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Abstract: Climate change and the urban heat island effect pose significant health, energy and economic
risks. Urban heat mitigation research promotes the use of reflective surfaces to counteract the negative
effects of extreme heat. Surface reflectance is a key parameter for understanding, modeling and modifying
the urban surface energy balance to cool cities and improve outdoor thermal comfort. The majority
of urban surface studies address the impacts of horizontal surface properties at the material and
precinct scales. However, there is a gap in research focusing on individual building facades. This paper
analyses the results of a novel application of the empirical line method to calibrate a terrestrial low-cost
multispectral sensor to recover spectral reflectance from urban vertical surfaces. The high correlation
between measured and predicted mean reflectance values per waveband (0.940 (Red) < rs > 0.967 (NIR))
confirmed a near-perfect positive agreement between pairs of samples of ranked scores. The measured
and predicted distributions exhibited no statistically significant difference at the 95% confidence level.
Accuracy measures indicate absolute errors within previously reported limits and support the utility
of a single-target spectral reflectance recovery method for urban heat mitigation studies focusing on
individual building facades.

Keywords: urban heat mitigation; albedo; cool facades; spectral reflectance; urban remote sensing;
empirical line method; building scale

1. Introduction

Anthropogenic alterations to the optical, thermal, moisture and aerodynamic properties of city
surfaces generate distinct urban climates, typically characterized by the urban heat island (UHI)
effect [1]. The UHI effect refers to hotter air (and surface) temperatures observed in cities compared
to non-urban surroundings [2]. UHI spatial and temporal characteristics are influenced by synoptic
weather conditions [3,4] but UHI formation is attributed to differences in urban surface structure (3-D
geometry), cover (land use and permeability), fabric (optical and thermal properties of materials)
and metabolism (human activity) compared to non-urban surroundings [5,6]. Geometric and surface
characteristics regulate the partitioning of the surface energy balance (SEB) [2] and at any given location
surface temperature—and near-surface air temperature under calm conditions [7,8]—is controlled by
the surface’s SEB [9].
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UHIs develop in most cities regardless of climate [10] and have been observed globally in over
400 urban areas [4]. The magnitude of the screen height air temperature difference between urban
and non-urban locations, or between different Local Climate Zones [10], is quantified by the “UHI
intensity” which is most pronounced during calm, clear summer nights [2]. The average maximum
UHI intensity for 87 European cities has been reported to be almost 6.2 K within a range of 2.8 K to
12 K [11]. Similar magnitude UHI intensities were reported for 101 Asian and Australian cities [12].

The superimposition of inadvertent urban heating (i.e., UHIs) and global warming, including
more frequent, longer and intense heat waves [13–15] elevates the risk of heat-related mortality and
illness in cities [16–18] and extreme urban heat has detrimental outdoor comfort, economic and
building energy impacts [19–21]. The intentional modification of urban surface geometry, cover and
fabric to reduce urban heat and decouple heat waves from amplified UHIs [22,23] is now a policy
priority for many cities [24,25].

1.1. Urban Heat Mitigation—Current Status and Cooling Magnitude

In summer, solar absorption by urban surfaces is the dominant cause of the UHI effect [5]. Recent
efforts to mitigate the formation of urban heat at different spatial scales have focused on changes to
urban surface geometry and fabric [26–28] with the primary aim of controlling the absorption of solar
radiation and increasing moisture availability [22,29]. However, due to the significant urban surface
and air temperature reduction potential of reflective technologies [19,30] heat mitigation solely focusing
on “cool” materials—those with high solar reflectance and high infrared emittance [31–33]—applied to
building envelopes (roofs and walls) and urban structures (roads, squares and footpaths) dominates
current scientific research and the global implementation of UHI mitigation technologies [34].

An analysis of 75 simulation studies using reflective materials on roofs and pavements reported
average peak and absolute maximum screen-height air temperature reductions of 1.43 K and
3.4 K respectively for their combinations [35]. The same study reported average reductions in air
temperature of 0.23 K and 0.27 K per 10% increase in albedo for cool roofs and cool pavement
technologies respectively. However, despite widespread acceptance of the cooling benefits of reflective
technologies and the implementation of numerous large-scale projects using reflective roof and
pavement materials [36], more rigorous experimental monitoring, consistent metadata reporting
and detailed information on their reduced performance over time and potential outdoor comfort
impacts are still required [37–39].

1.2. Urban Heat Mitigation—Principles of Reflective Technology

The primary summer daytime energy input into the urban canopy layer (UCL) is solar radiation,
which is reflected or absorbed by solar-exposed terrestrial surfaces [1]. Depending on surface characteristics,
solar radiation is partitioned into radiative, sensible, latent or storage heat fluxes [2,40,41]. Radiative and
sensible heat fluxes dominate the SEB in the absence of moisture [42,43]. Sensible heat—or the perceptible
rise in air temperature—is amplified when the difference between surface and ambient temperatures is
large [44,45]. A reduction in the surface’s surface temperature, which is achieved by shade or increasing
the surface’s reflectance [46,47] constrains the convective transfer intensity to the surrounding air [44],
thus limiting the transfer of heat to the adjacent air volume [42,43,48] although the relationship between
surface and near-surface air temperature is complex [49].

Conversely, surfaces with lower solar reflectance absorb more solar energy, thereby heating the
surface, and through strengthened convective transfer [45], warm the adjacent air volume [46,50].
Additionally, via long-wave radiative transfer, hotter surfaces emit infrared radiation to cooler objects
within view [51]. In summary, increasing surface reflectance—which in the solar spectrum is referred to
as the surface’s albedo—potentially reduces the surface’s surface temperature, the convective transfer
intensity to the air and the emitted infrared radiation to surfaces in view.

However, higher solar reflectance within cities may also increase reflected solar radiation to
near-surface facets and people [37,51–59] although the magnitude of reflected solar radiation and its
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impact on human outdoor thermal comfort is highly context-dependent [37,53,60] and few studies
have been experimentally determined [52,54].

1.3. Methods for Measuring Solar Reflectance—Nomenclature

The albedo of a surface is defined as its hemispherical and wavelength-integrated reflectance [50] and
broadband albedo is the ratio of reflected to incident (direct and diffuse) solar radiation (250–3000 nm),
or the fraction of incident sunlight reflected by the surface quantified from 0 to 1 [61]. The albedo of a
terrestrial surface may vary with the wavelength (λ) of incident radiation (spectral dependence), the angle
of incidence (θ) of radiation (angular dependence of direct and diffuse components) and the surface’s
surface structure and roughness [61,62].

