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Abstract: Severity of drought in California (U.S.) varies from year-to-year and is highly influenced
by precipitation in winter months, causing billion-dollar events in single drought years. Improved
understanding of the variability of drought on decadal and longer timescales is essential to support
regional water resources planning and management. This paper presents a soft-computing approach
to forecast the Palmer Drought Severity Index (PDSI) in California. A time-series of yearly data
covering more than two centuries (1801–2014) was used for the design of ensemble projections to
understand and quantify the uncertainty associated with interannual-to-interdecadal predictability.
With a predictable structure elaborated by exponential smoothing, the projections indicate for the
horizon 2015–2054 a weak increase of drought, followed by almost the same pace as in previous
decades, presenting remarkable wavelike variations with durations of more than one year. Results
were compared with a linear transfer function model approach where Pacific Decadal Oscillation and
El Niño Southern Oscillation indices were both used as input time series. The forecasted pattern shows
that variations attributed to such internal climate modes may not provide more reliable predictions
than the one provided by purely internal variability of drought persistence cycles, as present in the
PDSI time series.
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1. Introduction

Drought is a fundamental feature of the climate of North America, where several regions of
western United States (U.S.) have experienced protracted decadal-scale dry periods in the past
centuries [1] Hydrologic droughts in western U.S. were already widespread and persistent during the
so-called Medieval Climatic Anomaly, roughly in the period 900–1300 AD [2], with mega-drought
in southern California during 832–1074 AD and 1122–1299 AD [3,4]. Multi-year droughts have also
recurred in more recent times, e.g., in 1818–1824, 1827–1829, 1841–1848 and 1855–1865 (Figure 1),
causing tremendous disruption on social, agricultural, ecological and economic fronts [5]. Five major
droughts followed, which ended in 1924, 1935, 1950, 1960 and 1977. As well, the one started in 2012 [1]
resulted in statewide proclamations of emergency [6]. Much of the water supply for California is
derived from the Sacramento-San Joaquin River Delta (located in Northern California) via pumps
located at the southern end of the delta. However, in recent times, California’s water resources
have been subject to increased stress from a combination of factors including a growing population,
groundwater deficit, limitations on extraction of water for the protection of fish, and increased
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competition for available water [6]. Over 2012–2016, drought conditions impacted surface water
supplies, and increased agricultural demand and land subsidence owing to groundwater extraction.
These factors inspired the development of legislation to regulate groundwater resources and financially
support sustainable groundwater management as well as cleanup and storage [7]. Water management
in the state (which has been studied extensively [8]) shows that the California case is exemplary of
the preparedness and response measures required to cope with extreme drought events, adapt to
them and build long-term resilience [9]. How drought may change in future is of great concern as
global warming continues [10]. Yet, how has an extreme drought occurrence over California shifted as
a result of the change in climate since historical times? How can we see droughts coming? If we are
dry during one drought year, will we likely be dry for other drought years, and then for a decade or
more? How cyclical will these patterns be and how are they predictable over multidecadal time-scales?
To answer these questions, we examined (with focus on California) uncertainties in estimating the
future ramifications of years of drought, and how drought changes may recur in the near future using
the Palmer Drought Severity Index (PDSI).
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Many of drought indices developed for the purpose of drought monitoring are based on
meteorological and hydrological variables, which show the size, duration, severity and spatial extent
of droughts. The Palmer Drought Severity Index (PDSI) is such an example. Originally developed
by Palmer [11], it is one of the most well-known and widely used drought indices in the U.S. [12,13]
and beyond [14–17] PDSI values are computed along the soil moisture balance that requires time
series of temperature, precipitation, ground moisture content (or available water-holding capacity)
and potential evapotranspiration. The calculation algorithm of PDSI—either in its original version
by Palmer [11] or in modified ones [18] is thus a reflection of how much soil moisture is currently
available compared to that for normal or average conditions. The PDSI incorporates both precipitation
and temperature data in a simplified, though reasonably realistic, water balance model that accounts
for both supply (rain or snowfall water equivalent) and demand (temperature, transformed into
units of water lost through evapotranspiration), which affect the content of a two-layer soil moisture
reservoir model (a runoff term is also activated when the reservoir is full). Not explicitly bounded,
the PDSI typically falls in the range from −4 (extreme drought) to +4 (extremely wet). The PDSI is
a dimensionless quantity for comparison across regions with radically different precipitation regimes.
This means that there are limitations in the use of this index at specific scales, for which other drought
indices have been developed to characterize local agricultural and socio-economic contexts [19].

