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Abstract: Water scarcity is influencing environmental and socio-economic development on a global
scale. Pakistan is ranked third among the countries facing water scarcity. This situation is currently
generating intra-provincial water disputes and could lead to transboundary water conflicts. This study
assessed the future water resources of Astore basin under representative concentration pathways
(RCP) 4.5 and 8.5 scenarios using fully distributed TOPographic Kinematic APproximation and
Integration (TOPKAPI) model. TOPKAPI model was calibrated and validated over five years from
1999–2003 with a Nash coefficient ranging from 0.93–0.97. Towards the end of the 21st century,
the air temperature of Astore will increase by 3◦C and 9.6 ◦C under the RCP4.5 and 8.5 scenarios,
respectively. The rise in air temperature can decrease the snow cover with Mann Kendall trend of
−0.12%/yr and −0.39%/yr (p ≥ 0.05) while annual discharge projected to be increased 11% (p ≤ 0.05)
and 37% (p ≥ 0.05) under RCP4.5 and RCP8.5, respectively. Moreover, the Astore basin showed
a different pattern of seasonal shifts, as surface runoff in summer monsoon season declined further
due to a reduction in precipitation. In the spring season, the earlier onset of snow and glacier melting
increased the runoff due to high temperature, regardless of the decreasing trend of precipitation.
This increased surface runoff from snow/glacier melt of Upper Indus Basin (UIB) can potentially be
utilized to develop water policy and planning new water harvesting and storage structures, to reduce
the risk of flooding.

Keywords: Hydrological modeling; TOPKAPI; fully distributed hydrological model; Astore sub-basin;
Upper Indus Basin; RCPs; climate change scenarios

1. Introduction

The climate change impact on the glaciated Hindu Kush–Karakoram–Himalaya (HKH) mountain
region is the subject of extensive debate for many years and still unresolved due to the scarcity of ground
station data especially for high altitude [1]. This is further complicated due to poor understanding of the
interaction between summer South-Asian monsoon and winter westerly disturbance systems, which
leads to the disagreement between global, regional, and local-scale climate change projection [2]. Many
studies have reported extensive changes in the spatio–temporal distributions of precipitations (rainfall
and snowfall) [3]. Since air temperature determined whether the precipitation will fall as a solid (snow)
or liquid (rain), therefore the timing of the precipitation received by a basin will determine its amount,
type, and ultimately the availability of water downstream [4].

The Indus is the backbone for the economy of Pakistan, particularly for Punjab and Sindh because
these provinces are responsible for most of the nation’s agricultural production. Also, the water stored
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in its reservoirs is used to generate electricity and provides the main supply of drinking water in
Pakistan [5]. More than 90% of the Indus River lowland flow is potentially contributed by snow/

glacial melt from the UIB whereas 60% of the total annual runoff to the Indus River is attributed by the
melting of perpetual snow and glaciers which exist above 3500 m in the sub-basins of UIB including
Shyok, Shigar, Astore, Gilgit, and Hunza. Since the economy of Pakistan and a large number of the
population around 207 million people [6] are highly dependent on snow and glacial meltwater of UIB,
so it is essential to assess the response of these water resources under IPCC climate change scenarios.

Many studies [7–11] have analyzed the impact of climate change on water resources of the
UIB using hydrological models. However, most of these hydrological models are simple lumped
or conceptual, and simple degree-day models, i.e., Snowmelt Runoff Model (SRM), Hydrologiska
Byråns Vattenbalansavdelning (HBV), Soil and Water Assessment Tool (SWAT), and water and energy.
budget-based distributed hydrological model WEB-DHM-S model rather than fully physical [12–14] and
spatially distributed [14,15]. Fully physical spatially distributed hydrological models solve the numerical
equations related to conservation of momentum, mass, and energy both in time and space [16] and hence,
require an extensive input of several datasets. Whereas conceptual hydrological models only approximate
the general hydrologic processes of an area [17], and maybe less challenging regarding data inputs.
The contrasting hydro-meteorological regimes of UIB are highly sensitive to an abrupt and changing
climate, mainly due to changing precipitation (rainfall and snow) and temperature variability [18,19].
Due to the climatic variability, scarcity of long-term and consistent data, the resolution and accuracy of
Global Circulation Model outputs and less understanding about the response of glaciers and snow cover
changes in the UIB, it is very challenging to model the accurate hydrological response of these catchments
to climate change [20–23]. Archer [24] indicates that a 1 ◦C increase in average summer temperature
would result in a 16% and 17% increase in summer runoff due to glacial melt in the Hunza and Shyok
sub-basins, respectively. Another study conducted in the same basins by Fowler and Archer [25] through
trend analysis of meteorological datasets reported that 1 ◦C rise in average annual temperature would
accelerate glacial melt. Singh and Bengtsson [26] applied a lumped snowmelt model (SNOWMOD) on
Sutlej river basin and concluded that an increase of 1–3 ◦C temperature would accelerate the glacier melt
by 16%–50%. Usually, the researchers did not relate the glacier dynamics with the hydrological cycle
like evapotranspiration, surface runoff, and snow water equivalent through hydrological modeling [27].
Most of the studies in UIB applied simple temperature index-based methods [28] and considered
possible depletion in glacier dynamics [12,19,26,28]. Though these research studies give some crucial
understandings about the impacts of changing climate on water resources of UIB but, they did not
incorporate the possible future changes in glaciers, since 60–70 percent of the flow is generated in the
UIB due to glaciers and snowmelt as well as spatial dynamics of other hydrometeorological variables at
sub-basin level.

