data, this study will only focus on AA, NR, IDW, CC, MR and UK. These methods either consider the
closest or the best correlated neighboring stations to estimate the recorded climate data. The number of
neighboring stations used for each method were either three, five or eight. The simple quality control
measure is adopted to ensure that minimum temperatures values estimated do not exceed the values
for maximum temperatures. It has to be noted that the proposed methods were used to estimate daily
data from the start of data recording of the target station to the end. Daily data was estimated to create
a full non-missing climate dataset. The methods used are as follows:
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2.2.1. Arithmetic Averaging Method (AA)

The missing data are obtained by arithmetically averaging data from the neighboring stations.
The AA technique uses the equation given below. There are two sub-categories of this approach:
nearest stations and best correlated stations methods.

Px =
1
n

i=n∑
i=1

Pi (1)

where

Px is the estimated value,
Pi is the observed temperature value of the ith neighboring station, and
n is the number of neighboring stations.

Nearest Stations (AA_D)

For AA_D, the estimation is based on averaging the closest stations to the target station.
Neighboring stations are ranked based on their distance to the target station.

Best Correlated Stations (AA_C)

The AA_C estimation is based on averaging the values of the best correlated stations. Neighboring
stations are ranked based on their data correlation with the target station.

2.2.2. Normal Ratio Method (NR)

For this technique, the missing data are estimated as weighted average of the closest neighboring
stations and the neighboring stations data is weighted by the ratio of the average target station data
and the average of neighboring station data [26]. The equation of estimation is as follows:

Px =
1
n

i=n∑
i=1

Nx

Ni
Pi (2)

where

Px is the estimated value,
Pi is the observed temperature value of the ith neighboring station,
Ni is annual average temperature of the ith neighbouring station,
Nx is annual average temperature of the target station, and
n is the number of neighboring stations.

2.2.3. Inverse Distance Weighting Method (IDW)

In this method, the missing data is obtained by assuming that the target station data could be
influenced mostly by the nearest station and less by further distance stations in accordance with the
Tobler law [25,26,35].

The equation of estimation is as follows:

Px =

∑i=n
i=1

1
dq Pi∑i=n

i=1
1
dq

(3)

where

Px is the estimated value,
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Pi is the observed temperature value of the ith neighboring station,
d is the distance between the target station and the neighboring station,
q is a natural number, usually q = 2, and
n is the number of neighboring stations.

2.2.4. Correlation Coefficient Weighted Method (CC)

The missing data is obtained by finding the correlation coefficient between target station and
neighboring stations, and using correlation coefficient as weights. The target station value is influenced
more by how closely correlated is the target station data is compared to each neighboring stations
data [26,36].

The equation of estimation is as follows:

Px =

∑i=n
i=1 r Pi∑i=n

i=1 r
(4)

where

Px is the estimated value,

Pi is the observed temperature value of the ith neighboring station,
r is the correlation coefficient between target station and neighboring station, and
n is the number of neighboring stations.

2.2.5. Multiple Regression Method (MR)

The missing data is estimated by calculating the regression coefficient between target station and
the best correlated neighboring stations [35,36].

Px = b0 +
i=n∑
i=1

biPi (5)

where

Px is the estimated value,
Pi is the observed temperature value of the ith neighboring station,
bi are regression coefficients, and
n is the number of neighboring stations.

2.2.6. The Traditional (UK) Method

The estimation of missing data involves assuming a constant difference between the long-term
data from the target station and neighboring stations [35]. For each month of the year, long-term data
for each neighboring station is compared with data of the target station. The equation of estimation is
as follows:

Ki =

 pi, j +
(
q j − pi, j

)
, i f q j > pi, j

pi, j −
(
pi, j − q j

)
, i f q j < pi, j

(6)

where

Ki is the UK coefficient value of the ith neighboring station.
pi, j is the observed temperature value of the ith neighboring station of jth month,
pi, j is the long-term average of the observed temperature of the ith neighboring station of jth month,

q j is the long-term average of observed temperature of the target station of the jth month.
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The method can either be approached using correlation or distances between the target and
neighboring stations. The following are the number of ways of estimating missing value under the
UK method:

2.2.7. Averaging the Best Correlated Stations (UK_AA_C)

Calculating an arithmetic averaging of the individual estimations of the best correlated stations.
The equation of estimation is as follows:

Px =
1
n

i=n∑
i=1

Ki (7)

where

Px is the estimated value,
Ki is the UK coefficient value of the ith neighboring station, and
n is the number of neighboring stations.

2.2.8. Blending of UK and Correlation Coefficient (UK_CC_C)

The correlation coefficient method is used in estimating value at the target station based on
individual neighboring UK estimations. The equation of estimation is as follows:

Px =

∑i=n
i=1 rKi∑i=n

i=1 r
(8)

where

Px is the estimated value,
Ki is the UK coefficient value of the ith neighboring station,
r is the correlation coefficient between target station and neighboring station, and
n is the number of neighboring stations.