Land-atmosphere interactions can introduce persistence into droughts because reduced
precipitation lowers soil moisture, reduces surface evapotranspiration and, with less vapor in the
atmosphere, further reduces precipitation. In this sequence, soil moisture adjustment occurs with
a length of time, which introduces a lag and a memory. Depending on situations, there might be
a strong coupling between soil moisture and precipitation, and land surface processes can lead to
persistence [20]. The calculation of PDSI is intended to model soil moisture persistence (or memory).
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The combination of past wet/dry conditions with past PDSI data means that the PDSI for a given
time step (generally one month) can be seen as a weighed function of current moisture conditions
and a contribution of PDSI over previous times [21]. In the light of this persistence structure, PDSI
chronologies can be used to reconstruct drought conditions, but persistence can also be a criterion to
be used as a measure of predictability [16].

This paper deals with time series analysis (TSA) related to PDSI dynamics. Several statistical
TSA approaches were applied to predict climate variables, including their extremes [22,23]. Mossad
and Alazba [24] proved the potential ability of these modelling approaches to forecast drought.
However, drought forecasts performed at monthly time-scale for early warning [25–29] do not
account for long-term patterns of evolution, which are essential to study and monitor drought
from a climate perspective [30]. Here, we target annual to decadal time scales. We investigate
to what extent TSA model simulations may provide reliable forecasts of future hydrological
changes. Although research on meteorological drought (that is, when dry weather patterns
dominate) is particularly difficult because of the complex and heterogeneous character of drought
processes, their temporal trends respond to climate fluctuations (e.g., large-scale atmospheric
circulations). Specifically, the work explores a homogenized long series of annual PDSI data (1801–2014)
as derived for California by Griffin and Anchukaitis [1] and accessible at https://www1.ncdc.
noaa.gov/pub/data/paleo/treering/reconstructions/california/griffin2015drought.txt (identifier
‘precip-ONDJFMAMJ-rec-2rmse’, providing precipitation anomalies serving as reasonable proxy
of PDSI data taken at the lower limit of twice the root mean square error). Then the study assesses the
response of an exponential smoothing (ES) model, using an ensemble prediction approach. ES [31,32]
and autoregressive integrated moving average (ARIMA) models [33] are the most representative
methods in TSA. In this study, ES was used because it is known to be optimal for a broader class
of state-space models than ARIMA models [32]. ES responds easily to changes in the pattern of
time series [34] and is often referred to as a reference model for time-pattern propagation into the
future [35,36]. It is also less complex in its formulation and, as such, it was expected to be easier in
identifying the causes of unexpected results. The ensemble approach has been adopted as a way to
consider uncertainty in hydrological forecasting, and thus enhance accuracy by combining forecasts
made at different lead times, as in Armstrong [37] and in previous authors’ papers [38–41]. A lengthy
PDSI series offers a unique opportunity to explore past interannual-to-interdecadal climate variability,
under the assumption that the past interannual climate variability, with its internal dependence
structure, can be used to replicate future PDSI ramifications at the local scale. This approach was
compared with the more traditional TSA approach using transfer function models (TFM), introduced
by Box and Jenkins [42] and re-visited by Shumway and Stoffer [43]. In this case, input time series of
El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) were considered as
impulse inputs to the output PDSI time series. An approximate ensemble approach was also developed
under the transfer function models (TFM) framework for comparison purposes with the ES results.
For California, there are now accessible accurate long-time series of PDSI. Our focus is motivated
because severe and widespread drought are of particular concern for this U.S. state [44].

2. Materials and Methods

2.1. Environmental Setting and Data

The California’s climate varies widely, from hot desert to subarctic, depending on latitude,
elevation, and proximity to the coast. California’s coastal regions, the Sierra Nevada foothills, and
much of the Central Valley have a Mediterranean climate, with warm to hot, dry summers, and mild,
moderately wet winters (Figure 2a,b). The influence of the ocean generally moderates temperature
extremes, creating warmer winters and substantially cooler summers in coastal areas. The rainy period
in most of the country is from November to April (Figure 2a). Prevailing westerly winds from the
Pacific Ocean also bring moisture. The average annual rainfall in California is about 350 mm, with

https://www1.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/california/griffin2015drought.txt
https://www1.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/california/griffin2015drought.txt
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the northern parts of the state generally receiving higher rain amounts than the south. The reference
evapotranspiration follows a more complex pattern, mostly in relation to elevation and distance from
sea (Figure 2c). Temperature and evapotranspiration are especially important in California, where
water storage and distribution systems are critically dependent on winter/spring rainfall, and excess
water demand is typically met by groundwater withdrawal [45]. The PDSI time series derived from
Griffin and Anchukaitis [1] reconstructed drought conditions for California.
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Figure 2. (a) Rainfall monthly regime with relative bioclimatic patterns for California; (b) mean annual
smoothed 20-km spatial precipitation over the period 1961–1990; (c) the corresponding annual reference
evapotranspiration (arranged via LocClim FAO software, http://www.fao.org/land-water/land/land-
governance/land-resources-planning-toolbox/category/details/en/c/1032167).