Based on above knowledge gaps present in the hydrological studies of UIB there is dire need to
assess the impact of changing climate on the hydro-glacial sub-basins with a model which incorporates
the physical process and spatial variability of both glaciers and hydrometeorological variables. The most
appropriate approach to resolve this issue is the implication of a fully-distributed physically-based
hydrological model that can simulate the physics of the main governing processes at the sub-basin level
of UIB [29]. Since Freeze and Harlan [30] introduced the first physically based spatially distributed
hydrological model, since then many models have been developed like MIKE Système Hydrologique
Européen (SHE) [31], the Institute of Hydrology Distributed (IHD) model [32], Coupled Routing and
Excess STorage (CREST) [33], TOPKAPI (TOPographic Kinematic APproximation and Integration) [34,35]
and many others. The TOPKAPI model could be used in a data-scarce catchment because it does
not need calibration of the parameters while only incorporation of watershed characteristics data will
produce highly reliable results as compared to other models like conceptually based model, which need
observed hydrograph for automatic calibration which reduces its application in ungauged basins [36].
Another advantage of this model is that it incorporates the glacier boundaries to compute the point
scale glacial discharge. There are several other models that incorporate the glacier boundary like Soil
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and Water Assessment Tool (SWAT), Spatial Processes in HYdrology SPHY and Hydrologiska Byra ◦ns
Vattenbalansavdelning (HBV) model but they simulate the glacier melt based on simple Temperature
Index models (TIMs) or Degree-Day Models (DDMs) which relies on empirical relationships between air
temperatures and melt rate [28,37]. TOPKAPI glacial and snowmelt component is based on the Enhanced
Temperature Index (ETI) model [38], which incorporates the information of shortwave radiation and
albedo along with air temperature to give the more reliable results as compared to TIMs and DDMs.
In previous studies, the applications of such hydrological models in UIB were very limited due to their
requirements of extensive spatial data inputs [1,39]. The UIB region is well known for the scarcity of
hydrometeorological and particularly glacier mass balance data [40,41]. One or two meteorological
stations and one hydrological station is present in each sub-basin of UIB which gives limited and sparse
spatial coverage of in situ observations in the area. Moreover, there is no high altitude (>4500 m)
hydro-meteorological station located in the sub-basin of the UIB. Recently, remotely sensed satellite data
have emerged as a viable option to provide datasets to land/hydrologic models or addition to in situ
observations because of their spatiotemporal availability over substantial ungauged regions like UIB.
Several hydro-meteorological parameters can be derived from remote sensing-based satellite data [42–48].
In this study, we have also incorporated satellite remote sensing data in the TOPKAPI model to assess
the impact of future climate changes on the hydrology of the glaciated Astore river basin. These previous
studies did not incorporate the spatio–temporal variability of the basin glaciers in a fully distributed
hydrological model to better understand the hydro-meteorological behavior under the looming future
climate change scenarios. The specific objectives of the study were 1) calibration and validation of
fully physical distributed TOPKAPI hydrological model to simulate the surface runoff in the snow and
glacierized Astore river basin daily; 2) to project the impact of future climate change on the hydrology of
Astore basin.

2. Materials and Methods

2.1. Study Area

The Astore catchment (a sub-basin of the UIB) located at 35◦ 33′N, 74◦ 42′ E, was selected (Figure 1)
for hydro-glaciological modeling under IPCC climate change scenarios. The Astore River basin is
located in a northwestern Himalayan arc, with an elevation range 1198 m to 8069 m and total drainage
area is about 3988 km2, Figure 2 shows the hypsometric curve. About ~543 km2 area is covered with
glaciers with the highest of the peak of Nanga Parbat, which is ranked ninth highest mountain in the
world [49]. The average annual temperature during 1998–2012 was 9.9 ◦C at the station located in
valley Rattu (2718 m) and −2.9 ◦C at the higher altitude Rama station (3179 m).
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2.2. TOPKAPI Model

TOPKAPI is a fully distributed physically-based hydrological model that can simulate the high
spatial and temporal information on the hydrological state of both small and large watershed [14] and
mountainous catchments [50]. The primary inputs required by TOPKAPI model are terrain data or
Digital Elevation Models (DEM), soil maps, land cover, glacier boundaries, meteorological data, i.e.,
temperature and precipitation. Several inputs of soil and hydrological control parameters are required
to run the model. Soil parameters includes L (soil depth in m), ks (vertical and horizontal permeability
at saturation), ϑr (residual water content), ϑs (saturated water content), αs (non-linear soil exponent of
the transmissivity) whereas, routing parameters includes no (manning coefficient for the land cover in
m−1/3 s−1) and nc (manning coefficient for the channel in m−1 /3 s−1). Fully distributed physically-based
models provide high resolution and more reliable simulations of hydrological behavior towards climate
change than empirical or lumped models, which heavily depends on the parameter’s calibration.
These models require extensive data input and need to be calibrated and validated to generate all
relevant processes accurately [50].