2.2.9. Averaging of the Closest Station Estimates (UK_AA_D)

Equation (7) is used for this approach with the difference being in the selection of the ith station.
For calculation of an arithmetic averaging of the UK estimations, the closest stations are used.

2.2.10. Blending of UK and IDW (UK_ID_D)

The IDW equation is used in estimating value at the target station based on individual neighboring
UK estimations. The equation of estimation is as follows:

Px =

∑i=n
i=1

1
dq Ki∑i=n

i=1
1
dq

(9)

where

Px is the estimated value,
Ki is the UK coefficient value of the ith neighboring station,
d is the distance between the target station and the neighboring station,
q is a natural number, usually q = 2, and
n is the number of neighboring stations.
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2.3. Determination of Accuracy of Estimated Temeperature Values

To determine the best method of estimating temperature records, the correlation coefficient
(r), mean absolute error (MAE), root mean squared error (RMSE) and accuracy rate (AR) were
used [14,25,36,37]. These statistical indices were used to measure the accuracy between estimated
values and observed values.

The following are the equations of the statistical parameters:

2.3.1. Correlation Coefficient (r):

r =

∑i=n
i=1

(
Pi − Pi

)(
P̂i − Pi

)
√∑i=n

i=1

(
Pi − Pi

)2(
P̂i − Pi

)2
(10)

where

Pi is the actual value,
P̂i is the estimated value, and

Pi is the mean.

2.3.2. Mean Absolute Error (MAE):

MAE =
1
n

i=n∑
i=1

∣∣∣P̂i − Pi
∣∣∣ (11)

where

Pi is the actual value and
P̂i is the estimated value.

2.3.3. Root Mean Squared Error (RMSE):

RMSE =

√√√
1
n

i=n∑
i=1

(
P̂i − Pi

)2
(12)

where

Pi is the actual value and
P̂i is the estimated value.

2.3.4. Mean Bias Error (MBE):

MBE =
1
n

i=n∑
i=1

(
P̂i − Pi

)
(13)

where

Pi is the actual value and
P̂i is the estimated value.

2.3.5. Accuracy Rate (AR):

Accuracy rate is the percentage that each method estimated daily values for the entire time series
had the lowest MAE in comparison with measured values.
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3. Results and Discussion

In this section, the results of the analysis will be shown for all the methods per station, categorized
according to the statistical indices used to compare measured data with estimated data.

3.1. Correlation Between Measured and Estimated Temperature Values

The correlation coefficient for estimated daily Tmin and Tmax as compared with observed values
showed consistency across all the stations (Figure 2). The correlation is high with values exceeding 0.93
and 0.92 for Tmin and Tmax, respectively, at all the stations and for all the different patching methods.
It also depicted from the results that an increase in the number of stations used to estimate daily
values gives rise to a slight increase of r in most stations. Even though the increase is not significant,
it is an indication that estimating daily temperature values should be done with more than three
neighboring stations and increasing the number of contributing stations improves the relationship of
the observed versus the estimated. The MR, UK_CC_C and UK_AA_C methods resulted in relatively
higher r compared with other estimation methods in estimating daily minimum and maximum
temperatures with values exceeding 0.95. Relatively weak association is obtained when utilizing the
IDW and UK_ID_D methods with values coefficient of determination of around 0.93. The use of eight
neighboring stations tends to yield relatively higher r followed by five stations.

3.2. Mean Absolute Error (Mae) Values for Estimated Temperatures Values Compared with Measured Values

Mean absolute error (MAE) for the comparison of estimated Tmin and observed temperatures
mostly ranged from 0.8 ◦C to 3.8 ◦C (Figure 3). Even though the use of a high number of stations
resulted in relatively higher r, the MAE did not show the same trend. For all the infilling methods
used, the use of five neighboring stations had the tendency of obtaining lower MAE than eight stations.
Thus, there is a higher accuracy of estimating Tmin when deploying five neighboring stations. The best
performing method is still the MR with the lowest average MAE of less than 1◦C. The blended use
of UK and UK_CC_C also yielded low MAE as compared with the other methods, which indicates
a relatively high accuracy standard of the method. The location that yielded minimum values of
MAE for the Tmin variable is Tshiombo, followed by Hoedspruit and Letsitele. AA_D is the worst
performing method with MAE exceeding 1.8 ◦C. This can be attributed to the fact that the method
utilizes absolute values without consideration of geographical differences between locations. It can be
noted that the Polokwane station had the highest MAE with values in excess of 3◦C, showing a very
poor accuracy level. Since the density of the stations in that region is relatively good, one can attribute
this low accuracy to high microclimate variability at the target station, which makes the estimation of
the parameter a challenge.