In remote sensing and field measurements reflectance quantities are acquired under sky conditions
and surface albedo is influenced by atmospheric turbidity, solar position, surface orientation and the
geometry and optical properties of the surrounding urban form [62,63]. Solar irradiance consists of
both direct beam and diffuse components and therefore the solar reflectance of a surface is variable
in time and place (as atmospheric conditions and solar position change) and constant albedo values
assume spectral and angular independence [62].

The use of laboratory, field or remote sensing methods for the measurement of surface reflectance
is determined by the experimental design, material characteristics (e.g., sample size, etc.), spatial
scale and wavelength and directional parameters of interest [64–66]. Reflectance nomenclature
describes measured reflectance values first by the incident, and secondly by the reflected, angular
distribution of radiation [63]. Levinson et al. [66] provide a comprehensive review of standard
reflectance measurement methods and only remotely-sensed reflectance methods are briefly discussed
further here.

1.4. Methods for Measuring Solar Reflectance—Remote Sensing of Urban Surfaces Using Narrow Field of View
(FOV) Sensors

The standards-based laboratory [67] and field methods [68,69] for albedo measurement provide single
reflectance quantities of small (0.1–5 cm2), flat, homogenous surfaces or the hemispherically-integrated value
of larger (>1 m2) horizontal and low-sloped homogeneous diffusely-reflecting surfaces or the aggregate
quantity of non-uniform horizontal surfaces [70] with relatively high accuracy (error <2%) [66]. However,
the aforementioned methods have several limitations when applied to real urban surfaces [64,66,71,72].

Since the microclimate impacts of urban vertical surfaces are spatially dependent [54,73–76]
and may be significantly influenced by microstructure heterogeneity [77] the ability to compute the
spatial and geometric distribution of reflectance at sub-facet scale (<10 m) is desirable [78–82]. Satellite,
aerial and ground-based remote sensing technologies permit increasing spatial, spectral, radiometric
and temporal resolution with greater spatial coverage [48,83,84]. Ground-based imaging sensors
are lightweight and mobile enabling in-canyon observations of surfaces with relative operational
simplicity [85].

Remote sensors record wavelength-dependent energy emanating from a surface within the
sensor’s FOV. At short path lengths near the ground (<100–200 m) atmospheric absorption may
be considered to be negligible [84,86,87]. Image data from image sensors are composed of discrete
picture elements (pixels) each with a potentially unique brightness (or digital number, DN) value
and ground resolution or instantaneous field of view (IFOV) determined by the sensor optics [84].
Depending on target distance, a ground-based image of a building wall or horizontal urban surface is
“automatically” resolved into sub-facet (IFOV) scale surface brightness values that, once calibrated
to spectral radiance [63] and geolocated, can be used to derive spatially-registered per-pixel spectral
reflectance quantities based on the experimentally determined correlation between surface reflectance
and at-sensor radiance [48,88,89].

Obtaining reflectance data in both the visible and NIR wavelengths improves surface albedo
estimates, since many urban materials strongly reflect in the NIR region [31,48,90]. Multispectral (MS)
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sensors are spectrally selective and simultaneously record reflected radiation in several discrete narrow
bandwidths, for example in Green (520–600 nm), Red (630–690 nm) and NIR (760–920 nm) [91,92].
Reflectance quantities derived from ground-based sensors with narrow FOV (and with knowledge
of the surfaces’ spectral and angular dependence [48]) are “hemispherical-canonical” reflectance
values (per [63]) where direct and diffuse sky radiation is reflected into a narrow sensor viewing
geometry [63]. A maximum absolute error of 14% has been reported for remotely measured albedo
values of horizontal and low-sloped urban roofs from radiometrically calibrated high-resolution (1 m)
aerial imagery with a smaller error (<2%) for low albedo (<0.2) surfaces [48].

1.5. Methods for Measuring Solar Reflectance—Overview of the Emprical Line (EL) Method

Remotely sensed image data of reflected energy received by a passive sensor is typically represented
by a matrix of pixels containing DNs that are in value proportional to the intensity of energy reflected by
the surface within view [92]. However, the proportionality relationship between image DNs and physical
units such as surface reflectance is influenced by camera characteristics (i.e., the spectral response curve
and analogue-to-digital signal conversion of the sensor [92]), sun-surface-sensor geometry (i.e., anisotropy
of reflected radiation and illumination conditions [93]) and, for larger path distances, atmospheric
transmittance [48]. Hence, DNs alone contain little meaningful quantitative information about surface
reflectance unless the sensor is radiometrically calibrated [88].

Empirical (or “vicarious”) radiometric calibration using in-situ reference targets of known spectral
reflectance correlated to at-sensor radiance for each sensor waveband robustly accounts for atmospheric
and illumination effects and produces acceptable radiance-to-reflectance conversion results [48,88]. Despite
its widespread use the method is error prone if implemented without logistical and methodological
considerations [88,94]. For many inexpensive, commercially available MS cameras the relationship between
at-sensor spectral radiance and image DNs is not readily available [95,96], is onerous to obtain [48,97] and
may be non-linear [98] and the unique camera response function—the gain and offset coefficients used
to convert the radiance-as-electrical signal to output digital numbers [92]—requires determination before
DNs can be converted to reflectance units [99,100]. In this case, the reflectance-based calibration method
can be used to predict at-sensor radiance (expressed as image DNs) by measuring the reflectance of a
calibration target [94,100].

Typically, an ordinary least squares (OLS) regression equation of spectral reflectance (y-axis)
against DNs (x-axis) is computed for each sensor waveband from the mean spectral reflectance
values of at least two spectrally distinct ground calibration targets and the mean DNs from the
corresponding region of interest (ROI) in the image [88]. The EL equation is then validated in the field
using spectral reflectance values measured by a field spectrometer or supplementary targets of known
reflectance [86,99]. Mean DNs retrieved from remotely sensed MS images are then used as input data to
the per-waveband predictive equations to generate per-pixel spectral reflectance values [86,96,101,102].
Several authors have developed simplified protocols using vicarious calibration methods to reduce the
number of high-cost, in-situ and in-image targets [86,98].

While studies using EL methods for reflectance recovery are increasingly common to derive
vegetation characteristics in open fields ([86] and references therein) the use of the EL method
for reflectance recovery from urban surfaces is less common due to logistical and methodological
challenges posed by urban areas [5] but interest in applications to man-made and urban surfaces is
growing [94,103,104].

1.6. Purpose and Significance of the Work

Surface properties and impacts of cool roof and paving technologies have been extensively studied and
applied [19,26,32,36,46,105–107]. However, research into the microclimate impacts of urban vertical surfaces
and the effect of building facade geometry and fabric remain relatively underdeveloped [44]. While research
into the optical properties, thermal and energy performance and outdoor thermal comfort impacts of cool
materials for use in building envelopes is more advanced [36,37,54,72,73,108–113], the conceptualisation
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of building facades as more than merely an ensemble of material “facets” (or discrete, homogenous,
surfaces [5]) and the development of climate sensitive architectural design applications that progress beyond
a singular focus on cool and smart material specification [114–116] are still emerging (e.g., [117–120]).

