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Abstract: This paper examines the effects of climatic and non-climatic factors on cassava yields in
Togo using an Autoregressive Distributed Lag (ARDL) modelling approach and pairwise Granger
Causality tests. Secondary data on production statistics, rural population, climate variables, prices and
nominal exchange rate for the period 1978–2009 are used. Results for estimated short- and long-run
models indicate that cassava yield is affected by both ‘normal’ climate variables and within-season
rainfall variability. An inverse relationship is found between area harvested and yield of cassava,
but a significant positive and elastic effect of labour availability on yield in the long run. Increasing
within-lean-season rainfall variability and high lean-season mean temperature are detrimental to
cassava yields, while increasing main-season rainfall and mean-temperature enhance cassava yields.
Through Granger Causality tests, a bilateral causality is found between area harvested and yield of
cassava, and four unidirectional causalities from labour availability, real producer price ratio between
yam and cassava, main-season rainfall and lean-season mean temperature to cassava yields. Based on
the findings from this study, investment in low-cost irrigation facilities and water harvesting is
recommended to enhance the practice of supplemental irrigation. Research efforts should as well be
made to breed for drought, heat and flood tolerance in cassava. In addition, coupling area expansion
with increasing availability of labour is advised, through the implementation of measures to minimize
rural–urban migration.

Keywords: cassava; ‘Cassava belt’; yield response; Autoregressive Distributed Lag modelling;
Granger Causality; Togo

1. Introduction

A high number of climate impact and yield response studies in Africa and other developing
countries predict declines in the yield of major staple crops by the mid- to late 21st century due to
climate change, but a more resilient response of cassava to future climatic shocks (e.g., see [1–6]).
This indicates a high potential for cassava to adapt to a harsh future climate and serve as a food
security crop under such conditions, thereby minimizing the national food insecurity burden. Grown
basically for its tuberous roots, cassava is a staple for more than 800 million people worldwide [7],
and is the third most important source of calories in the tropics after rice and maize [8]. Well known
for its low input requirement and high resilience to unfavourable production conditions, cassava has
a high output of energy per area cultivated. (This makes cassava a strategic crop for overcoming
hunger) [9], and it is easy to cultivate on marginal lands [4,10,11]. In addition, cassava has a lower risk
of crop failure (compared to crops like rice, maize, groundnut, tomatoes, peppers and other vegetables),
and serve as a potential feedstock for many industries (through the use of starch for pharmaceutical,
textile and adhesive purposes), a famine reserve (flexibility in harvesting) and a cash crop [7,12].
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These beneficial attributes have earned the crop research, investment and political attention over the
past eight decades [13].

Despite the benefits derived from the crop, the growth of the cassava sub-sector in major
production regions has been hindered by two primary constraints; pests and diseases (specifically
the Africa Cassava Mosaic Virus Diseases (ACMV) and the Cassava Brown Streak Virus (CBSV))
and low yields [13,14]. Addressing these two constraints has been the major focus of research,
investment and political efforts made towards promoting cassava production at the local, national and
global scales [13]. Although such efforts may have yielded some encouraging results in controlling
cassava-related pests and diseases in major production zones worldwide, the cassava yields observed
in West and Central Africa are far below the achievable. Compared to yields of 90 tons per hectare
observed under ideal growing conditions in Colombia [15,16], and recorded yields (for the year 2013) of
21.8–22.5 tons/hectare in countries like Thailand and Indonesia [11], the yields observed by subsistence
farmers in West and Central Africa are generally within the range of 8–12 tons [17–19]. This is far
below achievable yields of 75–90 tons of fresh roots per hectare in cassava mono-crop [10,20] and
25–50 tons/hectare in some mixed/mono-cropping (experimental) systems across West and Central
Africa [21,22].