The MAE, when comparing observed Tmax with estimated Tmax, ranges from 0.55 ◦C to over 2.8 ◦C
for all the infilling methods (Figure 3). Conversely, average MAE for all the infilling methods and
utilizing three, five and eight neighboring stations resulted in average MAE of less than 1.5 ◦C. The MR
method yielded relatively low average MAE for all the stations used with the lowest of 0.74 ◦C when
estimating Tmax with five neighboring stations. The Macuville station yielded the smallest values of
MAE for the MR method. The other best methods of estimating Tmax are UK_CC_C and UK_AA_C.
The UK_AA_D and UK_ID_D methods also produced estimates that are close to the observed values
for all the stations with the average MAE of less than 1 ◦C for all the validation stations. The AA
method is the worst among all the tested approaches, with both AA_D and AA_C resulting in an
average MAE across all the stations exceeding 1.2 ◦C. Across all the approaches, the lowest average
MAE is mostly attained when utilizing five neighboring stations to estimate Tmax, followed by the
use of three closest stations. In general, Hoedspruit resulted in the smallest values of MAE, followed
by Tshiombo.
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Figure 2. Correlation coefficient (r) for estimating minimum and maximum temperatures for each 
infilling method at all target stations using (a) three target stations, (b) 5 target stations and (c) 8 target 
stations. 
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target stations.
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Figure 3. Mean absolute error (MAE) for estimating minimum and maximum temperatures for each 
infilling method at all target stations using (a) three target stations, (b) 5 target stations and (c) 8 target 
stations. 
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target stations.
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3.3. Root Mean Square Error (RMSE) Values for Estimated Temperatures Values Compared With
Measured Values

Root mean square error values of estimated Tmin compared with the observed data showed
values ranging from 1.1 ◦C to 4.4 ◦C (Figure 4). MR, followed by UK_CC_C and UK_AA_C, have the
lowest RMSE values that are less than 1.6 ◦C. In general for all the patching methods, the use of five
neighboring stations resulted in a slightly lower RMSE values than when utilizing three and eight
stations. The RMSEs obtained for each of the methods are within the acceptable limits [17]. The AA_D
and IDW are the worst performing methods of estimating Tmin with Polokwane and Mara locations,
giving the highest values of RMSE.

The RMSE results of the Tmax versus observed Tmax also revealed MR as the best performing
method with values around 1.2 ◦C for all the three approaches [3, 5 or 8 neighboring stations] (Figure 4).
The other methods that result in low RMSE are UK_CC_C and UK_AA_C. The AA_D), IDW and AA_C
are the worst performing methods for estimating Tmax with Polokwane and Mara locations giving the
highest values of RMSE. In most cases, the average RMSE was the lowest when using five and eight
neighboring stations.

3.4. Mean Bias Error (Mbe) Values for Estimated Temperatures Values Compared with Measured Values

Mean bias error shows that majority of the methods overestimate Tmin with average values of up
to 0.6 ◦C. AA_D, AA_C, IDW and CC methods show high positive MBEs (Figure 5). At Macuville,
MR over-estimates Tmin by roughly 6%, while all the other methods underestimate Tmin for all the
three approaches [3, 5 or 8 neighboring stations]. However, MBE of Tmin are generally large for all the
combinations except for the UK combinations, NR and MR.

MBEs for Tmax are relatively low, on average, falling between 0.1 ◦C and -0.1 ◦C, which indicates
that most methods are not biased when estimating Tmax. On the other hand, all other methods
underestimate Tmin for all the stations selected. In general, AA_D has largest MBE values in the
negative direction, indicating that it is underestimating. However, AA_C and CC have largest MBE
values in the positive direction, indicating that they are overestimating. The MBE estimates show that
most methods underestimate maximum temperatures in Limpopo Province with AA_D, IDW and NR
having the highest magnitude of negative bias (Figure 5). The methods that showed overestimation
are AA_C and CC in this study. Most importantly, the UK-AA_D, UK_ID_D, UK_AA_C, UK_CC_C,
NR and MR showed extremely low MBE values indicating a tendency not to over or under estimate
temperature values.

3.5. Accuracy Rate (AR) Values for Estimated Temperature Values Compared With Measured Values

Accuracy rate values range from less than 1% to 15% (Figure 6). The AR is highest for the MR
method with an average of around 6%, 7% and 8.2% when using three, five and eight neighboring
stations, respectively. Collectively, these methods provide an accuracy level of 21%. Furthermore,
in Macuville, the collective accuracy rate for MR exceeds 33%, showing that the method is best in
estimating Tmin in that location. The NR method has the second highest accuracy rate. The method
with the lowest accuracy rate is CC and UK_CC_C.