While microclimate modelling and simulation tools exist and are fundamentally useful [121–123]
comparatively few have been validated in the field [124] and none explicitly provide architects
with meaningful “thermo-semantics”—the synthesis of building envelope thermal and optical
performance computation and architectural design—at scales and interests commensurate with
architects’ decision-making [125].

This paper is part of ongoing research into the development of a thermo-semantic tool intended to
assist architects to evaluate the outdoor thermal impacts of building facade design based on a vertical
surface thermal typology supported by a predictive statistical model. The reflectance recovery method
described here was applied to multispectral image panoramas of sampled building facades to create
reflectance datasets for input to a probabilistic model.

The development of low-cost, replicable methods for reflectance recovery from real urban
vertical surfaces within the UCL addresses the need for improved observation, understanding and
transdisciplinary communication of urban atmospheric process at multiple scales and particularly
at the street-level human scale [126] and contributes to the development of a predictive science of
microclimatology [125]. Close-range ground-based reflectance recovery complements but also has
some advantages over emerging unmanned aerial vehicle (UAV) technologies, particularly in relation
to the statutory height and air-space restrictions applicable to UAVs in dense urban areas [86,127].

2. Materials and Methods

2.1. Overview of Method

To recover per-pixel spectral reflectance from MS digital images the relationship between known
reflectance values per camera waveband and image DN distributions was statistically modelled as EL
equations [88]. Two sets of alternative camera calibration targets were used to derive the theoretical
constant “camera response function” and a second calibration target of higher reflectance was used
to derive the variable “slope coefficient” [98]. The reflectance recovery method was evaluated by
comparing known reflectance values of common building materials used in building facades with those
derived from the final empirical line equations applied in ArcMap (ArcGIS by ESRI) to colour-processed
MS images of the same materials. Predictive model precision and accuracy measures [128,129] were
used to determine the optimum equations for later application to recover per-pixel spectral reflectance
from MS panoramas of sixty mid-rise building facades (not discussed further here).

2.2. Camera Description

Tetracam Inc.’s Agricultural Digital Camera (ADC) (Tables 1 and 2) was used to capture images
of the calibration targets. Images were stored using an uncompressed 10-bit per-pixel RAW (RAW) file
format in automatic exposure mode (set to average).

Table 1. Tetracam ADC multispectral camera specifications 1.

Description Specification

Image resolution 2048 × 1536 pixels (3.2 Megapixels)
Spectral range 0.52–0.92 µm

Lens focal length (f ) 8 mm
Instantaneous field of view (IFOV) 0.3975 mrad

Image storage format RAW 10 (10 bits)
Processed image format 8 bit JPEG (256 units)

Horizontal field of view (HFOV) 44.75◦

1 Source: Tetracam data sheet for ADC camera S/N 221215.
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Table 2. Tetracam ADC camera waveband, bandwidth and colour channel specifications 1.

Waveband ADC Bandwith (Range) Colour Channel Landsat TM

Green 520–600 nm (80 nm) B TM2
Red 630–690 nm (60 nm) G TM3
NIR 760–920 nm (160 nm) R TM4

1 Source: Tetracam data sheet for ADC camera S/N 221215.

2.3. Camera Calibration Target Sets and Spectrophotometer Measurements

Two sets of camera calibration targets were used to develop the optimal EL model of the camera
response function that describes the theoretical minimum reflectance per waveband detectable by
the sensor [98]. Set 1 consisted of twelve A4-size stiff cardboard cards factory-painted with selected
Dulux acrylic colours. The cards had a wide range (approx. 13% to 100%) of mean near-normal
beam hemispherical spectral reflectance values (Refer Table 3, Figure 1) measured using a Perkins
Elmer Lambda 950 UV/VIS/NIR spectrophotometer over a 250–1000 nm range at 5 nm intervals
with a 150 mm integrating sphere calibrated with a 99% Spectralon certified reflectance standard in
compliance with [67].

Table 3. Dulux colour card IDs and measured mean spectral reflectance values 1.

ID Colour Name Dulux Code %R-Gλ %R-Rλ %R-NIRλ

1 Black PN2A9 13.852 14.147 15.338
2 Mt Eden PN2A7 18.984 19.140 19.150
3 Klute PN2A5 30.356 29.294 28.015
4 Stepney PN2A3 37.794 37.083 35.243
5 Warm Granite PN2C6 46.216 47.241 45.783
6 Soft Beige PN2C5 56.919 57.773 57.367
7 Bleaches PN2D5 65.578 65.421 65.816
8 Terrace White PN2H2 78.332 76.312 78.940
9 Manorburn PN2H1 80.151 79.341 80.364
10 Snowy Mountains PN2B2 87.562 87.693 89.320
11 Lexicon Quarter SW1E1 99.232 98.952 100.00

1 Mean spectral reflectance values over ADC camera bandwidths.
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reflectance over the bandwidths of interest and with high spectral contrast [88]. Measuring spectral
reflectance at 5 nm intervals adequately records the spectral characteristics of most surfaces [66].

Camera calibration target Set 2 consisted of one 127 × 127 mm Spectralon multi-step diffuse
calibration target (Labsphere Inc., North Sutton, NH, USA) with four side-by-side vertical panels
of 12%, 25%, 50% and 99% nominal spectral reflectance values measured at 1 nm intervals from
250 to 2500 nm using a Perkins Elmer Lambda 900B UV/VIS/NIR dual beam spectrophotometer with
150 mm integrating sphere that collects 8-degree beam hemispherical reflectance (spectral and diffuse)
calibrated with a Spectralon reflectance standard [130] (Refer Table 4, Figure 2).

Table 4. Spectralon multi-step target ID and mean spectral reflectance values 1.

ID Panel Name %R-Gλ %R-Rλ %R-NIRλ

1 SRT-12 11.860 12.305 13.198
2 SRT-25 27.029 28.303 30.545
3 SRT-50 50.320 51.820 54.204
4 SRT-99 99.073 99.006 98.942

1 Mean spectral reflectance values over ADC camera bandwidths.
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2.4. Camera Calibration Image Acquisition

The Dulux cards and the Spectralon multi-step target were placed vertically on a horizontal ledge
adjacent a sun-exposed building wall (Figure 3).
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Images were taken of the calibration targets outdoors under clear-sky conditions on 15 October 2016
between 12:00 and 12:15 p.m. The solar altitude and azimuth at 12:05 p.m. were 63◦23′06′′ and 20◦09′15′′

respectively at 33◦55′00′′ south latitude and 151◦13′00′′ east longitude [131]. Multiple images were taken
normal to the Dulux and Spectralon targets at distances of 3.2 m and 1 m respectively. The target sizes
satisfied the recommendations in the literature to be a minimum 3 to 10 times the sensor IFOV [87–98,132]
to ensure that as many pixels as possible associated with each calibration target were selected [88] and to
avoid atmospheric effects [87]. Each Dulux panel and the Spectralon target measured 293 (h)× 210 mm (w)
and 127× 127 mm respectively (with a single multi-step column measuring 30 mm (w)× 120 mm (h)).
Table 5 lists the camera calibration target distances, IFOV and minimum recommended target sizes.