2.2. Exponential Smoothing

The exponential smoothing (a popular scheme to produce smoothed time series) is a relatively
simple prototype model for TSA-based forecasting, analysis and re-analysis of environmental
variables [46,47]. It uses historical time series data under the assumption that the future will likely
resemble the past, in an attempt to identify specific patterns in the data, and then project and extrapolate
those patterns into the future (without using the model to identify the causes of patterns). Compared
to other techniques (e.g., moving averages), which equally weight past observations, exponential
smoothing apportions exponentially decreasing weights as observations get older. This means
that recent observations are given relatively more weight in forecasting than older observations.
To compute predictions based on the observed time series of PDSI data, we made use of available
knowledge concerning the period of the system under investigation [48]. The following periodic
simple exponential smoothing [35] was selected as reference model for time-pattern propagation into
the future:

F(X)R
t+m = α· St

It−p
(1)

where F(X)R
t+m represents the m-step-ahead forecast from the annual series of the variable X (PDSI) on

N years for an ensemble of R runs; St is the smoothed PDSI at decadal scale centered on time-year t

http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1032167
http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1032167
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(Equation (2)); α is the smoothing parameter for the data; It−p is the smoothed cycle index at the end of
period t, its number being defined by the periods p in the seasonal cycle (Equation (3))

St = α· Xt

It−p
+ (1 − α)·St−1 (2)

It−p = δ· Xt

S(X)t
+ (1 − δ)·It−1 (3)

where δ is smoothing parameter for cyclical indices.

2.3. Transfer Function Models

Results from seasonal exponential smoothing (that uses the temporal dependence structure of the
time series itself to reproduce the time series behavior in the future) were compared to an alternative
methodology based on transfer function models (TFM). It represents a linear transfer function approach
where input time series potentially impacting the drought behavior at large spatial scales are used
as explanatory time series variables in a lagged regression model. The methodology called TFM
was introduced by Box and Jenkins [25] and re-visited by de Guenni et al. [49] and Shumway and
Stoffer [43] (2017) to forecast monthly rainfall in the coast of Ecuador based on El Niño indices and
model the impact of El Niño on fish recruitment, respectively.

In a TFM, the output series (in this case PDSI) can be represented as:

Y(t) = α1(B)·X1(t) + α2(B)·X2(t) + . . . + αk(B)·Xk(t) + η(t) (4)

where X1(t), X2(t), . . . , Xk(t) are the input time series to be considered as explanatory variables
contributing to the temporal dynamics of the output series Y(t) and η(t) is a stationary random process.
The terms α1(B), α2(B), . . . , αk(B) are fractional polynomials in the back-shift operator B (such that
BS(X(t) = X(t − s)) of the form:

2.4. Model Validation Methods

To ensure the optimal runs over the hold back prediction (testing validation), model
parameterization was achieved by minimizing together the Root Mean Squared Error (RMSE) and the
Mean Absolute Scaled Error (MASE), and maximizing the correlation coefficient (R). The commonly
used RMSE quantifies the differences between predicted and observed values, and thus indicates
how far the forecasts are from actual data. A few major outliers in the series can skew the RMSE
statistic substantially because the effect of each deviation on the RMSE is proportional to the size of
the squared error. The overall, non-dimensional measure of the accuracy of forecasts MASE [50] is
less sensitive to outliers than the RMSE. The MASE is recommended for determining comparative
accuracy of forecasts [51], because it examines the performance of forecasts relative to a benchmark
forecast. It is calculated as the average of the absolute value of the difference between the forecast
and the actual value divided by the scale determined by using a random walk model (naïve reference
model on the history prior to the period of data held back for model training). MASE < 1 indicates
that the forecast model is superior to a random walk. The correlation coefficient between estimates
and observations [52] (anti-correlation) (perfect correlation)—assesses linear relationships, in that
forecasted values may show a continuous increase or decrease as actual values increase or decrease.
Its extent is not consistently related to the accuracy of the estimates. WESSA R–JAVA web [53] was
used to assess model simulations with spreadsheet-based support.