Despite the wide yield gap in the majority of the countries in the region, a significant number
of countries observed annual growth in cassava yields over the five decades between the years 1964
and 2013. As shown in Figure 1, countries like Benin, Cameroon, Chad, Côte d’Ivoire, Ghana, Mali,
Niger, Senegal and Sierra Leone observed annual increments of more than 1% between the years 1964
and 2013, while countries like Nigeria and Guinea observed minor annual growth. In contrast, Togo,
the country with the highest cassava yields during the period 1964–1973, observed an annual decline of
2.60% between the years 1964 and 2013. From a leading position in productivity during past decades,
Togo is now one of the countries with the lowest cassava yields in the sub-region.
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Figure 1. Decadal changes in cassava yields across selected West and Central African countries. Source:
Author’s construct with data from FAOSTAT (2014). Annual growth rates for the period 1964–2013:
Benin (2.34% ***), Burkina Faso (−3.43%, ***), Cameroon (2.08%, ***), Chad (3.00%, ***), Côte d’Ivoire
(2.14%, ***), Ghana (1.61%, ***), Guinea (0.27%, ***), Mali (1.75%, ***), Niger (2.50%, ***), Nigeria
(0.49%, ****), Senegal (1.28%, ***), Sierra Leone (1.42%, ***), Togo (−2.60%, ***).

Based on the role played by the crop in the Togolese diet (as a major staple), in national agricultural
production and trade, as the second most important crop in the country after maize [23], and accounting
for approximately 15% of total dietary energy supply (and 59.14% of dietary energy supply by starchy
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roots (computed by the author using food supply data from FAOSTAT for the period 2001–2010)) and 11% of
gross value of agricultural production (in constant 2004–2006, 1000 Int. $), this declining trend in the
yield of cassava in the country is deemed worrisome. For the crop to stand a chance of contributing
significantly to the future food needs of the country under the anticipated harsher future climate,
there arises a need to address the current productivity challenge through an identification of the
major factors that limit cassava yields in the country, and the implementation of measures to address
present limitations. To inform policy formulation and investment decisions in Togo in this regard,
several research efforts have been made. Emphasis has, however, so far been placed on the effects
of biotic (e.g., weeds, pests and viral diseases) determinants of cassava productivity (e.g., [23–25]),
with very little (if anything) done to ascertain the effects of abiotic (climatic), socioeconomic and policy
determinants. Addressing the low productivity challenge requires not only information on biotic
influences, but also on the effect of other relevant determinants of yields. This study seeks to bridge the
current knowledge gap on the effect of climatic and non-climatic factors on yields of cassava in Togo.
An autoregressive Distributed Lag (ARDL) modelling approach and pairwise Granger Causality tests
are used for the analysis. Secondary data on production statistics, rural population, climate variables,
and price and policy-related variables for the period 1978–2009 are used. In summary, the study
seeks to:

1. Analyze the yield response of cassava to changes in climatic and non-climatic factors in Togo; and
2. Inform policy and investment decisions on the measures needed to boost productivity of cassava

in the country.

In Section 2, some statistics on output, acreage and yield of cassava over the five decades between
1964 and 2013 are provided to reveal decadal trends. Section 3 provides a summary (review) of findings
from previous studies. Methods (study area and analytical framework) are covered in Section 4, results
and discussion in Section 5, and conclusion and policy recommendations in Section 6.

2. Evolution of Cassava Production, Area and Yields in Togo

Prior to the prolonged drought of 1982, cassava production in Togo was basically driven by
increments in yield and productivity of crop fields (resulting from proper management of the smaller
parcels of land owned by farmers and from consolidation). During this period, greater shares of lands
were devoted to the production of staples like maize, sorghum and millet, and to economic legumes
and cash crops like groundnuts, cowpea, common beans, yam and cotton. Although cassava was and
continues to be a key component of Togolese diets, the area allocated to production of the crop during
the period 1964–1973 decreased at a rate of 0.52% per annum (not significant), while yields increased at
an annual rate of 1.84% (significant at the 10% level). As shown in Table A1 in the appendix, however,
the annual increment (1.31% per annum) observed in production during this period was not significant.
Due to erratic rainfall in the late 1970s and prolonged drought in 1982, the need to expand the area
devoted to cassava production (as a famine resort) became a priority in the country’s policy and in
the seasonal cropping decisions of farming households. From an insignificant annual decline of 0.52%
(during the period 1964–1973), the area allocated to cassava production increased at a significant
annual rate of 21.05% during the period 1974–1983, with this increase driven primarily by a sharp
rise in the area harvested, from 43,100 hectares in 1981 to 108,700 hectares in 1982. The increasing
cost of production following such a rise, coupled with rural–urban migration (as a coping strategy by
farm households, thereby reducing agricultural labour availability) and mismanagement of cassava
fields resulted in a sharp decline in yields from 8.63 tons/hectare in 1981 (although higher yields
were observed in the 1960s and early 1970s) to 3.38 tons/hectare in 1982 (the lowest observed in the
country so far). In contrast to the 21.05% annual increase in area of cassava harvested during the
period 1974–1983, yields decreased at a significant rate of 18.29% per annum. This significant mismatch
between area harvested and yields led to an insignificant decline of 1.09% per annum in cassava
production. Area harvested of cassava has since then, specifically over the decades 1994–2003 and
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2004–2013, manifested increasing trends, with an annual increment of more than 3%. Yields, on the
other hand, fluctuated over the decades after the period 1974–1983 (increasing significantly at a rate
of 1.02% per annum only in the last decade (2004–2013)). Increasing at a significant annual rate of
more than 4% during the periods 1994–2003 and 2004–2013, production has taken after the trends in
area harvested. Low yields of cassava in the country have been attributed, among other causes, to the
use of low-yield varieties, a high incidence of pest and diseases, declining soil fertility, a lack of good
planting materials, and poor marketing, which precludes effective promotion of the crop [26].

