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Abstract: Thermal environmental design in an outdoor space is discussed by focusing on the
proper selection and arrangement of buildings, trees, and covering materials via the examination of
redevelopment buildings in front of Central Osaka Station, where several heat island countermeasure
technologies have been introduced. Surface temperatures on the ground and wall were calculated
based on the surface heat budget equation in each 2 m size mesh of the ground and building wall
surface. Incident solar radiation was calculated using ArcGIS and building shape data. Mean radiant
temperature (MRT) of the human body was calculated using these results. Distribution of wind
velocity was calculated by computational fluid dynamics (CFD) reproducing buildings, obstacles,
trees, and the surroundings. The effect of MRT on SET* was greater than that of wind velocity at
13:00 and 17:00 on a typical summer day. SET* reduction was the highest by solar radiation shading,
followed by surface material change and ventilation. The largest ratio of the area considered for the
thermal environment was 83% on Green Garden, which consists of 44% of building shade, 21% of
tree shade, 7% of water surface, and 11% of green cover. It is appropriate to consider the thermal
environment design of outdoor space in the order of shade by buildings, shading by trees, and
improvement of surface materials.
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1. Introduction

In our previous study [1], the effects of solar radiation shading by trees in open spaces was
evaluated through a case study. Outdoor open spaces are used for various purposes such as walking,
resting, talking, meeting, studying, exercising, playing, performing, eating, and drinking. Therefore,
providing various thermal environments according to the various purposes above-mentioned is
desirable. The results from one of our previous studies [2] are reprinted as follows: “By investigating
the redevelopment building in front of Central Station in Osaka, the radiation environment was
evaluated with a focus on ground cover materials and solar radiation shielding. ArcGIS and building
shape data were used to calculate the spatial distribution of solar shading. A surface heat balance
equation was calculated to determine the surface temperature of the ground and walls. Assuming the
human body is a sphere, the mean radiation temperature (MRT) of the human body was calculated.
Solar radiation shielding and improvements in surface coverage were the most dominant factors
in the radiation environment. On a typical summer day (August) when air temperature is high,
improvements in solar shading and surface coverage did not provide a comfortable standard new
effective temperature (SET*) in the afternoon. However, there were several places where people did
not feel uncomfortable, especially in the rooftop garden and green gardens, which have large areas of
shaded grass and water.”
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This study is the continuation of our previous studies [1,2]. The study site and the calculation
method of solar radiation, surface temperature, MRT, and wind velocity distribution were the same as
those of our previous studies [1,2]. Results from another of our previous studies [1] are reprinted as
follows. “At 10:00, 13:00, and 17:00 on a typical summer sunny day, we analyzed building and tree
awnings at 25 and 32 measurement points in Station Plaza and Green Garden. Assuming various
heights of buildings, the need for sunshade by trees was pointed out at 10 m or more from the south
building and 6 m or more from the west or east building.” The subject of this study was the thermal
environmental design in an outdoor space, focusing on the proper selection and arrangement of
buildings, trees, and covering materials through the examination of redevelopment buildings in front of
Central Osaka Station where several heat island countermeasure technologies such as terrace gardens
on medium height rooftops (Rooftop Gardens), mist and waterscape in Station Plaza, ground garden
with trees, water, and green cover between buildings (Green Garden), rows of trees, and water streams
around the buildings were introduced. In particular, the results of the case study were analyzed from
the perspective of how effective it is to proceed with the thermal environmentally-friendly design of
outdoor spaces to increase the generic understanding for better outdoor thermal environment design.