In order to quantify long-range dependence and appraise the cyclical-trend patterns in the series,
we estimated the Hurst [54] H exponent (rate of chaos), which is related to the fractal dimension
D = 2 − H of the series. Long memory occurs when 0.5 < H < 1.0, that is, events that are far apart are
correlated because correlations tend to decay very slowly. On the contrary, short-range dependence
0.0 < H < 0.5 is characterized by quickly decaying correlations, i.e., past trends tend to revert in the
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future (an up value is more likely followed by a down value). Calculating the Hurst exponent is
not straightforward because it can only be estimated and several methods are available to estimate
it, which often produce conflicting estimates [55,56]. Using SELFIS (SELF-similarity analysis [55],
we referred to two methods, which are both credited to be good enough to estimate H [57]: the widely
used rescaled range analysis (R/S method) [58], and the ratio variance of residuals method, which is
known to be unbiased almost through all Hurst range [59]. Long-memory in the occurrence of PDSI
values was also analyzed to see if the memory characteristic is correlated with the length of the time
series. To determine whether this characteristic changes over time, the Hurst exponent was not only
estimated for the full time series (1801–2014), but also for a shorter series starting in 1901 (the most
recent period, which is also the period held out of the calibration process).

3. Results and Discussion

3.1. Data Analysis

The first step in any time-series analysis and forecasting is to plot the observations against time,
to gain an insight into possible trends and/or cycles associated with the temporal evolution of datasets.
Figure 3a shows that the PDSI time series presents important inter-annual and decadal variability,
with smooth changes in its structure and turning points which help in orienting the choice of the
most appropriate forecasting method [60]. Two homogeneity tests indicate a stepwise shift in the
observational series in the years just before 1920. The Buishand range test [61] places the change
point in 1969, whereas the Mann-Whitney-Pettitt test [62] locates it in 1920 but the two tests are not
significant (p > 0.10), from which the series can be considered as relatively stationary.

Climate 2018, 6, x FOR PEER REVIEW  6 of 18 

 

values was also analyzed to see if the memory characteristic is correlated with the length of the time 
series. To determine whether this characteristic changes over time, the Hurst exponent was not only 
estimated for the full time series (1801–2014), but also for a shorter series starting in 1901 (the most 
recent period, which is also the period held out of the calibration process). 

3. Results and Discussion 

3.1. Data Analysis 

The first step in any time-series analysis and forecasting is to plot the observations against time, 
to gain an insight into possible trends and/or cycles associated with the temporal evolution of 
datasets. Figure 3a shows that the PDSI time series presents important inter-annual and decadal 
variability, with smooth changes in its structure and turning points which help in orienting the choice 
of the most appropriate forecasting method [60]. Two homogeneity tests indicate a stepwise shift in 
the observational series in the years just before 1920. The Buishand range test [61] places the change 
point in 1969, whereas the Mann-Whitney-Pettitt test [62] locates it in 1920 but the two tests are not 
significant (p > 0.10), from which the series can be considered as relatively stationary. 

 

Figure 3. (a) Observed Palmer Drought Severity Index time-series (blue curve 1801–2014) with 
training and validation periods; (b) for the validation period, the simulated series (plume, light grey) 
with both the ensemble mean (red curve) and the observed Gaussian Filter with 11-year smoothing 
(bold grey curve). 

The smoothed periodogram of the PDSI time series (Figure 4) was calculated by using the 
smoothing method [63] implemented in the R software [64] This estimate shows that most of the total 
variability in the series is associated with both short and large frequencies. The multiple observed 
maxima in the power spectrum confirm the complex interactions of several physical drought-
triggering processes acting at several time scales. The maximum estimated spectral density occurs at 
frequency 0.185, which corresponds to a cycle of 5.4 years [65]. This cycle might be associated with El 
Niño phenomenon, but other frequencies have also an important contribution to the overall series 
variability. 