Table 5. Camera calibration target distances and IFOV to satisfy target size requirements.

Target Target Size Distance Sensor IFOV 1 Min. 3 × IFOV Min. 10 × IFOV

Spectralon 30 mm 1 m 0.4 mm 1.2 mm 4 mm (<30 mm)
Dulux 210 mm 3.2 m 1.27 mm 3.81 mm 12.7 mm (<210 mm)

1 IFOV calculated from FOV optical calculator in Tetracam PW2 software.

2.5. Multispectral Image Pre-Processing

The ADC image data were stored in RAW format on a single SanDisk compact flash card and
downloaded via a card reader for processing on a PC. The ADC is supplied with a camera-specific
colour process file (CPF) that evaluates each RAW pixel value using a colour processing algorithm
to extract NIR (760–920 nm), Red (630–690 nm) and Green (520–600 nm) waveband values for each
pixel [133]. Colour-processed images were analysed in 10-bit RAW format and later saved in 8-bit
JPEG format for import into ArcMap.

To minimize the effects of saturation on the colour processed images the “Auto Adjust Scaling”
(AAS) box was checked on the Matrix page of the proprietary image editing software PixelWrenchII
(PW2) [133]. As previously reported, saturation of the Tetracam ADC images may occur for high
reflectance surfaces when the DNs exceed 256 resulting in the actual reflectance values exceeding the
dynamic range of the sensor [98,134].

2.6. Derivation of Camera Calibration Equations

The mean DN per waveband was calculated from a uniform polygon region of interest (ROI)
within the borders of the colour-processed image of each calibration target using the Histogram
Tool in PW2. For each calibration sample the spectrophotometer-measured mean spectral reflectance
per-waveband (on the y-axis) was regressed against the corresponding mean DN (on the x-axis)
to derive the per-waveband “camera response function” or empirical line 1 (EL1) using the curve
estimation function in the statistical software IBM SPSS. The OLS regression equations and scatter
plots are shown in Tables 6 and 7 and Figures 4 and 5 below.

Table 6. OLS equations (EL1) of camera response function per waveband for Dulux samples.

Wavelength (ADC Channel) Dulux-Generated EL1 R R2; AdjR2

Green λ 520–600 nm (Blue) %RGλ = 7.7353 + 0.3607DNaveB 0.989 0.978; 0.976
Red λ 630–690 nm (Green) %RRλ = 5.7211 + 0.4878DNaveG 0.986 0.971; 0.968
NIR λ 760–920 nm (Red) %RNIRλ = 7.1711 + 0.5143DNaveR 0.988 0.977; 0.974

Table 7. OLS equations (EL1) of camera response function per waveband for Spectralon samples.

Wavelength (ADC Channel) Dulux-Generated EL1 R R2; AdjR2

Green λ 520–600 nm (Blue) %RGλ = 6.7622exp(0.0132.DNaveB) 0.982 0.964; 0.947
Red λ 630–690 nm (Green) %RRλ = 0.4761DNaveG − 8.4403 0.999 0.998; 0.997
NIR λ 760–920 nm (Red) %RNIRλ = 0.4803DNaveR − 5.1695 0.999 0.998; 0.998
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The plots of spectral reflectance against sensor DN for the Dulux targets depict a strong
positive linear relationship for all three wavebands as measured by Pearson’s correlation coefficient
(0.986red < RDulux > 0.989green). For all sensor wavebands the coefficient of determination exceeds
0.971. The plots of spectral reflectance against sensor DN for the Spectralon calibration target depict a
strong linear correlation for Red and NIR wavebands (R = 0.999) and an exponential relationship for
the Green waveband. R2 for Red and NIR were both 0.998 and lowest at 0.964 for Green.

Assessment of Camera Calibration Equations

When the x-intercept (DN) equals 0 the corresponding y-intercept values are theoretically the
minimum reflectance values detectable by the unique image sensor per waveband [98]. Comparative
results of the Dulux and Spectralon-derived camera response equations (Tables 6 and 7) indicate that
in this instance, the y-intercept is not a true “constant calibration parameter” [98], since under identical
illumination conditions the minimum possible detectable mean spectral reflectance varies depending
on the properties of the calibration target [92,135].

In consideration that the spectral curves of both calibration target sets (Figures 1 and 2) indicate
near-uniform reflectance over the bandwidths of interest and the Spectralon target is a diffuse reflector,
the difference between the camera response to the calibration target sets may be accounted for, in part,
by the non-Lambertian reflectance and material properties of the Dulux cards [86,88,136] although this
reflectance anisotropy has not been experimentally verified.

2.7. Derivation of “Slope Coefficient” from In-Situ Calibration Target—Theory and Method

When two or more calibration targets with large spectral contrast are used the EL method
permits the computation of the sensor-specific relationship between image DNs and surface spectral
reflectance [88]. In many instances, however, it is impractical or expensive to acquire every image
containing its own calibration targets [86]. Wang and Myint [98] developed a simplified method
to convert image DNs to spectral reflectance by constructing an EL equation per image waveband
that consists of the theoretically minimum possible detectable reflectance or “constant calibration
parameter” and one additional coordinate—the “slope coefficient”—derived from a single field
calibration target of higher reflectance. The slope coefficient accounts for the variable illumination
effects on sensor DNs when the camera settings are invariant [98].
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The MS images of the target building facades included a mobile meteorological station crowned by
an aluminium “calibration bracket” (CB) measuring 97 (w) × 95 mm (h) with a white powder-coated
low-sheen finish. The CB dimensions satisfied the target distance recommendations in the literature
for this validation study and final reflectance recovery from images of building facades (Table 8).

Table 8. Facade target distance and IFOV to satisfy minimum target size requirement.

Target Target Size Distance Sensor IFOV 1 Min. 3 × IFOV Min. 10 × IFOV

CB 95 mm 18.5 m (mean) 7.40 mm 22.20 mm 74 mm (<95 mm)
1 IFOV calculated from FOV optical calculator in Tetracam PW2 software.

The mean near-normal beam hemispherical spectral reflectance values per waveband of the
CB were measured using a Perkins Elmer Lambda 1050 UV/VIS/NIR spectrophotometer over a
250–2500 nm range at 1 nm intervals with a 150 mm integrating sphere calibrated with a 99% Spectralon
certified reflectance standard compliant with [67] (Table 9 and Figure 6).