3. Yield Response of Cassava: A Review

Regarded as one of the world’s most important food crops, cassava is mostly cultivated as
a security crop due to its strong abiotic resistance characteristics [4], flexibility in harvesting [7] and
ability to produce appreciable yields on marginal lands with low input [10,11] compared to crops
like maize, rice, and groundnut. The crop is, however, exposed throughout its production cycle to
diverse biotic, abiotic, policy and management constraints. Depending on the type of constraint to
which the crop is exposed within and between seasons, different yield responses are documented
in the literature. In this review, we place sole emphasis on a few of the non-biotic determinants of
cassava yields. The crop is generally found to be more resilient under harsher climatic conditions than
other staples like maize, sorghum, millet, and groundnut [2,27]. In a study on the impact of climate
change on crop yields in sub-Saharan Africa, and under alternative climate change scenarios, Blanc [27]
predict yield changes of −19% to +6% for maize, −38% to −13% for millet, and −47% to −7% for
sorghum by 2100. Predicted changes in cassava yields are, however, near zero. Floods were found to
be detrimental to cassava yields in the base regression. Schlenker and Lobell [2] predict yield losses of
−22%, −17%, −17%, −18%, and −8% respectively for maize, sorghum, millet, groundnut and cassava
in sub-Saharan Africa. These predictions show that cassava is relatively more resilient to changes in
climatic conditions than most of the priority crops in sub-Saharan Africa. Despite its resilience, a report
on crop substitution behaviour among food crop farmers in Ghana found a significant negative effect
of increasing maximum temperature on cassava yields, but a significant positive effect of rainfall and
increasing minimum temperature [28]. A positive effect of rainfall on cassava yields is also reported
by [29] for the Guinea Savanna part of Nigeria. In contrast to the findings by [28,29], Emaziye [30]
reports a positive effect of increasing temperature on cassava yields in Nigeria, but a negative effect of
increasing rainfall. Through cointegration analysis, Mbanasor et al [31] find a positive short-term but
negative long-tern effect of rainfall on cassava yields, and a consistent negative effect of temperature
in both the short and the long term. Through analysis of sensitivity of crop yield to extreme weather in
Nigeria, Ajetomobi [32] finds a negative effect of extreme temperature and rainfall on cassava yield.
Whereas a 1% rise in extreme temperature led to only a 0.05% decrease in cassava yield, a 1% increase
in rainfall led to a 2.17% decrease in yield.