3.2. Validation Results and PDSI Time Series Predictability 

The whole of the PDSI time series (214 years of data from 1801 to 2014) was segregated into sub-
sets for the purposes of training and validation (Figure 3a). The choice of 1801 as starting time of the 
series was driven by the necessity of having a sufficient amount of data for training without laying 
too long back in time, considering that with at least 50 observations are necessary for performing 
time-series analysis/modelling [66]. On the other hand, with at least 150–200 observations potentially 
reliable forecasts can be obtained for 30 to 50 steps ahead [67]. Forecasts were performed for the 40-
year follow-up period (Figure 3b). Alternative initial conditions were simulated for each run, taking 
periods with a different start year (in 10-year steps-up from year 1801 to 1900) and periodical cycles 
(41, 42 and 43 years) for model training (training datasets). 

Figure 3. (a) Observed Palmer Drought Severity Index time-series (blue curve 1801–2014) with training
and validation periods; (b) for the validation period, the simulated series (plume, light grey) with
both the ensemble mean (red curve) and the observed Gaussian Filter with 11-year smoothing (bold
grey curve).

The smoothed periodogram of the PDSI time series (Figure 4) was calculated by using the
smoothing method [63] implemented in the R software [64] This estimate shows that most of the total
variability in the series is associated with both short and large frequencies. The multiple observed
maxima in the power spectrum confirm the complex interactions of several physical drought-triggering
processes acting at several time scales. The maximum estimated spectral density occurs at frequency
0.185, which corresponds to a cycle of 5.4 years [65]. This cycle might be associated with El Niño
phenomenon, but other frequencies have also an important contribution to the overall series variability.
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3.2. Validation Results and PDSI Time Series Predictability

The whole of the PDSI time series (214 years of data from 1801 to 2014) was segregated into
sub-sets for the purposes of training and validation (Figure 3a). The choice of 1801 as starting time of
the series was driven by the necessity of having a sufficient amount of data for training without laying
too long back in time, considering that with at least 50 observations are necessary for performing
time-series analysis/modelling [66]. On the other hand, with at least 150–200 observations potentially
reliable forecasts can be obtained for 30 to 50 steps ahead [67]. Forecasts were performed for the
40-year follow-up period (Figure 3b). Alternative initial conditions were simulated for each run, taking
periods with a different start year (in 10-year steps-up from year 1801 to 1900) and periodical cycles
(41, 42 and 43 years) for model training (training datasets).

For 1954–2014 (Figure 3b), the simulation results for validation testing are quite promising,
judging by the closeness of ensemble prediction mean (red curve) to the observed 11-year Gaussian
Filter (black curve) PDSI evolution. The results indicate that the ES model performs well at both high
and low frequency variability, which is consistent with inter-annual to inter-decadal climate-variability.
In fact, the residuals between predicted and observed time-series are coherent in the validation period:
residual histograms and Q-Q plots do not identify substantial departures from normality in both the
official run with the longest training time (Figure 5a,a1) and the average (ensemble mean) of all the
runs (Figure 5b,b1).

The data are somewhat right-skewed; however, the right tail of the distribution is fairly closely
approximated by the normal distribution, with some high extreme values.

In the validation stage, RMSE and MASE were equal to 1.0 and 0.68, respectively, which indicate
a satisfactory performance, and that the forecast model is superior to a random walk. The estimated
Hurst (H) exponent values are reported in Table 1.

Table 1. Estimated values of the Hurst (H) exponent (with two methods) for the PDSI annual series as
a whole and for a reduced number of years.

Hurst (H) Exponent/Estimation Method Whole Series (1801–2014) Reduced Series (1901–2014)

Rescaled range (R/S) 0.611 0.743
Ratio variance of residuals 0.611 0.550

With the R/S method, the H was found to be greater than 0.6 in both the whole series (0.611) and
the sub-set 1901–2014 (0.743), which is around the threshold of 0.65 used by [68] to identify series than
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can be predicted accurately. In the case of the variance of residuals method, we have a situation in
which obtained results are hard for interpretation. With an increase of the number of series terms
(amount of observations), the Hurst exponent is expected to get closer to 0 [69], i.e., the memory effect
decreases. However, with the variance residuals method, the estimated Hurst exponent moves away
from 0.5 with the whole of the time series (0.611 against 0.550 with the sub-set 1901–2014). These
apparently contradictory results can be reconciled by considering that a complex concept such PDSI is
hardly captured by one metric, the Hurst exponent, which (depending on the estimation method used)
may not reflect the changes of heading direction [70]. Indeed, the whole of the series (Figure 3a) shows
frequent and sudden pulses of drought, with a change-point in 1917, as identified by the Buishand
test [61], observed in coincidence with the early 20th century pluvial centered on 1915, which has
received much attention in the western U.S. [21]. By combining these results, it can be stated that the
California’s PDSI series is related with either a short-range or a long-range memory (in turn reflecting
influences on the occurrence of droughts of both large-scale and small-scale climate systems), which
assumes that some dependence structure exists that advocates the foreseeability of the series. We thus
performed our forecasting analysis on the original time series of PDSI data.
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3.3. Simulation Experiment