TOPKAPI model has been modified extensively for various application in the mountainous
regions to simulate water balance at catchment and sub-catchment scales. The model generates high
spatial and temporal outputs for every cell of entire catchment which include time series of hydrologic
quantities, i.e., precipitation, air temperature, potential and actual evapotranspiration, snow cover,
percolation, surface flow, channel flow, soil moisture and glacier /snow water equivalent. The TOPKAPI
model uses the Enhanced Temperature Index (ETI) approach to simulate the glacier and snowmelt
component. ETI is an intermediate complexity step between an empirical TIMs and an Energy Balance
Models (EBMs) [28,38]. ETI model computes the melt component when the air temperature at specific
location of grid cell iTi (◦C) exceed the threshold air temperature TT.

Mi= TF.Ti + SRF.IGi * (1 - αi) (1)

where Mi is the melting in a particular cell i (mm water equivalent (w.e.) per day d−1, TF is the
temperature factor (mm w.e. K−1 d−1), SRF is the shortwave radiation factor (mm w.e. m2 W−1 d−1),
IGi is the incoming shortwave radiation in (Wm−2), and αi is the surface albedo.

The advantage of ETI is that data requirement is not much higher as compared to EBMs. In addition to
the air temperature term, the ETI model includes a shortwave radiation term that incorporates incoming
solar radiation and albedo that help to account the internal energy of the glacier to provide reliable results.
So the TOPKAPI model proved to be more efficient to simulate the glacier melt than the other TIMs and
DDMs. With several advantages of TOPKAPI model, it has some limitations that it does not provide
the separate output of changes in glacier dynamics and gives the combined hydrograph from glacier
melt, snowmelt and precipitation. These output data can be useful to analyze the behavior of the entire
basin/sub-basin during severe hydro-meteorological events and can be utilized for preparedness, mitigation,
and relief in case of disaster.

2.3. Data Input to Model

The TOPKAPI model input data includes the Digital Elevation Model (DEM) with a spatial
resolution of 30 × 30 meters grid, the soil data, the land cover raster, and the hydro-meteorological
data (daily average temperature, precipitation, and streamflow).

Figure 3 shows the hydrological and topographical variables derived from the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global DEM in the ArcHydro
module of Esri’s ArcGIS [43].
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Emission and Reflection Radiometer (ASTER) global digital elevation model.

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) with a spatial resolution of 30 m was used to
generate a Landover map of the Astore basin. Preprocessing (i.e., geometric and atmospheric correction)
of Landsat image was done using different filters followed by application of the Maximum Likelihood
Classifier (MLC) technique to classify the land cover features that depend on the second-order
measurements of a Gaussian probability density function model [51,52]. Figure 4 shows the major
land cover classes of Astore basin. TOPKAPI model requires the manning roughness coefficient and
crop factor value of all months for each land-use class.

Glacier boundaries were delineated using a morphometric glacier mapping (MGM) technique.
The basis in MGM is the use of topographic thresholds derived from a DEM and the multispectral data
along with ratio images for the automatic delineation of glacier boundaries. The filters were generated
by threshold values defined for the extraction of glaciers. The Normalized Difference Snow Index
(NDSI), was used to delineate the glaciers (Figure 4). To further refine the glacier’s boundaries, other
filters like Normalized Difference Vegetation Index (NDVI), Land Water Mask (LWM), mean hue [46],
slope, and elevation threshold values were used. The delineated glacier outlines were validated using
Google Earth’s high-resolution imagery [53].

The FAO global soil dataset [47] with a spatial resolution of 30 arc-second was used to generate
the soil data of the Astore basin (Figure 5). The TOPKAPI model requires soil property data such as the
soil depth, horizontal and vertical soil hydraulic conductivity, available moisture content, and texture.
These soil hydraulic parameters were derived using the PedoTransfer Function (PTF)-based software
SoilPAR 2.0 [48] and Soil Water Infiltration and Movement (SWIM) model [49].
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Meteorological data of Rama and Rattu stations (1999–2003) comprising of daily average
temperature and precipitation and daily flow records (1980 and 2010) at Doiyan gauging station
(1583 m asl) of the Astore River was input in the model. This hydro-meteorological dataset was used
for model calibration (1999–2000) and validation of model (2001–2003).

Future Climate Projection Data

For future climate change modeling, the Asian Precipitation Highly Resolved Observational Data
Integration Toward Evaluation of Water Resources (APHRODITE) dataset was used that has been
validated through the actual meteorological stations. The APHRODITE data products V1204R1 and
V1101R2 were downloaded for daily temperature and precipitation, respectively. The APHRODITE
data was selected to downscale the climate data that can provide the high spatial resolution of 0.1◦ and
24 h temporal output to fulfill the data input requirement of fully distributed TOPKAPI model. However,
APHRODITE data have the limitation that the precipitation measurements are underestimated at
a high altitude of UIB, so the bias-corrected APHRODITE temperature and precipitation data were
incorporated in the model at a spatial resolution of 0.1◦.

In addition to historical data of APHRODITE, Global Climate Models (GCMs) projections
generated from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative
Concentration Pathways (RCPs) scenarios was also incorporated to assess the climate change impacts
on the future hydrology of Astore basin. Four GCMs [54] (i.e., CCSM4, CanESM2, HadGEM2–ES, and
GFDL–ESM2M) were selected based on the following criteria (a) models that showed strong correlation
(≥ to 0.8) with baseline APHRODITE data (1960–2010), (b) Normalized Root Mean Squared Error
(NRMSE) ≤ 0.1 and (c) Normalized Standard Deviations (NSD) was within the range of ±0.4 to that of
NSD of APHRODITE time series data.