Table 9. Calibration bracket (CB) mean spectral reflectance values 1 per camera waveband.

Item Coordinate %R-Gλ %R-Rλ %R-NIRλ

%RCB “By” 89.061 86.868 84.113
1 Mean spectral reflectance values over ADC camera bandwidths.
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The following equations derived from [98] constitute the final EL equations per waveband:

%Rλ = m × DNave(λ) + Ay (1)

m = slope = ∆Y/∆X = (By − Ay)/Bx (2)

where Ay is the y-intercept of EL1, when Ax = 0. By is the measured mean spectral reflectance of the
calibration bracket and Bx is the mean DN corresponding to By.

Multispectral images of the CB were acquired at the same time as those of the material validation
samples. The mean DN per waveband for the CB (Table 10) was calculated from a uniform polygon ROI
within the borders of the colour-processed image of the CB using the Histogram Tool in PW2 software.

Table 10. Calibration bracket mean digital number (DN) values 1 per camera waveband.

Item Coordinate DNGλ DNRλ DNNIRλ

DN “Bx” 254 211 199
1 Mean DNs were calculated from the average of five ROIs.
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The final EL equations per waveband (“EL2”) derived from the intercept obtained from EL1
equations and the slope coefficient derived from the slope values calculated from Equation (2) above
are summarized in Tables 11 and 12 below. These equations were then applied in ArcGIS to the
colour-processed MS images of the validation samples to recover per-pixel per-waveband spectral
reflectance and then compared to the values obtained using ASTM E903-12 [67].

Table 11. EL2 equations from Dulux targets and calibration bracket per camera waveband.

Item %R-Greenλ %R-Redλ %R-NIRλ

Intercept 7.7353 5.7211 7.1711
Slope 0.3202 0.3846 0.3866

EL2Duluxλ %RGλ = 7.7353 + 0.3202(DNB) %RRλ = 5.7211 + 0.3846(DNG) %RNIRλ = 7.1711 + 0.3866(DNR)

Table 12. EL2 equations from Spectralon targets and calibration bracket per camera waveband.

Item %R-Greenλ %R-Redλ %R-NIRλ

Intercept 6.7622 −8.4403 −5.1695
Slope 0.0102 0.4517 0.4487

EL2Spectralonλ ln(%RGλ) = ln(6.7622) + 0.0102(DNB) %RRλ = 0.4517(DNG) − 8.4403 %RNIRλ = 0.4487(DNR) − 5.1695

2.8. Validation Using Material Samples of Known Reflectance Values

2.8.1. Part 1: Validation Sample Image Acquisition and Reflectance Measurement

To validate the EL equations, 13 samples of common building materials were used to compare
spectrophotometer-measured [67] spectral reflectance values with reflectance quantities recovered
from the EL2 equations.

Plywood-mounted material validation samples, several full-size samples of the same materials
and two calibration brackets were placed vertically on a horizontal ledge adjacent a sun-exposed
building wall (Figure 7).
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Figure 7. Plywood-mounted and full size validation samples and CBs.

Multispectral images were taken of the validation samples outdoors under clear-sky conditions on
9 February 2017 between 12:00 and 12:15 p.m. The solar altitude and solar azimuth at 12:10 p.m. were
66◦32′25′ ′ and 38◦27′47′ ′ respectively at 33◦55′00′ ′ south latitude and 151◦13′00′ ′ east longitude [131].
Images were taken normal to the calibration samples at a distance of 2.9 m. The target sizes satisfied
the recommendations in the literature [88] (Table 13).

Table 13. Validation sample target distance and IFOV to satisfy minimum target size requirements.

Target Target Size Distance Sensor IFOV 1 Min. 3 × IFOV Min. 10 × IFOV

Various 45 mm (min) 2.9 m 1.16 mm 3.48 mm 11.6 mm (<45 mm)
1 IFOV calculated from FOV optical calculator in Tetracam PW2 software.
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The validation samples had a wide range (approx. 7% to 78%) of mean spectral reflectance values
measured using a Perkins Elmer Lambda 1050 UV/VIS/NIR spectrophotometer over a 250–2500 nm
range at 2.5 nm intervals with a 150 mm integrating sphere calibrated with a 99% Spectralon certified
reflectance standard compliant with Reference [67] (Table 14 and Figure 8).

Table 14. Material validation sample ID and measured mean spectral reflectance values 1.

ID Name Description %R-Gλ %R-Rλ %R-NIRλ

V1 Colorbond “Windspray” Factory painted steel sheet 19.2386 22.5158 40.7007
V2 Colorbond “Woodland Grey” Factory painted steel sheet 12.1960 13.1979 28.8771
V3 Natural anodized aluminium 45 × 300 mm door frame profile 71.3176 70.5578 67.4945
V4 Powder-coated aluminium (“Cream”) 45 × 300 mm door frame profile 75.2613 77.9694 75.3959
V5 Sydney sandstone (beige) 140 mm (diam.) core sample 55.6602 60.2846 65.5658
V6 Granite stone (white & grey colour) 140 mm (diam.) core sample 39.1646 38.8916 39.8336
V7 PGH dry-pressed brick “McGarvie Red” Clay brick biscuit 76 × 110 mm 13.5092 25.1807 32.5668
V8 PGH dry-pressed brick “Copper Glow” Clay brick biscuit 76 × 110 mm 21.4442 33.9654 39.2103
V9 PGH dry-pressed brick “Mowbray Blue” Clay brick biscuit 76 × 110 mm 12.1330 14.0271 17.6589
V10 6.38 mm (th) clear laminated glass Clear glass on black backing 8.8608 8.2229 7.1488
V11 5.0 mm (th) clear glass Clear glass on black backing 8.7144 8.2300 7.4313
V12 Cement aggregate (white) 45 mm (diam.) core sample 49.3766 49.5922 47.8815
V13 Granite stone (red) 50 mm (diam.) core sample 18.2971 21.6636 20.0889

1 Mean spectral reflectance values over ADC camera bandwidths.
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2.8.2. Part 2: Reflectance Recovery from MS Images in ArcMap

The multispectral images of the validation samples were pre-processed in accordance with the
method previously outlined. The colour-processed images were imported in JPEG format into ArcMap
for further processing. Discrete ROI raster files were created for each material sample (from a composite
image) using the “Clip” function in ArcMap. These files were used as inputs into a raster algebra
expression of the empirical line equations (EL2 from Tables 11 and 12) to create spectral reflectance
raster files per waveband.