2. Calculation of Thermal Element Distribution

The study site layout is shown in Figure 1 [3], which is the same as those in our previous
studies [1,2]. The layouts of Station Plaza, Rooftop Gardens, and Green Garden are shown in Figure 2.
The ratio of each ground cover type is shown in Table 1. An outline of the study sites is shown in
Table 2. The trees were reproduced based on the actual situation, and the average height of the trees
was about 6 m because this study was conducted just after completion of the site. The calculation
methods for surface temperature, solar radiation, MRT, and wind velocity distribution were also the
same as those used previously [1,2], and an outline of the calculation methods is shown in Table 3.
Daytime air temperatures obtained from the Osaka Meteorological Observatory on a typical summer
day (11 August 2013), the day of the autumnal equinox (23 September 2013), and the day of the summer
solstice (21 June 2013) are shown in Figure 3. The air temperature was over 30 ◦C in the morning and
over 35 ◦C in the afternoon on a typical summer day, and it was around 30 ◦C in the afternoon on the
day of the autumnal equinox and day of the summer solstice. MRT was calculated by integrating
the amount of solar radiation and infrared radiation incident on the human body. The incident solar
radiation was calculated by the method described above, and the incident infrared radiation was
calculated using the surface temperature and the view factor of the surrounding objects. The objective
area was divided into meshes according to the form of the buildings. The calculation conditions
for computational fluid dynamics (CFD) are shown in Table 4, referring to Tominaga et al. [4]. The
applicability of this software for an urban area such as Osaka City was verified using a verification
database provided by Tominaga et al. [4].

Table 1. Ratio of each ground cover type.

Site Concrete Wood Deck Grass Water Surface Asphalt

Station Plaza 79% 0% 0% 10% 11%

Rooftop Gardens 37% 25% 38% 0% 0%

Green Garden 40% 0% 26% 15% 19%

Total 52% 5% 12% 6% 25%
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Table 2. Outline of the study sites.

Study Sites Location Land Cover Characteristics

Station Plaza The site is beside the north-eastern (180 m high) and
the southern (150 m high) high-rise buildings.

There is little vegetation cover, and open spaces
(concrete surfaces) and water surfaces dominate.

Rooftop Gardens The site is on the southern (45 m high) and the
central (43 m high) middle-rise buildings.

The ratios of concrete, wood deck, and grass are
similar, ~30%.

Green Garden The site is between the northern (174 m high) and the
central (154 m high) high-rise buildings.

The site features green grassy areas, water
surfaces, medium-height trees, and concrete

walkways.
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Table 3. Outline of calculation methods, which is a reprint of our previous study [1,2].

Element Method

Surface temperature

It is calculated based on the surface heat budget equation in each 2 m size mesh of the
ground and building wall. Air temperature, air absolute humidity, underground

temperature, convection heat, and moisture transfer coefficients of the function of wind
velocity are set by the observation values as boundary conditions.

Incident solar radiation

It is calculated using ArcGIS and building shape data, as per the method described by
Takebayashi et al. [5]. The visible area of the upper hemisphere is calculated by ArcGIS
tool considering the influence of the adjacent buildings. The visible area is then overlain
with the sun-map and sky-map raster to calculate the diffuse and direct solar radiation

received from each direction.

Mean Radiant Temperature

MRT of the human body is calculated using surface temperature and incident solar
radiation. The human body is assumed to be a sphere, and solar radiation absorption
ratio of the human body is assumed to be 0.5, considering the clothing conditions in

summer.

Wind velocity

It is calculated by computational fluid dynamics (CFD) reproducing buildings, obstacles,
trees, and the surroundings. The standard k-ε turbulence model (one of the

Reynolds–Averaged Navier–Stokes equation (RANS) models) is selected for use in the
simulation. A general purpose CFD software (STREAM, version 9, Software Cradle Co.
Ltd., Osaka, Japan) is used for calculation. The Navier–Stokes equations are discretized

using a finite volume method, and the SIMPLE algorithm is used to handle
pressure-velocity coupling. Inflow boundary conditions are given based on

weather conditions.
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Figure 3. Daytime air temperature at Osaka Meteorological Observatory on a typical summer day
(11 August 2013), the day of the autumnal equinox (23 September 2013), and the day of the summer
solstice (21 June 2013).

Table 4. The calculation conditions for computational fluid dynamics (CFD).