CCSM4 data with very high correlation (0.94) and less NRMSE value (0.01) was biased corrected under
the method of Linear Interpolation and Bias Correction (LIBC) technique [55–57]. Linear Interpolation
and Bias Correction Method (LIBC) utilizes station data and high-resolution topography, and it is the
combination of the geospatial Linear Interpolation (LI) technique in relation with Bias Correction and
Spatial Disaggregation (BCSD) technique. BCSD takes account of a correction factor to generate the biased
corrected output of GCMs. Bias corrected climate parameters (i.e., temperature and precipitation) of
APHRODITE were chosen and interpolated at a resolution of 0.1 degrees for the baseline period 1975–2010.
The daily dataset was converted into monthly time series and manipulated to get the climatology and
standard deviation of the parameter. A similar process was done for GCMs data, first linearly interpolated
at the resolution of APHRODITE, and monthly time series data was manipulated to get the climatology
and standard deviation of the parameter. After that correction factors were calculated by the ratio of
climatological values of observations to the reference GCMs. Bias corrected APHRODITE datasets have
been used in downscaling of baseline GCMs to generate future scenarios daily from the year 2020–2100
with the spatial resolution of 0.1◦. This technique eliminates various inaccuracies and the biases related to
GCMs data. The result was high resolution gridded projections of temperature and precipitation that
used effectively in the TOPKAPI model to predict the hydrological response of the study area at a spatial
resolution of 15m grid daily.

2.4. Sensitivity Analysis of the Model Parameters

The sensitivity analysis of various parameters of a hydrological model is assessed to identify
which parameter has the highest impact on the model output. The sensitivity of the TOPKAPI model
parameters was determined by changing their default values to see each of the parameter’s sensitivity.
The initial default values of selected parameters were varied within the upper and lower limits as
suggested by literature and documentation of the TOPKAPI model [58,59] as highlighted in Table 1.
The model’s sensitivity against these parameters was evaluated by comparing the observed and
simulated discharge through Nash efficiency statistics. Based on the visual and statistical agreement
between the observed and simulated discharge the most sensitive parameters, affecting the hydrology
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of the basin were selected [60] for tuning in the calibration process of the TOPKAPI model. In this
study, the most sensitive parameters were the depth of surface soil layer (L), saturated hydraulic
conductivity (Ks), Residual soil moisture content (θr) and saturated soil moisture content (θr).

Model Calibration and Validation

The TOPKAPI model, like other physically-distributed models, is subjected to several uncertainties
associated with the input data. These uncertainties may be due to topographic variation, land cover
types, soil properties, approximation methods and tables used to infer physical parameters from the
data, and the approximations introduced by the scale of the parameter representations [61]. For these
reasons, Liu and Todini [15] suggested that the calibration of parameters is still necessary, but all
studies dealing with the TOPKAPI model suggested that the model calibration can be achieved through
simple hit and trial method, as we had also done in this current study for Astore basin.

In this current study, an automatic model calibration method i.e., Ordered Physics-based Parameter
Adjustment Method (OPPA), as proposed by Vieux, et al. [62] was used for the model calibration.
The OPPA is the most effective and time-saving method recommended for the calibration of physically
distributed hydrological models, as this method calibrates a model in a specific order [62–64]. Initially,
the method adjusts the runoff generation parameters to minimize the discharge volume objective
function and then those parameters which controlled the runoff routing to minimize the discharge
timing objective function. Through the sensitivity analysis and literature Liu, Martina and Todini [14]
it was found that soil depth L and soil conductivity Ks are the most sensitive runoff generation factors
while the runoff routing is mainly controlled by the Manning roughness of the channel nc and the
over-land surface.

Another important parameter, i.e., soil moisture Vs_initial was also tuned because of its high sensitivity
towards the runoff generation. To initialize the soil moisture parameter in the model, it was assumed
that there was no surface water over the slopes and the water depth in a generic channel cell increases as
a linear function of the channel width of the cell. At the beginning of the calibration process, the initial
value for soil moisture percentage was set according to dry condition. Then the model was run to find the
soil moisture situation at a specific time when the soil should be in the same state as the initial condition.
This OPPA method provides accurate and realistic values based on the values for the initial condition,
especially concerning the spatial distribution of the saturation percentage. According to Vieux, Cui, and
Gaur [62] and others [65–67], the hydrological models cannot be calibrated at each pixel level. However,
a multiplicative factor can be used for the whole basin. In this study, the four multiplicative factors L
(for the soil depth), Ks (for the hydraulic conductivity), no (for the overland roughness) and nc (for the
channel roughness) were applied for the model calibration.

The parameters were grouped into (L, Ks, Vs) and (no, nc) because they were independent of each
other, i.e., the change in the first group was affecting the quantity and change in second was affecting
the timing of runoff at Astore basin (Table 1). Three different statistical measures as recommended
through literature, i.e., Index of Agreement (d), R2 and Nash–Sutcliffe Efficiency (NSE) coefficients were
used to assess the efficiency of calibration by comparing modeled and observed discharge volumes
aggregated on a daily and monthly basis [68–71].