The MR method has the highest AR with 20% for Tmax (Figure 6). This indicates that MR estimates
were closest to the observed values as compared to all other methods. The maximum combined
accuracy rate of 28% was obtained in Macuville in northern Limpopo with this method. The second
and third methods with the highest accuracy rate for the Tmax estimation are NR and UK_CC_C with
12.5% and 10.7%. The CC and UK_CC_C methods had the lowest combined average accuracy rate of
estimating Tmax of 5% and 6.2%, respectively. It can be noted that using three neighboring stations had
more hits than the use of five and eight stations with the combined accuracy rate across the methods of
37.2%, 29.6% and 33.2%, respectively.
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Figure 4. Root mean square error (RMSE) for estimating minimum and maximum temperatures for 
each infilling method at all target stations using (a) three target stations, (b) 5 target stations and (c) 8 
target stations. 
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Figure 5. Mean bias error (MBE) for estimating minimum and maximum temperatures for each 
infilling method at all target stations using (a) three target stations, (b) 5 target stations and (c) 8 target 
stations. 

Figure 5. Mean bias error (MBE) for estimating minimum and maximum temperatures for each infilling
method at all target stations using (a) three target stations, (b) 5 target stations and (c) 8 target stations.
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Figure 6. Accuracy rate (AR) for estimating minimum and maximum temperatures for each infilling 
method at all target stations using (a) three target stations, (b) 5 target stations and (c) 8 target stations.

Figure 6. Accuracy rate (AR) for estimating minimum and maximum temperatures for each infilling
method at all target stations using (a) three target stations, (b) 5 target stations and (c) 8 target stations.
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4. Further Discussions

Different number of techniques for estimation of missing daily temperature using data from nearby
weather stations were presented this study. Embarking on an exercise to check for data quality is very
crucial in ensuring that errors are minimized. Data quality, preparation and removal of outliers in both
the neighboring and target stations are important prerequisite activities that need to be undertaken to
ensure that the infilled data are reliable. The arithmetic averaging (AA), normal ratio (NR), inverse
distance weighting (IDW), correlation coefficient (CC), UK traditional method (UK) and multiple
regression (MR) were used to estimate Tmin and Tmax in selected stations in Limpopo. Statistical values
obtained showed that estimation of Tmax yields better results in comparison with Tmin at all the target
stations. This can be attributed to high temporal and spatial variability of the latter.

It is observed that for both temperatures, the MR using five neighboring stations surpasses all the
other methods. These results are in agreement with the study by Xia et al. [35]. It was also depicted
that the accuracy rate of MR is approximately twice that of NR, UK_AA_D, AA_D, UK_ID_D, IDW,
UK_AA_C, and AA_C, and it is three and four times greater than that of UK_CC_C and CC, respectively.
The results by Kashini and Dinpashoh [21] also showed that the MR method performs better than most
methods (AA, NR, IDW, UK) in estimating both minimum and maximum temperatures in different
climate zones in Iran.

The second-best method of estimating daily temperatures in the Limpopo region was the
UK-Traditional method utilizing both the distance and correlation as the determining factor for
choosing infilling stations. It was also discovered that the use of the best correlated neighbouring
stations generates smaller errors than when using the closest neighbouring stations. The third best
method is the NR. Generally, the AA and CC methods performed worse than all the other methods.
The study by Yozgatligil et al. [12] found out that among the simple methods (AA, NR_C) evaluated,
the normal ratio performed better in agreement with the results obtained.

The study also assessed the number of neighboring stations that are recommended to use in the
infilling of daily temperatures in Limpopo. The results were methodology dependent with approaches
that utilize AA requiring eight stations for the best estimates, while the IDW method perform better
when utilizing three neighboring stations. However, IDW has been shown to be performing well
in other applications and locations, especially when the neighboring stations are closer to the target
station [38]. This technique is more accurate than other methods, especially in mountainous locations
where complex terrain can add more dynamics [39]. It can be noted that all the methods with CC
component requires three infilling stations to yield the best estimate. The best results for MR method is
obtained when five neighboring stations are used.

5. Conclusions

Infilling of weather data is a practice that is recommended in cases where there are few missing
data (<1 month per year) in the archived climate dataset [40]. The study investigated a number
of climate data infilling approaches using data from selected stations in Limpopo province and
recommends the use of multiple regression method with five neighboring stations to patch both Tmin
and Tmax data in Limpopo province. The UK-Traditional method also resulted in high accuracy rate
in the evaluation. In all the stations, Tmax estimation was highly correlated with observed data in
all the stations with estimation of Tmin resulting is relatively low correlation. Mean bias error shows
variable results depending on the infilling method used. Arithmetic averaging, correlation coefficient
and inverse-distance weighing methods produce a higher magnitude of error when estimating daily
minimum temperature, and they also do not perform well for estimating daily maximum temperatures.
Due to varying topographic features of the province, other data infilling tools should be considered in
the future so that all possible factors that affect air temperature can be investigated.
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