3. Results

The measured (M) and predicted (P) mean spectral reflectance values of the 13 validation samples
for all camera wavebands using the Dulux-derived EL2 are shown in Table 15 below. Common
statistical measures of correlation (Pearson’s r and Spearman’s rho), predictive precision (coefficient
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of determination, R2), distribution difference (Mann-Whitney’s U test) and prediction accuracy
(Willmott’s index of agreement d, root mean square (RMSE) and mean absolute error (MAE)) are
shown in Table 16 for evaluation of model performance [128,129,137] based on the OLS regression of
measured against EL2-predicted reflectance values [138].

Table 15. Measured (M) and EL2-predicted (P) mean spectral reflectance (%) of 13 validation samples
using EL1Dulux intercept.

Waveband Green Red NIR

Sample ID M P AR1 M P AR M P AR

V1 19.237 37.778 18.541 22.516 28.898 6.382 40.701 52.101 11.400
V2 12.196 27.145 14.949 13.198 17.670 4.472 28.877 39.703 10.826
V3 71.318 70.411 0.907 70.558 62.952 7.606 67.495 59.313 8.182
V4 75.261 69.702 5.560 77.969 91.490 13.521 75.396 90.843 15.447
V5 55.660 62.596 6.936 60.285 62.741 2.456 65.566 61.489 4.077
V6 39.165 44.223 5.058 38.892 42.304 3.412 39.834 41.017 1.184
V7 13.509 26.531 13.022 25.181 34.055 8.874 32.567 36.513 3.946
V8 21.444 32.155 10.710 33.965 40.947 6.981 39.210 41.689 2.479
V9 12.133 20.282 8.149 14.027 19.200 5.173 17.659 22.848 5.189
V10 8.861 19.832 10.971 8.223 13.064 4.841 7.149 29.292 22.143
V11 8.714 20.409 11.694 8.230 11.781 3.551 7.431 33.470 26.039
V12 49.377 64.151 14.775 49.592 62.009 12.416 47.882 52.978 5.097
V13 18.297 39.395 21.098 21.664 42.434 20.771 20.089 35.495 15.406

Mean 31.167 41.124 10.952 34.177 40.734 7.728 37.681 45.904 10.108
Sum AR 142.37 100.46 131.41
RMSE 1 12.228 9.177 12.561

d 1 0.920 0.960 0.892
1 AR: absolute residual. RMSE and d from [129].

Table 16. Rank correlation and OLS regression statistics M-P from Table 15 data.

Statistic Green Red NIR

Rank Correlation
Mann-Whitney U 1 Uc = 45 U = 54 Uc = 45 U = 69 Uc = 45 U = 64

Test result U > Uc U > Uc U > Uc
Z-score 1.53846 0.76923 1.02564
p-value 0.12356 0.4413 0.30302

Spearman’s rho (rs) 0.945 0.940 0.967
OLS regression M-P

RMSEs 1 5.993 6.346 9.261
MAE 4.893 4.188 8.092

Pearson’s r 0.966 0.960 0.900
R2 0.933 0.922 0.810
d 0.982 0.979 0.945

Intercept (a) −18.372 −4.81 −13.878
Slope (b) 1.2046 0.9224 1.1232

1 RMSEs from [129]. U test: no statistical difference in distributions at 95% confidence level.

Plots of the measured and Dulux EL2 equation-predicted mean spectral reflectance values of the
13 validation samples are shown in Figures 9 and 10 below.
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Figure 10. Ascending order M (red line) and P reflectance plots for G (a); R (b) and NIR (c) bands from EL2Dulux.

The OLS plots of measured (M) regressed against predicted (P) reflectance values per camera
waveband are shown in Figure 11 below.
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Figure 11. OLS regression of M against P reflectance per sample for G (a); Red (b) and NIR (c) from EL2Dulux.

The measured and predicted mean spectral reflectance values of the 13 validation samples for
the three camera wavebands using the intercept value from the Spectralon-derived EL2 equation and
prediction model evaluation statistics are shown in Tables 17 and 18 below.

Table 17. Measured (M) and EL2-predicted (P) mean spectral reflectance (%) of 13 validation samples
using EL1Spectralon intercept.

Waveband Green Red NIR

Sample ID M P AR M P AR M P AR

V1 19.237 17.527 1.712 22.516 12.275 10.241 40.701 46.276 5.576
V2 12.196 12.512 0.315 13.198 −3.218 16.416 28.877 29.583 0.705
V3 71.318 49.314 22.003 70.558 59.251 11.307 67.495 55.987 11.507
V4 75.261 48.218 27.043 77.969 98.619 20.649 75.396 98.442 23.046
V5 55.660 38.494 17.166 60.285 58.960 1.325 65.566 58.917 6.649
V6 39.165 21.499 17.665 38.892 30.768 8.124 39.834 31.352 8.481
V7 13.509 12.270 1.239 25.181 19.389 5.792 32.567 25.287 7.280
V8 21.444 14.665 6.779 33.965 28.896 5.070 39.210 32.257 6.953
V9 12.133 10.065 2.068 14.027 −1.103 15.130 17.659 6.887 10.772
V10 8.861 9.922 1.062 8.223 −9.568 17.791 7.149 15.564 8.415
V11 8.714 10.106 1.391 8.230 −11.338 19.568 7.431 21.190 13.759
V12 49.377 40.439 8.938 49.592 57.950 8.358 47.882 47.458 0.424
V13 18.297 18.448 0.152 21.664 30.948 9.284 20.089 23.916 3.827

Mean 31.167 23.345 8.272 34.177 28.602 11.465 37.681 37.932 8.262
Sum AR 142.37 100.46 131.41
RMSE 12.228 9.177 12.561

d 0.920 0.960 0.892
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Table 18. Rank correlation and OLS regression statistics M-P from Table 17 data.

Statistic Green Red NIR

Rank correlation
Mann-Whitney U 1 Uc = 45 U = 73 Uc = 45 U = 70 Uc = 45 U = 80

Test result U > Uc U > Uc U > Uc
Z-score 0.5641 0.71795 0.20513
p-value 0.57548 0.47152 0.83366

Spearman’s rho (rs) 0.945 0.940 0.967
OLS regression M-P

RMSEs 4.648 6.346 9.261
MAE 3.442 4.188 8.092

Pearson’s r 0.979 0.960 0.900
R2 0.960 0.922 0.810
d 0.989 0.979 0.945

Intercept (a) −5.475 14.332 6.039
Slope (b) 1.5696 0.6938 0.8342

1 U test: no statistical difference in distributions at 95% confidence level.

Plots of the measured and Spectralon EL2 equation-predicted mean spectral reflectance values of
the 13 validation samples are shown in Figures 12 and 13 below.
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The OLS plots of measured (M) regressed against predicted (P) reflectance values per camera
waveband are shown in Figure 14 below.
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In addition to linear covariance tests (r, R2, intercept a and slope b), OLS model prediction
error was evaluated using supplementary measures recommended by [128,129]. These include the
systematic root mean square error (RMSEs) and the unsystematic root mean square error (RMSEu).
For “good” model performance the RMSE should be low, RMSEs should tend to zero, RMSEu should
approach RMSE and Willmott’s index of agreement (d), a measure of prediction accuracy, should
approach unity [128]. MAE provides an estimate of mean differences between measured and predicted
values and is an “intuitive”, reliable measure of average model prediction error [139]. While RMSE is
a widely reported measure of average model error, it is less reliable than MAE since it exaggerates
differences due to higher sensitivity of RMSE to outliers [129,140] and due to the inconsistent variance
of RMSE with average error [139]. Table 19 below summarizes the performance of both models per
waveband to evaluate the most accurate and precise predictive EL equations.