Table 1. Values of the TOPKAPI (TOPographic Kinematic APproximation and Integration) model
parameters estimated a priori from data and literature, and values obtained from the calibration procedure.

Parameter Pre-Calibration Value Origin and References Post-Calibration Value

Cell specific
Ground Slope tan, β 1.7E-4–1.81E-1 [62]

Channel Slope tan, βc 1.7E-4–1.81E-1 [62]
Depth of surface soil layer (m), L 0.1–0.81 [67] 0.1–4.5
Saturated hydraulic conductivity

(m.s−1) Ks
1.09E-8–1.09E-6 [72] 1E-12–1E-002
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Table 1. Cont.

Parameter Pre-Calibration Value Origin and References Post-Calibration Value

Residual soil moisture content
(cm3/cm3) θr

0.01–0.047 [14]

Saturated soil moisture content
(cm3/cm3) θs

0.1–0.46 [14]

Manning’s surface roughness coeff.
(m−1/3.s−1) no

0.03–0.1 [61,73] 0.001–0.25

Manning’s channel roughness coeff.
(m−1/3s−1) nc

0.02–0.07 [15] 0.11–0.43

Non-linear soil exponent αs 2.5 [15]
Crop factor kc 1.0 [62] 0.01–1

Horizontal dimension of cell (m) X 1 000 [74]
Max. channel width at outlet (m)

Wmax
10 [62]

Min. channel width (m) Wmin 1 -
Area required to initiate channel (m2)

Athreshold
25,000,000 [51]

Before further application of a hydrological model for future forecasting, it is recommended that
the validation of the model should be done for a better understanding of spatio–temporal performance
of the model. Hence, after the model calibration, validation of TOPKAPI model was done on the
remaining hydrological data (2001–2002) to evaluate the performance of simulation and prediction
model based on the statistical value of R2, Index of agreement between the simulated and observed
discharge and Nash–Sutcliffe Efficiency (NSE) coefficients [75].

3. Results and Discussion

3.1. Model Calibration

The TOPKAPI model calibration (1999–2000) had a significant (p ≤ 0.05) relationship between
observed and simulated Astore River discharge with an R2 value of 0.96 and Nash–Sutcliffe efficiency
value of 0.95 (Table 2). Figure 6 shows the comparison between the observed and TOPKAPI model
simulated discharge along with temperature and precipitation in the basin.

Table 2. Statistical evaluation of modeled simulations during the calibration period 1999–2000.

Event R2 NSE d1

1999 0.97 * 0.95 * 0.93 *
2000 0.93 * 0.94 * 0.97 *

1999 to 2001 0.96 * 0.95 * 0.95 *

* indicate significance at α = 0.05 and d is the Index of Agreement [76].
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The maximum average flow during the calibration period was observed throughout the summer
season (model 188m3.s−1, observed 190 m3.s−1), whereas discharge started increasing in late April
and reached its peak in June. This hydrological response of the Astore basin could be due to summer
monsoonal liquid precipitation in the basin. Additionally, the higher temperature 12 ◦C than the
average temperature in the basin during the summer season caused increased melting of snow/glaciers
resulting in peak discharges of Astore basin. Several research studies also reported a similar trend in
hydro-meteorological data [77–79]. Whereas, moderate river flow was observed in the late summer
(model 81 m3.s−1, observed 85 m3.s−1) with a decrease in discharge started in late August till mid of
October. This hydrological pattern of the basin is also in confirmation with temperature trends during
a similar period. In winter, the river discharge was very low (model 30 m3.s−1, observed 38 m3.s−1),
which shows a close relationship with the temperature of the basin. As the temperature of the basin
is at its minimum below 0◦C, hence the precipitation in winter is solid, i.e., snowfall. This snowfall
caused the accumulation of glaciers and snow in the high altitudes (>4500 m) [52,79,80].

3.2. Model Validation

Figure 7 shows a comparison of simulated and observed discharge at Doiyan (Astore River
Basin outlet) along with the trend of the temperature and precipitation, during the validation period
2001–2003. Table 3 depicts the R2, Nash–Sutcliffe efficiency (NSE), and index of agreement (d) statistics.
The 2001 validation period had higher R2 and NSE values. However, there was no significant difference.

The maximum average flow during the validation period was observed throughout the summer
season (model 199m3.s−1, observed 257m3.s−1, whereas discharge started increasing in late April and
reached its peak in June during 2001–2003. This hydrological response of the Astore basin could be
because of the monsoonal liquid precipitation in the basin. Additionally, the increase in temperature
during the season caused an increased melting of snow/glaciers resulting in the peak discharges.
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Whereas, moderate river flow was observed in the late summer (model 98 m3.s−1, observed 84 m3.s−1)
with a decrease in discharge started in late August till mid of October. This hydrological pattern of
the basin is also in resemblance with temperature trend for the same months. In winter, the river
discharge was very low (model 28 m3.s−1, observed 39 m3.s−1), which shows a close relationship with
the temperature of the basin.
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Figure 7. Comparison of simulated and observed discharge at Doiyan (Astore River Basin outlet) along
with temperature and precipitation, during the validation period 2001–2003.

Table 3. Statistical summary of flow simulation during the validation period 2001–2003.