Once the performance of the ES model was established, the model trained over 1801–2014 periods
was run to produce an ensemble of forecast paths of annual PDSI for 2015–2054. Our major interest was
directed towards assessing the predictability of interdecadal variations. Several forecast members show
for the coming decades (Figure 6) some trajectories following a cyclical pattern, in which PDSI may fall
below and above “incipient drought”, with negligible monotonic, long-term trend. However, moving
forward, ongoing changes in atmospheric circulation and associated precipitation and temperature
variability in the western U.S. raise questions about the stationarity of extreme drought estimates [71].
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When examining the projection of PDSI over four future decades (2015–2054), the ensemble
mean value (Figure 6, black bold curve) is observed to roughly lie around the “incipient drought”
class, approaching “mild drought” around 2030, although some members push to “extreme drought”.
Around 2020 and 2036, PDSI forecasts approach “near normal” with some members which are inclined
up to “incipient wet spell”. After the year 2040, the PDSI resumes decreasing and remains below the
“incipient drought” for years.
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3.4. Comparison with the Transfer Function Modelling Approach

The band of warm ocean water that develops inter-annually in the central and east-central
equatorial Pacific, El Niño Southern Oscillation (ENSO), is the major source of climate variability
affecting different parts of the world [72,73]. However, the Pacific Decadal Oscillation (PDO), i.e.,
the variation of sea surface temperatures in the Pacific Ocean north of 20◦ N with a warm phase and
a cool phase can modulate the interannual relationship between ENSO and the global climate [74].
The teleconnection of precipitation in California with climate phases such as the PDO and ENSO
are reported in literature. A warm (positive) PDO is thought to have a similar spatial precipitation
signature as a positive ENSO (wet in the American Southwest and dry in the Pacific Northwest),
and a cool (negative) PDO has a similar signature as a negative ENSO [75]. ENSO has an important
influence on the rainfall regime in California and most of the U.S. with most dramatic impacts during
the winter season [76]. The PDO is also relevant because its cool phase is linked to dry conditions in
Southern California and neighboring states [77]. A plot of all available ENSO time series jointly with
the PDO and PDSI time series is shown in Figure 7.

Sample cross-correlation functions (Figure 8) show that, among all ENSO indices, the ONI series
produced the highest cross-correlation with the PDSI series at a lag of −1 (=0.43), with the ONI series
leading by one time step (one year) the PDSI series. However, since this series is rather short (available
from 1950 onwards), we selected the next highly correlated series with PDSI, i.e., el Niño3.4 index
(=0.35 at lag −1), with the Niño3.4 series leading the PDSI series. Since the PDO time series is available
from year 1900, this was considered the initial year for the analysis. The model training period was the
interval 1900–1953 and the model validation period was the interval 1954–2014. The latter coincides
with the validation period used for the ES approach (Section 3.3). An ARIMA model was fitted to the
PDO series for the training period. An autoregressive model of order 1 (AR(1)) was adequate for the
series. Figure 9a2 presents the sample cross-correlation function (CCF) between the PDO series (X)
and the PDSI series (Y), and the sample CCF between the pre-whitened X series (residuals after fitting
an ARIMA model), with the filtered Y series (after applying the AR(1) filter) presented in Figure 9a1).
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Figure 7. Time series of PDO, ENSO indices (source: https://www.esrl.noaa.gov/psd/data/
climateindices/list) and PDSI. MEI-1871 and MEI-1950 are the Multivariate ENSO Index series starting
in 1871 and 1950 simultaneously; indices Niño1+2, Niño3, Niño34 and Niño4 are the mean Sea Surface
Temperature anomalies in the Pacific Ocean regions: 0–10 S, 90 W–80 W; 5 N–5 S, 150 W–90 W; 5 N–5
S, 170–120 W; 5 N–5 S, 160 E–150 W, respectively; ONI is the Oceanic Niño Index; PDO is the Pacific
Decadal Oscillation; SOI is the Southern Oscillation Index.
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Similarly, an ARIMA model was fitted to the El Niño3.4 series for the training period.
An autoregressive model of order 2 (AR(2)) was adequate for the series. Figure 10b1 presents the
sample cross-correlation function (CCF) between El Niño 3.4 series (X) and the PDSI series (Y), and
the sample CCF between the pre-whitened X series (residuals after fitting an ARIMA model) and
the filtered Y series (after applying the AR(2) filter) in Figure 10b1. Figure 9b1,b2 show a significant
spike at lag = −1 for the CCF between Niño3.4, and PDSI series and PDO and PDSI series. After
filtering the input and output time series to discard the autocorrelation effects, Figure 9a1,a2 show
the persistent significant leading impact of the Niño3.4 and the PDO series on the PDSI series one
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year in advance (lag = −1). From the sample CCF functions and according to Box and Jenkins [42],
a transfer function model of order (r1, s1, d1) = (1, 1, 1) for input series X1(t) = Niño3.4, and order
(r2, s2, d2) = (1, 0, 1) for input series X2(t) = PDO, was proposed for this data set. In this case
α1(B) = (δ01 + δ11B)B1/