Software STREAM ver. 9

Turbulence model Standard k-ε model

Advection term Up-wind difference scheme

Inflow boundary Power low, 3.9 m/s, WSW at 50.9 m high, power: 0.27

Outflow boundary Zero gradient condition

Up, side boundary Free-slip condition

Wall, ground surface Generalized log-low

Convergence criterion 10−5

The calculation results of surface temperature, MRT, wind velocity, and SET* distribution at 13:00
on a typical summer day (11 August 2013) are shown in Figure 4. Surface temperature and MRT
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distributions are reprints of our previous study [2]. The explanation concerning SET* is the same
as per a previous study [2] and is reprinted as follows: “The equivalent dry bulb temperature in an
isothermal environment with a relative humidity of 50% is the definition of SET* [6]. The subject has
the same thermal stress and temperature regulation strain as the actual test environment while wearing
standardized clothing for the relevant activity. It is used for thermal environmental evaluation. Gagge
et al. proposed SET* by improving the new effective temperature (ET*) [6]. Gagge et al. also proposed
ET*, an index based on human energy balance and a two-node model [7]. SET* is frequently used as an
indoor and outdoor comfort indicator. The metabolic rate was assumed to be 2.0 met and the clothes
was assumed to be 0.6 clo. The thermal equilibrium calculation program for the thermos-physiological
model of the human body, which has already been verified in previous studies [6,7], calculates SET*.”
Air temperature and relative humidity were set by the observation values at the Osaka Observatory.
We compared the temporal and spatial distributions of MRT in our previous study [2] from 5:00 to
18:00 on the day of the summer solstice, a typical summer day in August, and the day of the autumnal
equinox. The result is reprinted as follows; “Incident solar radiation dominates the characteristics of
MRT spatial distribution. Sunny and shaded points cause large differences in MRT time changes. In
the afternoon of the summer solstice and autumnal equinox, a comfortable thermal environment was
realized by sun shade. However, on a typical summer day (August), since air temperature is too high, it
is difficult to make SET* comfortable in the afternoon, both with sun shade and with improved surface
cover.” In this study, 13:00 on a typical summer day (11 August 2013) was chosen as a representative
time, together with 17:00 on a typical summer day (11 August 2013) and 13:00 on a summer solstice day
(21 June 2013). Weak wind regions affected by buildings, obstacles, and planting were confirmed in the
wind velocity distribution. The influence of MRT was dominant in the SET* distribution, despite the
high wind velocity in Rooftop Gardens, which is shown in the upper right in Figure 4c as GL + 46.5 m.Climate 2019, 7, x FOR PEER REVIEW 6 of 12 
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Figure 4. Calculation results of (a) surface temperature (◦C), (b) mean radiant temperature (MRT) (◦C),
(c) wind velocity (m/s), and (d) standard new effective temperature (SET*) (◦C) distribution at 13:00 on
the typical summer day (11 August 2013).