Event R2 NSE D

2001
2002
2003

0.98 * 0.95 * 0.94 *
0.97 * 0.92 * 0.94 *
0.97 * 0.93 * 0.96 *

2001 to 2003 0.96 * 0.93 * 0.95 *

* indicate significance at α = 0.05 and d is the Index of Agreement [76].

It was observed that about 89.74% of runoff volume generated in the summer season
(May–September) due to higher glacier/snow meltwater and summer monsoonal rainfall, whereas
insignificant runoff, was observed during winter since most precipitation received as snow in the basin
during 1999–2003. Winter runoff was mainly base-flow generated from snowmelt water that was
stored in the soil.

Figure 8 shows significant relationships between observed and simulated Astore river daily
discharge for the calibration and validation period. The minimum NSE coefficient value never dropped
below 0.93 during the entire validation period. The best performance of the model was found over
the calibration period with the NSE coefficient value of 0.95, and according to Moriasi, et al. [81],
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a hydrological model is well calibrated for a runoff if monthly NSE≥ 0.65. Besides the runoff generation,
the TOPKAPI model also generates several other outputs as given in Table 4.
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Figure 8. Comparison of simulated and observed daily river discharge of Astore River for the calibration
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Table 4. Average monthly flow statistics of flow simulation during the validation period 2001–2003.

Month Temperature
(ºC)

Precipitation
(mm)

Soil Moisture
(%)

Snow Cover
(%)

SWE
(mm)

ETP
(mm)

ETA
(mm)

Percolation
(mm)

Jan −11.33 1.57 17.02 91.35 229.84 0.00 0.00 0.00
Feb −10.31 3.09 16.09 91.76 290.47 0.00 0.00 0.00
Mar −6.77 4.56 15.82 89.33 404.26 0.00 0.01 0.00
Apr −1.00 4.70 18.55 89.76 453.86 0.00 0.11 0.04
May 4.29 2.27 27.46 61.41 315.41 0.52 0.33 0.35
Jun 8.16 1.09 31.18 31.00 88.21 1.08 0.46 0.27
Jul 11.00 0.86 27.63 10.62 18.16 1.46 0.47 0.03

Aug 10.71 1.00 25.05 8.17 12.02 1.39 0.44 0.02
Sep 6.39 1.32 22.99 11.40 11.98 0.81 0.31 0.02
Oct 0.17 1.09 20.45 41.39 18.63 0.06 0.08 0.02
Nov −4.95 4.09 19.00 72.19 71.83 0.00 0.01 0.01
Dec −9.46 3.13 17.82 86.99 187.91 0.00 0.00 0.00

An analysis of snow cover, percolation, evapotranspiration, soil moisture, temperature, snow
water equivalent (SWE) and precipitation are vital for understanding the integrated hydrologic response
of a catchment. The accurate estimation of basin-wide SWE is the most important unsolved problem in
mountain hydrology [82], particularly in the HKH region. The SWE is the amount of water contained
within the glacier, which can be taken as the amount of water that would theoretically result if the entire
snowpack is being melted instantaneously [83]. TOPKAPI model efficiently simulated the SWE in the
Astore river basin, and the results showed that the maximum SWE was found in April (453.86 mm)
just after the end of the snow accumulation period, i.e., winter and the lowest value was found in
September (11.98 mm) at the end of the summer period. The other significant output of the TOPKAPI
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model is snow cover extent; the results indicate that the average snow-covered in two seasons, i.e.,
in winter (November to April) and summer (May to October) was 91 % and 11% respectively. A similar
snow cover trend was reported by Atif, Iqbal, and Mahboob [78], they reported that the snow cover in
the Astore basin varies from 92% during winter to 15% in summer seasons.

3.3. Future Climate Projections (2010–2100)

Very fine resolution future climatic data (temperature and precipitation) acquired by the CMIP5
model were downscaled under the two Representative Concentration Pathways scenarios (RCP4.5 and
RCP8.5) and used to forecast the future hydrology of Astore. Monthly climate change for the three
periods (2010–2040, 2041–2070, and 2071– 2100) is summarized in Tables 5 and 6.

Table 5. Monthly average temperature variation (◦C) under near (2010–2040), middle (2041–2070), and
future (2070–2100) climate change scenarios.

Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

RCP4.5
2010–2040 −10.4 −8 −3.0 3.2 8.8 12.1 15 14.9 10.8 4.9 −1.2 −7.3 3.4
2041–2070 −6.3 −7.8 −5.4 0.4 7.0 11.9 14.8 16.7 14.9 10.5 6.2 0.0 5.3
2070–2100 −2.1 −5.7 −5.9 −3.4 2.7 8.5 12.2 15.6 17.4 14.6 9.8 3.9 5.7
2010–2100 −6.2 −7.1 −4.8 0.0 6.1 10.8 14 15.7 14.4 10 5.0 −1.1 4.8

RCP8.5
2010–2040 −10 −8.4 −2.8 4.0 9.1 12.5 15.4 14.7 10.6 5.1 −1.3 −7.3 3.5
2041–2070 −3.6 −6.1 −4.2 2.3 8.4 12.2 15.4 18.3 17.0 12.6 8.1 2.2 6.9
2070–2100 5.3 1.0 −0.6 1.7 8.4 14.4 17.4 19.9 22.3 19.8 14.4 9.6 11.2
2010–2100 −2.8 −4.5 −2.6 2.7 8.6 13 16.0 17.6 16.6 12.5 7.1 1.5 7.2

Table 6. Monthly average precipitation variation (mm) under near (2010–2040), middle (2041–2070)
and future (2070–2100) climate change scenarios.

Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

RCP4.5
2010–2040 1.3 1.8 2.0 2.0 2.0 1.9 1.6 1.7 1.4 0.9 0.9 1.1 1.6
2041–2070 1.3 1.5 1.4 1.6 1.9 1.6 1.8 2.2 1.8 1.0 1.0 1.2 1.5
2070–2100 0.9 1.9 2.6 2.2 2.2 2.6 2 1.5 1.6 1.1 0.9 0.7 1.7
2010–2100 1.3 1.8 2.0 2.0 2.0 1.9 1.6 1.7 1.4 0.9 0.9 1.1 1.6

RCP8.5
2010–2040 1.8 2.1 2.1 2.6 2.3 1.3 1.2 1.5 0.9 0.8 1.4 1.4 1.6
2041–2070 2.7 2.5 1.9 1.7 2.6 2.4 1.5 1.5 1 0.6 0.9 1.8 1.8
2070–2100 1.3 2.3 2.3 1.6 1.2 1.5 1.5 1.5 1.8 0.9 0.9 1.1 1.5
2010–2100 1.9 2.3 2.1 2.0 2.0 1.8 1.4 1.5 1.2 0.8 1.1 1.4 1.6

Towards the end of this century, an increase of 0.03 ◦C and 0.12 ◦C in annual temperature
was observed under RCP4.5 and RCP8.5, respectively. The analysis showed that under RCPs the
summer temperatures would be high as compared to the base data, i.e., 3.4 ◦C high in RCP4.5 and
6.4 ◦C in RCP8.5 (Figure 9). Research studies conducted by Kazmi has also supported our results.
Rajbhandari, et al. [84] and Ul Islam, et al. [85], which concluded an increase in future temperature by
4.8 ◦C at the end of this century using PRECIS Regional Climate Model (RCM) model.

Under the RCP8.5 and RCP4.5 mean precipitation projection shows an increasing trend. Generally,
the RCP8.5 scenario shows an 11% significant (p ≤ 0.05) increase at the end of this century. Several
studies reported a similar increasing trend in precipitation in the UIB, for example, Beven [13] reported
a 25% precipitation increase compared to the baseline period (2046–2065) based on the results of
five General Circulation Models (GCMs). Also, Rajbhandari, Shrestha, Kulkarni, Patwardhan, and
Bajracharya [84] forecasted an increase in precipitation up to 21% using the PRECIS fine-resolution
RCM. Another study conducted by Forsythe, et al. [86] also reported an increase of precipitation in the
UIB by applying a stochastic rainfall model. All of the above studies projected an increasing trend in the
UIB precipitation regardless of using different methodologies to conclude. However, uncertainties exist
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in the magnitude of precipitation projected by these studies. Since we also found similar uncertainties
regarding our precipitation projections, therefore it is important to conduct further studies at the basin
level to reduce those uncertainties.
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3.4. Future (2010–2100) Hydrological Flows Trend

The TOPKAPI model simulated a negative snow cover projections trend of −0.12%.yr−1 and
−0.39%.yr−1 under IPCC climate scenarios RCPs 4.5 and 8.5, respectively during 2010–2100 (Figure 10).
The corresponding decrease in snow cover ranged from 47% to 35% and 55% to 21% for RCP4.5 and
RCP8.5 scenarios, respectively during the end of this century 2100. The mean snow cover area was
46% during the near future (2010–2040); 38% during the middle future (2041–2070) and 22% during
far future projection (2071–2100) under RCP8.5. Whereas under RCP4.5, mean snow cover area was
found to be 47% during (2010–2040); 39% during the middle future (2041–2070) and snow cover extent
remained the same during (2071–2100).

Figure 11 shows an increasing trend in the monthly projected discharge of River Astore under
different climatic scenarios. Under the RCP8.5 scenario the discharge increased significantly (p ≤ 0.05)
from 196 m3.s−1 to 220 m3.s−1, whereas a non-significant increase in river discharge was observed
starting from 124 m3.s−1 with the maximum value of 151 m3.s−1 under RCP4.5 towards the end of
the century.

Mean annual discharge increased by 127.65 m3.s−1 to 136 m3.s−1 during near future scenario
(2010–2040); whereas the decreasing trend was observed during the middle future (2041–2070) from
150 m3.s−1 to 145.8 m3.s−1 and the discharge situation remained same at the end of 21st century under
RCP4.5. Whereas under RCP8.5, mean annual discharge increased by 125 m3.s−1 to 150 m3.s−1 during
(2010–2040); 160 m3.s−1 to 180 m3.s−1 during middle future (2041–2070) and 210 m3.s−1 to 230 m3.s−1

during far future (2071–2100) projection (Figures 12 and 13).
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3.5. Pattern of Hydroclimatic Shift in Astore Basin