(
1 − ω11B1) and α2(B) = (δ02)B1/

(
1 − ω12B1).

The final model to be fitted is of the form:

Yt = α1Yt−1 + α2Yt−2 + α3Nino3.4t−1 + α4Nino3.4t−2 + α5PDOt−1 + ηt (5)

Following Shumway and Stoffer [43], this model was initially fitted by least squares and the
ARIMA model associated to the estimated residuals η was identified. As a second step, the model
was refitted assuming autocorrelated errors following an ARIMA model with order identified in the
previous step. Figure 10 shows the autocorrelation and partial autocorrelation function of the estimated
residuals, suggesting a white noise structure with no additional refitting required.
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Figure 10. (a) Cross-correlation and (b) partial autocorrelation functions (ACF and PACF, respectively)
of the estimated residuals (η̂t) for the fitted model.

Figure 11 compares the observed values (black line) with the fitted values for the training period
(blue line) and the observed values with the fitted values for the validation period (red line). The 95%
prediction intervals are also shown in the analysis.
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Figure 11. Observed PDSI time series (black line) with the training dataset to build the model (blue
line) for the period 1900–1953, including the filtered observed values (navy blue). Also comparison
between the observed values (black line) and predicted values with the TF model for the validation
period (1954–2014) (red line), including the corresponding 95% confidence intervals (red dash).

RMSE = 1.0 and MASE = 0.95 during the validation period indicate that the TFM provided an
improvement over the naive forecast. Considering that in this case the training period (1900–1953) is
much shorter in comparison with the training period used for the ES method (1800–1953), the TMS
provides a competitive approach as a forecasting method for the PDSI series. The histogram and Q-Q
plots of the residuals between the predicted and observed values for the PDSI time series during the
validation period shows a satisfactory performance with an approximate normal distribution of the
residuals (Figure 12).
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3.5. Ensemble Forecast with the Transfer Function Model

Once the adequacy of the model was assessed, the model was trained over the period 1900–2014
to produce a simulation plume of annual PDSI values for the period 2015–2054. El Niño3.4 series and
the PDO series were jointly simulated first, by using a multivariate ARIMA [78] model that considers
dependence between the two series. The simulated values were included as external covariates for the
PDSI model trained over the period 1900–2014. Simulations are presented in Figure 13 from a model
of the form:

Yt = α1Yt−1 + α2Yt−2 + α3Nino3.4t−1 + α4Nino3.4t−2 + α5PDOt−1 + ηt (6)
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Figure 13. Observed PDSI time series (black line) with the simulation plume (grey lines) for the
period 2015–2054, including the filtered observed series (navy-blue line), the median of the simulated
values (thick grey line) and the 2.5% (bottom dashed line) and 97.5% quantile (top dashed line) of the
simulated values.

The inter-decadal cycles observed in the ensemble forecast from the ES approach (Figure 5) are not
present in this case since a seasonal component was not considered in the model. Figure 14 compares
the two approaches (ES ad TFM) in the validation and forecast periods. With ES, the projections of
PDSI over four future decades (2015–2054) lie around the “incipient drought” class, with episodes of
“mild drought”, while the projections of the TFM remain around the “incipient drought” region.

Climate 2018, 6, x FOR PEER REVIEW  14 of 18 

 

with episodes of “mild drought”, while the projections of the TFM remain around the “incipient 
drought” region. 

 
Figure 14. Comparison between estimates from the exponential smoothing model (ESM) and the 
Transfer Function model (TFM) for both the validation period (1954–2014) and the forecast period 
(2015–2054). 