Table 19. Summary statistics of EL2-equations and OLS model performance.

Equations EL2-Equation Measures OLS Regression Parameters OLS Difference Measures
1 Mm

1 Pm RMSE MAE r R2 a b RMSEs RMSEu MAE d

GreenDulux 31.167 41.124 12.228 10.952 0.966 0.933 −18.372 1.205 5.993 10.659 4.893 0.982
GreenSpectralon 31.167 23.345 12.279 8.272 0.979 0.960 −5.475 1.570 4.649 11.364 3.442 0.989

RedDulux 34.177 40.734 9.177 7.728 0.960 0.922 −4.81 0.922 6.346 6.630 4.188 0.979
RedSpectralon 34.177 28.602 12.830 11.465 0.960 0.922 14.332 0.6938 6.346 11.151 4.188 0.979

NIRDulux 37.681 45.904 12.561 10.108 0.900 0.810 −13.878 1.123 9.261 8.486 8.092 0.945
NIRSpectralon 37.681 37.932 10.014 8.262 0.900 0.810 6.038 0.834 9.261 3.810 8.092 0.945

1 Mm = Measured mean, Pm = Predicted mean.

Comparing the model results for the Green waveband, the lower Spectralon-derived OLS equation
RMSEs and MAE, higher RMSEu with higher d in agreement with higher regression R2 indicate its
unambiguous predictive superiority (bold in Table 19). Comparing the model results for the Red waveband,
considering equivalence of linear regression measures RMSEs, MAE and d, the lower Dulux-derived
EL2-equation MAE (lowest of all wavebands) and regression parameters (intercept a (−4.81) and slope
b (0.922)) closer to the ideal 1:1 correspondence line (when a = 0 and, more importantly, b = 1) for
goodness of fit [141] indicate its superior predictive precision and accuracy (bold in Table 19). The above
interpretation was supported when comparing the additive and proportional components [128] of the
MSEs for each model.

Comparing the results for the NIR waveband, despite a lower MAE for the EL2-Spectralon
equation estimates and considering the equivalence of OLS correlation and difference measures,
the significantly lower RMSEu for Spectralon-derived OLS suggests that the Dulux-derived EL2
equation contains proportionally less systematic error overall and hence improved accuracy (bold in
Table 19). This conclusion is augmented by computation of the ratio MSEs/MSE [129] that indicates
that the Dulux-derived NIR predictive model contains a significantly lower proportion (54.4% vs.
85.5%) of systematic error and hence greater comparative model accuracy.

In summary, the optimal predictive models per waveband indicate a strong monotonic agreement
(0.940 < Spearman’s Rho > 0.967) and linear association (0.900 < Pearson’s r > 0.966) between the
measured and EL2-predicted reflectance values that confirm a near-perfect positive agreement between
pairs of samples of ranked scores and a strong linear correlation [142]. The regression measures imply
distribution near-equivalence and high confidence in trend predictions [143]. Regardless of the residual
magnitudes, the distributions (Figures 9, 10, 12 and 13) show a strong positive agreement that supports
reflectance predictions on a relative (high/low) scale. The non-parametric Mann-Whitney U-test
for difference between two independent groups exhibits no statistically significant difference in
distributions at the 95% confidence level, reinforcing the above interpretation [144]. The coefficients of
determination (R2) of the OLS models for all wavebands exceed 81% (NIR). Green and Red band R2

exceed 92.2%. This suggests stronger agreement in the visible bands between measured and predicted
values and higher confidence in the precision of the linear covariance between measured and predicted
values [138].
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Comparative Assessment of Measured and EL2 Predicted Reflectance Distributions

The mean bias error (MBE) [139] between measured and Dulux-derived EL2 equation predicted
reflectance values for all wavebands indicates a systematic overestimation of measured values
(Figures 9 and 10), a trend corroborated by the regression model (Figure 11) and regression slope
and intercept parameters (Table 16). The overestimation bias derives from the camera calibration
model (Table 6). However, higher reflectance samples (V3 (nominal reflectance 70%); V4 (75%) and
V5 (60%) in Table 15) underestimate measured values. Underestimation of high-albedo surfaces by
the EL method has been reported previously [94]. Sample V13, red Granite stone (nom. reflectance
20%) exhibits the largest absolute residual for the Green and Red wavebands. The high error may
be theoretically accounted for by the reflectance anisotropy common to natural materials [135] in
combination with artifacts of the prediction model. However, the low absolute residual magnitude
of the Spectralon-derived estimate for the same sample (Table 17) implicates the latter. The largest
absolute residual for the NIR waveband (Dulux-derived) occurs for sample V11, 5 mm Clear Glass
(nom. reflectance 8%). The specular behaviour of glass at oblique incident angles (as occurred in the
validation experiment, where the solar altitude exceeded 65◦) may account for the larger difference in
the NIR region [48]. Further, the low measured reflectance of glass falls outside the reflectance data
range used to build the EL equations which may increase prediction error for this sample [98].

The MBE between measured and Spectralon-derived EL2 equation predicted reflectance values for the
Green and Red wavebands indicates a systematic underestimation of measured values (Figures 12 and 13),
a trend corroborated by the regression model (Figure 14) and regression slope and intercept parameters
(Table 18). The underestimation bias derives from the camera calibration model (Table 7). MBE for the
NIR waveband indicates marginal average overestimation of measured reflectance values, with some
exceptions. Sample V13, red granite stone, is overestimated in all three wavebands and largest for the Red
waveband. The highest reflectance sample, Sample V4 (powder coated aluminium, cream colour, nominal
reflectance 75%), exhibits the largest absolute residual for all camera wavebands and is overestimated in the
Red and NIR bands. The Spectralon model prediction of maximum error per sample is inconsistent with
the Dulux-derived response to maximum error but consistent with prior studies that found predictions of
high albedo surfaces have higher errors than low albedo surfaces [48].