Throughout the world, the pattern of the hydroclimatic shift has been reported by many [87,88].
However, its magnitude varies spatially on a regional scale. Temporal changes in streamflow in
the Astore basin shows a pattern of seasonal shifts showing a substantial decrease in flow during
March–July (Figure 14). On the other hand, it shows a slight increase in discharge during autumn and
winter seasons. Historically the Astore basin had a large rainfall-runoff and snowmelt components;
however, the reduction in precipitation during spring and the monsoon along with an increase in
evapotranspiration will most likely cause a decrease in runoff (Figure 14). The mean projection for
RCP8.5 for the period 2071–2100 also shows the same intra-annual pattern for the near future but with
more intensity. Many studies [5,84,85] has projected the receding of the glaciated areas in the UIB,
which will significantly reduce the share of glacial meltwater that will ultimately cause a reduction
in the discharge during the summer season. Also, the decline in the glacier meltwater, our analysis
shows a reduction in the monsoon precipitation along with a highly significant (p ≥ 0.01) increase in
evapotranspiration in the RCP4.5 and RCP8.5 climate change scenarios. The earlier onset of snow and
glacier melt will cause more increase in Astore river flow as indicated by discharge results. This change
in hydrological pattern might have strong implication for the cropping pattern and onset of the sowing
seasons for different crops in the downstream agricultural areas, especially for Punjab known as the
breadbasket of Pakistan.

The results of future forecasted flows are in line with studies conducted by another researcher in
sub-basins of UIB [86]. Initially, the summer river runoff will be increased by the mid 21st century
and will ultimately decrease at the end of the 21st century. Whereas, for the spring season it will be
increased throughout the years. Overall the Astore river flow will be increased, and it is in accordance
with the flow of UIB as reported by [87]. These studies used the same RCP 4.5 and RCP 85 scenarios
for future forecasting of the hydrology of UIB. However, the comparisons of the results of this study
with the results of other studies are subject to the use of different climate models and future scenarios.
The uncertainties in hydrological forecasting have also been reported by Prudhomme, et al. [88] at
UIB level.

Uncertainties in climate and hydrology projections exist due to the scale of application, data quality
and scarcity lead to use of same parameter data for entire complex topography, model forcing etc.
The uncertainties exist in the parameterization of modeling are challenging. However, the emphasis
should be given to the uncertainties in input data and how they simulate the hydrology of basin.
Several scientists [8,76,89–91] reported that the rain gauge at high altitude could capture only 20%–30%
of precipitation due to topographical variation, blowing and drifting of snow, high-pressure wind.
Jonas et al., 2009 reported the range of uncertainty is 13% and 30% in observational data Gigerwald
valley. To minimize the uncertainty in observational data Zweifel and Sevruk [92] suggested that wind
and evapotranspiration data should be considered for the correction of precipitation. Another factor of
uncertainty is that the basin-wide extrapolation of precipitation from the scarce gauges will generate
an inappropriate outcome and also the correction of precipitation in high glacierized regions may
not be possible due to high altitudinal variation and its dependency on climate forcing [93]. So for
an accurate assessment of water resources there is a dire need to have high-quality observational data
from dense meteorological stations. The uncertainty of hydrological model does not only depend on
the observational data but also on the evaluation criteria of model calibration. In this study model
calibration was assessed by three evaluation methods d, R2 and NSE coefficients that showed the
significantly good agreement with the observed data.

For the downscaling and correction of Global Climate Models GCMs the reference APHRODITE
data was used. The gridded APHRODITE data also introduced uncertainty because the data was biased
corrected based on a lack of knowledge of glacier mass balance [94]. Finger et al., 2012 stated the glacier
and snow dominant catchments and downscaling method of GCMs introduce the significant uncertainty
in projected climate change scenario. The uncertainty in climate projection and statistical downscaling
method LIBC was evaluated using the QUMP (Quantifying Uncertainty in Model Prediction) ensemble
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data [95].Temperature lapse rate and precipitation gradient factors for statistical downscaling of RCP4.5
and RCP8.5 reduced the uncertainty in resolving the complex topography of Astore basin. The LIBC
technique minimizes the error from a range of 1.7–11.3 ◦C to a range of 1.4–4.0 ◦C and negative slopes of
linear regression model depicted that error has reduced in the projected downscaled data of temperature
as compared to raw GCM data.Climate 2019, 7, x FOR PEER REVIEW 20 of 26 
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4. Conclusions

The present study is the first application of the fully distributed hydrological TOPKAPI model in
the Astore catchment, which was focused on the climate projection under RCP4.5 and 8.5 to assess
the impact on the hydrological regime of UIB. The TOPKAPI model was successfully calibrated and
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validated in the Astore river basin using an advance Ordered Physics-based Parameter Adjustment
Method OPPA. From the results and statistical measures, it can be concluded that the TOPKAPI model
performed efficiently for both the calibration and validation periods. The future forecasting of the
hydrology of Astore basin showed a non-significant increase in summer flows and an increased flow
during other seasons from 2021 to 2050. Whereas from 2071 to 2100 the summer flows were also found
to be decreased with a sharp increase in flows during the other seasons. Overall the increasing trend
in Astore river discharge and decreasing trend in snow cover was observed, which can be related to
the increase in precipitation (rainfall), temperature and evapotranspiration. The results of this study
should, therefore, consider and incorporate into water resources management plans and development
of water policy for future water storage in proposed Diamer-Basha Dam and other planned reservoirs
on the Indus River system.
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