3.6. Limitations and Perspectives 

Droughts occur over long-time spans, and their timing is difficult to identify and predict. This 
paper takes the challenge to examine a strategy for structuring knowledge about drought dynamics, 
for use in annual PDSI extrapolation for the coming decades. Extrapolation suffers when a time series 
is subject to shocks or discontinuities. Few extrapolation methods account for discontinuities [79]. 
Instead, when discontinuities occur, extrapolation may lead to large forecast errors. For example, 
ENSO and PDO can lead to strong upward or downward trends of drought index values and 
frequencies [80]. According with Sheffield and Wood [81], it is plausible that thermal impacts on 
drought frequency in the long term are likely to dominate precipitation changes. We could thus 
expect a monotonic and positive temperature change with increasing drought frequency across a 
range of drought metrics by the late 21st century. However, the future direction of PDSI series 
remains uncertain, because uncertain is the direction of its causal forces (temperature and 
precipitation). This is a challenge in PDSI future extrapolation. Forecasts from Esfahani and Friedel 
[82] suggested the likelihood for the current moderate drought in California to shift to a mid-range 
condition in 2020 and a constant level of PDSI towards 2060. These authors advocate that California 
might have reached its equilibrium, the end of a long-memory process, which would be an exception 
in southwestern U.S., where PDSI would increase. Our empirical forecasts are in agreement with this 
finding. 

4. Concluding Remarks 

We presented a first observational assessment of Californian drought, with the focus on the PDSI 
at interannual time scales and the possibility offered by statistical approaches to forecast it. Our 
results can be useful for water resources management and planning (for instance, under the 
California Irrigation Management Information System programme, https://cimis.water.ca.gov), and 
provide basic knowledge to support further predictive studies beyond the use of Global Climate 
Models (GCMs) [83,84], which vary their parameters for climatic simulations under alternative GHG 
emission scenarios. So far, ES approaches were applied almost exclusively in econometric and 
financial domains [36]. The major potential cause of bias in ES is that extrapolative forecasts can differ 
substantially depending on the training period start date [37]. However, this bias can be dwindled 

Figure 14. Comparison between estimates from the exponential smoothing model (ESM) and the
Transfer Function model (TFM) for both the validation period (1954–2014) and the forecast period
(2015–2054).

3.6. Limitations and Perspectives

Droughts occur over long-time spans, and their timing is difficult to identify and predict. This
paper takes the challenge to examine a strategy for structuring knowledge about drought dynamics,
for use in annual PDSI extrapolation for the coming decades. Extrapolation suffers when a time series
is subject to shocks or discontinuities. Few extrapolation methods account for discontinuities [79].
Instead, when discontinuities occur, extrapolation may lead to large forecast errors. For example, ENSO
and PDO can lead to strong upward or downward trends of drought index values and frequencies [80].
According with Sheffield and Wood [81], it is plausible that thermal impacts on drought frequency in
the long term are likely to dominate precipitation changes. We could thus expect a monotonic and
positive temperature change with increasing drought frequency across a range of drought metrics
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by the late 21st century. However, the future direction of PDSI series remains uncertain, because
uncertain is the direction of its causal forces (temperature and precipitation). This is a challenge in
PDSI future extrapolation. Forecasts from Esfahani and Friedel [82] suggested the likelihood for the
current moderate drought in California to shift to a mid-range condition in 2020 and a constant level
of PDSI towards 2060. These authors advocate that California might have reached its equilibrium,
the end of a long-memory process, which would be an exception in southwestern U.S., where PDSI
would increase. Our empirical forecasts are in agreement with this finding.

4. Concluding Remarks

We presented a first observational assessment of Californian drought, with the focus on the
PDSI at interannual time scales and the possibility offered by statistical approaches to forecast
it. Our results can be useful for water resources management and planning (for instance, under
the California Irrigation Management Information System programme, https://cimis.water.ca.gov),
and provide basic knowledge to support further predictive studies beyond the use of Global Climate
Models (GCMs) [83,84], which vary their parameters for climatic simulations under alternative
GHG emission scenarios. So far, ES approaches were applied almost exclusively in econometric
and financial domains [36]. The major potential cause of bias in ES is that extrapolative forecasts
can differ substantially depending on the training period start date [37]. However, this bias can be
dwindled by identifying long time-series and by producing a bouquet of forecasts (ensemble) from
different starting points. This is what we have done with an extended series of PDSI data. This
study may help in stimulating the debate about less conventional ways of understanding the climate
mechanisms behind drought onset and persistence.
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