3. Relationship between MRT, Wind Velocity, and SET*

3.1. Evaluation under Various Conditions

The relationships between MRT, wind velocity, and SET* at 13:00 and 17:00 on a typical summer
day (11 August 2013) and at 13:00 on the summer solstice day (21 June 2013) are shown in Figure 5. Air
temperature is high (34.0 ◦C) at 13:00 and is still high (33.6 ◦C) at 17:00 on the typical summer day.
Furthermore, it was a little low (28.3 ◦C) at 13:00 on the summer solstice day. The average wind velocity
and MRT values in sunny and shaded locations on Station Plaza, Rooftop Gardens, and Green Garden
are presented by the vertical and horizontal axes. The standard deviation is expressed by the length of
the bar, and the number of corresponding points is expressed by the size of bubbles. The numbers
inside and beside the bubbles indicate the number of corresponding points. SET*, which is the center
of the bubble, is recognized from the background contour lines. Air temperature and relative humidity
given uniformly, are also shown in the figure. The translucent bubbles denote sunny points, and
opaque bubbles denote shaded points. The relationship between SET* and thermal comfort evaluation
reported by Ishii et al. [8] is as follows: comfortable < 26.5 ◦C < slightly comfortable < 27.5 ◦C < neither
comfortable nor uncomfortable < 29.5 ◦C < slightly uncomfortable < 31.5 ◦C < uncomfortable < 32.5 ◦C
< very uncomfortable. The comfortable range is shown in the blue colored background with 29.5 ◦C as
the boundary in Figure 5, which is the boundary between neither comfortable nor uncomfortable and
slightly uncomfortable by Ishii et al. [8].
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The effect of MRT on SET* was greater than that of the wind velocity at 13:00 and 17:00 on the
typical summer day. SET* values on both sunny and shaded points are in a relatively comfortable range
at 13:00 on the summer solstice day because of the relatively lower air temperature. The difference
in MRT values between the sunny and shaded points was about 8 to 12 ◦C, so the difference in SET*
values was also large, which was about 5 to 8 ◦C at 13:00 on the typical summer day. While the ratio of
shaded points was small at Station Plaza and Rooftop Gardens, it was slightly higher in Green Garden.
As a result, the number of points with low surface temperature was slightly high, so the averaged
MRT and SET* were low, even in sunny points at Green Garden. The difference in wind velocity
between Rooftop Gardens, Station Plaza, and Green Garden was approximately less than 1.0 m/s, so
the difference in SET* values was slightly lower at sunny points. SET* approached a comfortable
range at all sites, especially in shaded points, at 17:00 even on the typical summer day. Although the
difference in SET* values between sunny and shaded points was large, the SET* values at any site were
in a comfortable range at 13:00 on the summer solstice day.
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3.2. Influence of Surface Materials

The relationship between MRT, wind velocity, and SET* on Station Plaza, Rooftop Gardens, and
Green Garden at 13:00 on the typical summer day (11 August 2013) is shown in Figure 6. While the
difference in SET* values between sunny and shaded places was about 8 ◦C at Station Plaza, it was only
1 to 2 ◦C between the concrete and water surfaces. The SET* values on sunny wooden decks in Rooftop
Gardens were high because of the high MRT. The differences between sunny and shaded places on
wooden decks, concrete, and green cover were 6 to 9 ◦C. While SET* on the shaded green cover was a
little lower than that on shaded concrete, it was almost the same on the sunny green cover and sunny
concrete because the difference in MRT was small due to their mixed presence on the slightly narrow
Rooftop Gardens. While the difference in SET* values between sunny and shaded places was about 4.5
to 6 ◦C in Green Garden, it was only 1 to 2.5 ◦C between the water surface, green cover, and concrete.
Summaries of SET* reduction by solar radiation shading, surface material change, and ventilation are
shown in Table 5. SET* reduction was the highest by solar radiation shading, followed by surface
material change and ventilation.
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Table 5. Summaries of SET* reduction by solar radiation shading, surface material change,
and ventilation.

SET* Reduction Station Plaza Rooftop Gardens Green Garden

Solar radiation shading 8.0 ◦C 6.0 ◦C 6.0 ◦C

Surface materials change from
concrete

to water surface
2.0 ◦C (sunny)
1.0 ◦C (shade)

to green cover
0 ◦C (sunny)

1.5 ◦C (shade)

to green cover
2.5 ◦C (sunny)
1.0 ◦C (shade)

to water surface
2.5 ◦C (sunny)
1.5 ◦C (shade)

