Next Article in Journal
Water Budget in a Tile Drained Watershed under Future Climate Change Using SWATDRAIN Model
Previous Article in Journal
Evaluating Vegetation Growing Season Changes in Northeastern China by Using GIMMS LAI3g Data
Article Menu

Export Article

Open AccessArticle
Climate 2017, 5(2), 38; doi:10.3390/cli5020038

Climate Change in Afghanistan Deduced from Reanalysis and Coordinated Regional Climate Downscaling Experiment (CORDEX)—South Asia Simulations

1
United Nations Environment Programme (UNEP) Post-conflict and Disaster Management Branch (PCDMB), UNOCA Compound, Kabul, Afghanistan
2
Potsdam Institute for Climate Impact Research (PIK), Am Telegraphenberg, 14473 Potsdam, Germany
3
Faculty of Environmental Science, University of Kabul, Jamal Mena Karte-e-Sakhi, Kabul, Afghanistan, noorahmad.akhundzadah@gmail.com
4
Institute of Geography and Geology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
5
Institute of Ecology, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
*
Author to whom correspondence should be addressed.
Academic Editor: Yang Zhang
Received: 20 March 2017 / Revised: 28 April 2017 / Accepted: 16 May 2017 / Published: 23 May 2017
View Full-Text   |   Download PDF [4829 KB, uploaded 24 May 2017]   |  

Abstract

Past and the projected future climate change in Afghanistan has been analyzed systematically and differentiated with respect to its different climate regions to gain some first quantitative insights into Afghanistan’s vulnerability to ongoing and future climate changes. For this purpose, temperature, precipitation and five additional climate indices for extremes and agriculture assessments (heavy precipitation; spring precipitation; growing season length (GSL), the Heat Wave Magnitude Index (HWMI); and the Standardized Precipitation Evapotranspiration Index (SPEI)) from the reanalysis data were examined for their consistency to identify changes in the past (data since 1950). For future changes (up to the year 2100), the same parameters were extracted from an ensemble of 12 downscaled regional climate models (RCM) of the Coordinated Regional Climate Downscaling Experiment (CORDEX)-South Asia simulations for low and high emission scenarios (Representative Concentration Pathways 4.5 and 8.5). In the past, the climatic changes were mainly characterized by a mean temperature increase above global level of 1.8 °C from 1950 to 2010; uncertainty with regard to reanalyzed rainfall data limited a thorough analysis of past changes. Climate models projected the temperature trend to accelerate in the future, depending strongly on the global carbon emissions (2006–2050 Representative Concentration Pathways 4.5/8.5: 1.7/2.3 °C; 2006–2099: 2.7/6.4 °C, respectively). Despite the high uncertainty with regard to precipitation projections, it became apparent that the increasing evapotranspiration is likely to exacerbate Afghanistan’s already existing water stress, including a very strong increase of frequency and magnitude of heat waves. Overall, the results show that in addition to the already extensive deficiency in adaptation to current climate conditions, the situation will be aggravated in the future, particularly in regard to water management and agriculture. Thus, the results of this study underline the importance of adequate adaptation to climate change in Afghanistan. This is even truer taking into account that GSL is projected to increase substantially by around 20 days on average until 2050, which might open the opportunity for extended agricultural husbandry or even additional harvests when water resources are properly managed. View Full-Text
Keywords: climate change; Afghanistan; Coordinated Regional Climate Downscaling Experiment (CORDEX)-South Asia; trend analysis; Heat Wave Magnitude Index (HWMI); Standardized Precipitation Evapotranspiration Index (SPEI); growing season length (GSL) climate change; Afghanistan; Coordinated Regional Climate Downscaling Experiment (CORDEX)-South Asia; trend analysis; Heat Wave Magnitude Index (HWMI); Standardized Precipitation Evapotranspiration Index (SPEI); growing season length (GSL)
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Aich, V.; Akhundzadah, N.A.; Knuerr, A.; Khoshbeen, A.J.; Hattermann, F.; Paeth, H.; Scanlon, A.; Paton, E.N. Climate Change in Afghanistan Deduced from Reanalysis and Coordinated Regional Climate Downscaling Experiment (CORDEX)—South Asia Simulations. Climate 2017, 5, 38.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Climate EISSN 2225-1154 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top