Despite the significant effects of temperature reported in Nigeria and Ghana, other researchers
find very little or no effect of temperature on cassava yields, even when the optimal temperature range
is exceeded by 5–10 ◦C [16,33]. These differences in the effect of temperature on cassava yields reflect
regional differences in the sensitivity of cassava to changing local climatic conditions, and necessitate
the undertaking of country-specific studies to inform locally relevant policy decisions. In a study
by [4], cassava was found to be tolerant to high temperatures and intra-seasonal drought. Exposure of
the crop to prolonged drought (of at least two months) during the tuber-formation and root-thickening
stages, however, decreases root yields by 32%–60%. This indicates that the ability of cassava to
resist the adverse effects of climatic stressors depends on the timing, strength and duration of the
event [4]. Most of the impact studies conducted so far have placed more emphasis on the climatic
aspects of non-biotic determinants. With the few that looked beyond the climatic aspects, cassava
yields reportedly decreased with increasing land area (e.g., [27]). Indicating decreasing marginal
land productivity, a 10% increase in the area allocated to cassava production in sub-Saharan Africa
caused a 2% decrease in cassava yields [27]. In addition to the effect of increasing land area on
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crop yields, other researchers (e.g., [28]) report beneficial implications of increasing maize price for
cassava through increased allocation of land for cassava production in Ghana. The increasing price of
cassava also prompted farmers to allocate more land for maize. These results indicate some form of
complementary association between maize and cassava in Ghana. In contrast to this, a study by [34]
observed a decline in the output of maize with an increasing price of cassava, but an increase in
maize output with an increasing price of maize and yams. This indicates a complementary association
between maize and yam, but a competitive association between maize and cassava. Findings from the
various articles reviewed in this section show a general contextual nature of response of cassava to
climatic stressors. Information on the effect of non-climatic (and non-biotic) stressors at a more macro
level is quite limited.

4. Methods

4.1. Study Area

As shown in Figure 2, Togo is a West African country that shares borders with Ghana in the
west, Burkina Faso in the north, the Republic of Benin in the east, and the Gulf of Guinea in the south.
The country’s economy is agriculture-driven, with crops like coffee, cocoa, and cotton dominating in
income generation via exports, while yam and cassava dominate in contribution towards the total
gross value of agricultural production (21.48% for yam and 10.67% for cassava). Agriculture accounts
for approximately 40% of GDP (50% of the country’s export earnings) and employs about 70% of
the country’s population [35]. Togo’s climate varies from tropical in the south to savanna in the
north. The country has five economic regions, namely the Savanes (Savannah region), the Kara region,
the Central region, the Plateaux region, and the Maritime region. The last two regions cover 40.2%
of the national land area, 68.56% of the area harvested for cassava, and 69.64% of national cassava
output (based on CountrySTAT data for 2001–2011). The first three regions have a unimodal rainfall
regime, while the last two have a bimodal distribution. The growing period for the unimodal zone
stretches from May to November. In the bimodal zone, the main season covers March to July (planting
and vegetative period for cassava, yam and other roots and tubers, and the growing period for major cereals
and legumes), while the lean season covers September to November (tuber formation period for cassava
based on cropping calendar for the zone). Although all five regions are exposed to common climatic
threats like violent winds, erosion, late onset, poor distribution of rains, droughts and flooding [35],
the distribution of major crops/livestock produced in the country varies by region.
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Based on information gathered from [21], and as shown in Table A2 (in the appendix),
cassava production takes place mostly in the Maritime and western Plateaux regions, while yam
cultivation takes place in the yam belt (the three regions in the unimodal zone) and in the western
Plateaux. Traditional staples like millet and sorghum are produced mainly in the unimodal rainfall
zone, while the main legumes, rice, maize and cash crops like cotton are produced across zones.
The country has 10 primary synoptic weather stations, with six in the unimodal zone (in Mango,
Dapaong, Niamtougou, Kara, Sokode, and Sotouboua) and four in the bimodal zone (in Atakpame,
Kouma-Konda, Tabligbo and Lome). Cassava production and yields in the country are, however,
heavily influenced by climatic conditions in the last three stations of the bimodal rainfall zone.
Assessment of the effect of climatic factors on cassava yields in the present study is therefore based on
average climatic conditions for the three highlighted synoptic stations in the south (see Figure 2).

4.2. Changing Climatic Conditions for the ‘Cassava Belt’ and Yield of Cassava in Togo

To emphasize the exclusion of climate data for the eastern Plateaux in the current study, the cassava
producing areas are henceforth referred to as the ‘Cassava belt’. Between the years 1978 and 2009,
rainfall for both the main and lean seasons fluctuated, depicting no obvious trends. Non-significant
annual declines of −0.399% and −0.290% are estimated for the main- and lean-season rainfall,
respectively. Main- and lean-season mean temperatures, however, increased at significant rates
of 0.026 ◦C and 0.032 ◦C per annum, respectively. Total rainfall in the main season ranged between
488.07 mm (in the year 2000) and 978.37 mm (in the year 1989), with a mean value of 694.58 mm and
coefficient of variation estimate of 18.43%.