Ventilation 0.3 ◦C 0.5–1.5 ◦C 0 ◦C

4. Discussion

Changes in shaded areas by buildings, trees, and surface cover to water surface and green cover
on Station Plaza, Rooftop Gardens, and Green Garden are shown in Figure 7. The outer circle indicates
the shaded area by buildings in blue, the middle circle indicates the shaded area by trees in green, and
the inner circle indicates water surface in light blue and green cover in light green. Finally, areas where
these were not considered (sunny places) are indicated in red in the inner circle.
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Shaded areas by trees are required on Station Plaza and Rooftop Gardens because shaded areas by
buildings (7% and 15%, respectively) were much smaller than those in Green Garden (44%). As a result,
as shown in Figure 4, SET* values at Green Garden were a little mitigated than those in other sites. This
is in accordance with the results of previous studies by Ali-Toudert and Mayer [9,10], who showed that
shading is the key strategy to mitigating outdoor heat stress under hot summer conditions. However,
the shading effect by trees does not completely contribute to the shaded area at Green Garden because
shaded areas by trees are located behind buildings (13%) and are included in shaded areas by buildings
(44%). As a result, shaded areas by trees were 34% in all, but trees contributed to only 21% appearance
of shade in Green Garden. This is consistent with the results of Algeciras et al. [11], who showed
that the spatial distribution of thermal conditions at the street level depends strongly on the aspect
ratio and street direction. Nevertheless, shaded areas by trees on Station Plaza and Rooftop Gardens
(9%, 11%) were smaller than those at Green Garden (21%). Tree growth and tree arrangement have
important effects on the thermal environment of the outdoor space, as pointed out by Liang et al. [12]
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and Zhao et al. [13], respectively. Although previous researchers such as Ali-Toudert and Mayer [10],
Lee et al. [14], and Chen et al. [15] have pointed out that building geometry and vegetation play the
most significant role in affecting the thermal comfort index, unfortunately there is an insufficient
number of trees at Station Plaza and Rooftop Gardens. Therefore, surface material changes such as
water surface and green cover is also required at Station Plaza and Rooftop Gardens. Finally, water
surface (11%) was 27% of the area considered for the thermal environment at Station Plaza (7% of
building shade, 9% of tree shade, and 11% of water surface), and green cover (29%) was 55% of the area
considered for the thermal environment at Rooftop Gardens (15% of building shade, 11% of tree shade,
and 29% of green cover). As a result, as shown in Figure 6 and Table 5, the SET* values at Station
Plaza and Rooftop Gardens were mitigated by surface material changes. In other words, the effect
of the surface material countermeasures shown in Figure 2 was added in this process. Therefore, it
is appropriate to consider the thermal environment design of outdoor spaces in the order of shade
by buildings, shade by trees, and improvement by surface materials. The largest ratio of the area
considered for the thermal environment was 83% at Green Garden, which consists of 44% of building
shade, 21% of tree shade, 7% of water surface, and 11% of green cover.

5. Conclusions

Thermal environmental design in outdoor space is discussed by focusing on proper selection
and arrangement of buildings, trees, and covering materials via the examination of redevelopment
buildings in front of Central Osaka Station, where several heat island countermeasure technologies
have been introduced. The effect of MRT on SET* was greater than that of wind velocity at 13:00 and
17:00 on a typical summer day. SET* values on both sunny and shaded points were in a relatively
comfortable range at 13:00 on the summer solstice day because of the relatively lower air temperature.
SET* reduction was the highest by solar radiation shading (about 6 to 8 ◦C at 13:00 on the typical
summer day), followed by surface material change (about 0 to 2.5 ◦C at 13:00 on the typical summer
day) and ventilation (about 0 to 1.5 ◦C at 13:00 on the typical summer day). From the analysis of
shaded area by buildings and trees and surface cover change to water surface and green cover at
Station Plaza, Rooftop Gardens, and Green Garden, the largest ratio of the area considered for the
thermal environment was 83 % at Green Garden, which consists of 44% of building shade, 21% of tree
shade, 7% of water surface, and 11% of green cover. Areas shaded by trees are required at Station Plaza
and Rooftop Gardens because the shaded area by buildings (7% and 15%, respectively) was much
smaller than that at Green Garden (44%). Furthermore, because the shaded area by trees at Station
Plaza and Rooftop Gardens (9% and 11%, respectively) was smaller than that at Green Garden (21%),
surface material changes such as water surface and green cover are also required at Station Plaza and
Rooftop Gardens. It is appropriate to consider the thermal environment design of outdoor space in the
order of shade by buildings, shading by trees, and improvement of surface materials.
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