The range of measured mean spectral reflectance values (approx. 7% to 78%) of the validation
samples across all wavebands was comfortably within the upper reflectance limit of the calibration
targets used in the development of the predictive equations (approx. 99% for EL1 and 89% for
EL2). However, the two glass samples had measured reflectance values below the lower limit of the
model data range (approx. 12% for EL1). For all samples (excluding glass) the predicted values were
interpreted within the limits of the calibration equations [88,98].

4. Discussion

In this study a terrestrial application of the EL method [88] was developed to radiometrically calibrate
and validate close-range remotely sensed images of vertical surface materials obtained from a narrow FOV
MS camera using a single in-situ calibration target [98]. The y-intercept of the camera response function,
although variable with camera calibration target properties, was shown to be the minimum reflectance
detectable by the camera sensor per waveband and was used as the lower data point. The second coordinate
of the EL equation was derived from the per-waveband spectral reflectance values and DNs of the CB.
While the CB was assumed to be Lambertian, the spectrophotometer measurements of the CB indicated
that mean spectral reflectance was unequal across sensor wavebands (Table 9) with a declining reflectance
trend observed from shorter (visible) to longer (NIR) wavelengths (Figure 6) necessitating a separate EL
equation for each waveband [98]. The optimal EL2 equations per waveband (Table 19) strongly linearly
correlated (0.900 < r > 0.979) per-pixel spectral reflectance to image DNs with absolute prediction accuracies
(7.728% < MAE > 10.108%) within the range reported in the literature [88,94].

Theoretically, improvements in accuracy are achievable if the calibration target is accurately
characterized [136] and more than one in-situ calibration target is used [132] and future experimental
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design could, without much logistical effort, incorporate additional portable near-Lambertian targets,
selected for spectral uniformity within sensor wavebands [135]. Instrument characteristics have been
identified as a common source of experimental uncertainty [145]. Accuracy improvements may result
from the optimisation of camera settings (i.e., manual exposure) within the limitations of the sensor
radiometric resolution [92,98,134] and from corrections for sensor background noise and vignetting [87].
However, the anticipated absolute accuracy improvements are not crucial for the “relative magnitude”
of elements of the scene approach adopted here where distribution equivalence is more highly prized.

The variable per-waveband mean spectral reflectance of the CB, characterized by greater
reflectance in the visible band (Table 9), its smooth, low-sheen surface finish (potentially with a
non-negligible specular component at large incident angles [48,146]) and the non-uniform Tetracam
ADC CMOS sensor response function to different sensor bandwidths (with lowest sensitivity in the
Green waveband) may account for the relative distribution of errors per waveband [86,87]. Importantly,
due to near-horizontal viewing geometry, it is speculated that the accuracy of the reflectance recovery
computations is strongly influenced by angular and adjacency effects (in particular from ground
reflections) [75,85] and the impacts of in-situ spectral, diffuse and direct effects that are not explicitly
accounted for in the laboratory measurements [62,146,147].

The majority of prior ground- or UAV-based studies utilising the vicarious EL method with
narrow FOV MS sensors for reflectance recovery have been concerned with horizontal vegetated
surfaces [86,87,95,96,102] and fewer with horizontal urban surfaces [48,104]. Furthermore, the use of
the EL method applied to terrestrial close-range MS sensors with near-horizontal viewing geometry
of urban building facades has not been previously reported. However, there is growing interest in
the use of ground-based, close range narrow FOV sensors for retrieval of the spatio-temporal optical
and thermal characteristics of vertical surfaces at the facet and sub-facet scales for building damage
assessment [148], geological surveys [85] and urban climatology [78].

As there is a gap in the literature addressing, and no standard method exists for, facet and
sub-facet scale terrestrial reflectance recovery from real building facades, the value of this paper
is its contribution to the development of a logistically simple, replicable, validated reflectance
recovery method, with explicit error magnitude and source estimation, suitable for climatology
studies of building facades using a single mobile calibration target and high-resolution close-range
images obtained from a relatively low-cost MS camera. However, since each camera has a unique
sensor response-function [92] and irradiance may vary under different environmental conditions,
the determination of the relationship between reflectance and DNs necessitates the computation of
new equations for each new sensor and every unique environment [98].

5. Conclusions

This paper described a novel application of the EL method for radiometric calibration of a
relatively low-cost MS sensor applied to close-range images of vertical urban surface materials.
The performance of the single-target EL calibration equations was evaluated and quantified using
validation samples of common building materials. Confidence in the precision and accuracy of the EL
equations per-waveband was assessed using covariance statistics and error measures [128,129,137]
and absolute prediction accuracies (7.728% < MAE > 10.108%) were within the range reported in the
literature [88,94,149] and above prediction accuracies (15–20%) reported for single-target calibration
methods [88,103].

Based on the optimum equations (Table 19) the results are encouraging and indicate that the
prediction equations (Tables 11 and 12) satisfactorily characterize the per waveband reflectance
differences of commonly used materials found on Australian building facades. For example,
dry-pressed clay bricks (samples V7, V8, and V9, Table 14) are frequently used in low to medium-rise
construction of residential buildings in Sydney and are satisfactorily predicted in the green waveband
within a range of 1.24% to 6.68% absolute error (AE) (Table 17) and OLS model absolute residuals
(OMAR) of 0.27%, 3.9% and 1.8% respectively. Importantly, the NIR waveband reflectance values are
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satisfactorily predicted within a range of 2.48% to 5.19% AE (Table 15) and OMAR in the range of 5.4%
to 6.2%. This relative predictive strength is significant since dry-pressed clay bricks are both pervasive
and more reflective in the NIR region (Table 14 and Figure 8).

Dark-grey pre-painted steel sheeting (sample V2) is another prevalent material used for building
facade cladding that is more reflective in the NIR region (Table 14 and Figure 8). Green and NIR
waveband reflectance values are satisfactorily predicted with a 0.32% and 0.71% AE (Table 17) and
OMAR of 1.96% and 1.84% respectively. Glass (samples V10 and V11) is reasonably well predicted in
the visible spectrum with a 1.06% and 4.84% AR in the Green (Table 17) and Red (Table 15) bands with
an OMAR of 1.24% and 0.53% respectively for sample V10.

While the results confirm the findings of prior studies supporting the utility of a single in-situ
target for radiometric calibration [86,98] it may be concluded from method and model evaluation that
improvements in measurement protocols and calibration target specification would reduce prediction
model error, although the anticipated absolute accuracy improvements are not warranted here since
the “relative magnitude” of elements of the scene and distribution equivalence are desired for the
development of a larger statistical model. The regression statistics (Tables 16, 18 and 19) imply
distribution near-equivalence between measured and predicted reflectance values and high confidence
in trend predictions. This demonstrates that a single-target EL method can be applied to recover
spectral reflectance from terrestrial close-range MS images of vertical surfaces with satisfactory results.
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