From Figure 3, the total rainfall in the lean season ranged between 167.07 mm (in the year 1996)
and 461.77 mm (in the year 1980), with a mean of 331.64 mm and a coefficient of variation estimate of
22.30%. This indicates a relatively higher variability of rainfall in the lean season. Main-season mean
temperature ranged between 25.87 ◦C (in the year 1978) and 27.82 ◦C (in the year 1998), while a range
of 25.48 ◦C (in 1978) to 26.76 ◦C (in 2005) is recorded for the lean season. Mean values of 26.79 ◦C
(with standard deviation of 0.39 ◦C) and 26.16 ◦C (with a standard deviation of 0.38 ◦C) are recorded
for the main and lean seasons, respectively. We find no obvious visual correlation (in terms of trends)
between the seasonal rainfall measures and yield of cassava, but, rather, opposing trends between
changes in seasonal temperature and yield of cassava. Whereas increasing trends are observed
for the main- and lean-season temperatures, the yield of cassava decreased at an annual rate of
0.12 tons/hectare over the period 1978–2009.
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Figure 3. Rainfall and temperature trends in the ‘Cassava belt’ of Togo. Source: Author’s
construct with data from the National Meteorological Service. NB: MSavprec—rainfall for the main
season; LSavprec—rainfall for the lean season; MSavtemp—mean temperature for the main season;
LSavtemp—mean temperature for the lean season; YCass—Yield of cassava.

4.3. Analytical Framework

4.3.1. Model

Findings from agricultural supply response studies serve as a useful guide in local, regional,
national and global food policy formulation and agribusiness investment decisions. This study places
emphasis on analyzing the response of cassava yield to climatic and non-climatic factors in Togo.
Based on documented evidence on determinants of cassava yields in the literature and observed
realities on the ground in the current study area, the following yield response function is assumed as
a base model for this study:

YCass= f

 ACass, Rulpop, RPMaiCass, RPYamCass, RPBeaCass, Exr, MSavprec, LSavprec,
MSavprec_Var,

LSavprec_Var, MSavtemp, LSavtemp

 (1)

From Equation (1), the yield of cassava (YCass) is assumed to be a function of the area of
cassava harvested (ACass); the total rural population (Rulpop—a proxy for labour availability);
the real producer price ratios between maize and cassava (RPMaiCass (RPMait /RPCasst , RPMait :
real producer price o f maize at time t, RPCasst : real producer price o f cassava at time t), yam and
cassava (RPYamCass (RPYamt /RPCasst , RPYamt : real producer price o f yam at time t)), and common
beans and cassava (RPBeaCass (RPBeat /RPCasst , RPbeat : real producer price o f common beans at time t));
the nominal exchange rate (Exr); the total volume of rainfall for the main season (MSavprec);
the total volume of rainfall for the lean season (LSavprec), the within-main-season rainfall variability
(MSavprec_Var (measured as the standard deviation of the monthly (months in the main season) means
expressed as a percentage of their respective seasonal means [36]; a similar definition is used for the lean
season, but using months in the lean season); the within-lean-season rainfall variability (LSavprec_Var);
the main-season mean temperature (MSavtemp); and the lean-season mean temperature (LSavtemp).
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In line with previous crop yield response studies in Africa (e.g., [36,37]), we assume a Cobb–Douglas
functional form for the base model, and rewrite Equation (1) as follows:

lnYCasst = β0 + β1lnACasst + β2lnRulpopt + β3lnRPMaiCasst+

β4lnRPYamCasst + β5lnRPBeaCasst + β6lnExrt + β7lnMSavprect+

β8lnLSavprect + β9lnMSavprec_Vart + β10lnLSavprec_Vart + β11lnMSavtempt+

β12lnLSavtempt + µt,

(2)

where ln represents a natural logarithm, t is a representation of year (time), and µ represents the
error term.

In analyzing the yield response of crops, several approaches have so far been documented
in the literature, including simple Ordinary Least Squares (OLS) estimation of multiple regression
(e.g., [36]), Nerlovian adjustment cum adaptive expectation model [38], and cointegration analysis
(e.g., [39,40]). In this study, emphasis is placed on cointegration analysis. In testing for the existence
of valid relationships under a cointegration framework, three principal approaches have been
adopted. These are the two-step residual based procedure for testing a null of no-cointegration
(Engle–Granger cointegration test) [41], the system-based reduced rank regression approach (Johansen
cointegration test) [42,43], and the bounds testing (Autoregressive Distributed Lag model) approach [44].
The Autoregressive Distributed Lag (ARDL) approach is used for the current analysis due to its efficient
performance in analyzing relationships in small samples and its ability to incorporate variables with
mixed order of integration. Unlike the Engle–Granger approach or the Johansen cointegration test,
the ARDL yields consistent estimates of long-run coefficients irrespective of the order of integration of
the variables included in the model [44] and even when some of the regressors are endogenous [45].
All variables are, however, expected to be either I(1) (variables that are non-stationary at level,
but become stationary on first difference), or I(0) (variables that are stationary at level) or both.
The ARDL approach involves the following four primary steps.

1. Estimation of a specified model based either on automatically selected lags of the dependent
variables and regressors or based on fixed lags by the researcher. Appropriate number of lags
and best model among evaluated models under the automatic selection are based on one of four
model selection criteria, namely Akaike information criterion (AIC), Schwarz criterion (SIC),
the Hannan–Quinn criterion (HQ), and selection based on adjusted R-squared.

2. After estimating the base model, a Bounds test is carried out to test the null hypothesis of
non-existence of a long-run relationship among the variables in the base model. Rejecting the
null (based on F-test and critical value Bounds for I(0) (lower bound) and I(1) (upper bound))
indicates the existence of long-run relationship among the variables, irrespective of the order
of integration of the variables. The null hypothesis is rejected only if the F-statistics lies above
the upper bound at the 5% significance level (although 10% could be used in some cases).
Failing to reject the null implies the non-existence of co-integration. By the Granger representation
theorem [41], a confirmation of cointegration among variables implies the existence of an error
correction model (ECM) that describes short-run dynamics and/or adjustment of the cointegrated
variables towards their long-run equilibrium values. The existence of cointegration is validated
by a significant negative coefficient of an error correction term in the ECM. In the absence of
cointegration, output for the base estimation is synonymous with output of a simple Ordinary
Least Squares estimation of the specified model with the inclusion of stated lags.

3. Having confirmed the existence of long-run relationships after the Bounds test, short-run
(cointegrating form) and long-run coefficients are estimated from the base model using an error
correction mechanism that ensures appropriate adjustment towards long-run equilibrium
whenever deviations are observed in the system.

4. The efficiency of the estimated coefficients is assessed based on diagnostic tests for the classical
Gaussian assumptions of linear regression models (emphasizing normally distributed errors,
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lack of serial correlation and lack of heteroskedasticity). The appropriateness of the model
specification is also assessed using a Ramsey RESET test, while the reliability and stability of the
coefficients are assessed using CUSUM and CUSUM of Squares tests.

For further details of the mechanics behind the estimation of relevant parameters under the ARDL
framework, and as documented by [44,46], see Section AE 1 in the appendix. Following a confirmation
of long-run relationships by the Bounds test, Equation (2) is re-parameterized to produce the following
error correction representation of the ARDL model used in this study:

∆ ln YCasst = Γ0 + ∑L
l=1 Γ1∆ ln YCasst−i + ∑M

m=1 Γ2∆ ln ACasst−i + ∑M
m=1 Γ3∆ ln Rulpopt−i+

∑M
m=1 Γ4∆ ln RPMaiCasst−i + ∑M

m=1 Γ5∆ ln RPYamCasst−i + ∑M
m=1 Γ6∆ ln RPBeaCasst−i+

∑M
m=1 Γ7∆ ln EXRt−i + ∑M

m=1 Γ8∆ ln MSavprect−i + ∑M
m=1 Γ9∆ ln LSavprect−i+

∑M
m=1 Γ10∆ ln MSavprec_Vart−i + ∑M

m=1 Γ11∆ ln LSavprec_Vart−i+

∑M
m=1 Γ12∆ ln MSavtempt−i + ∑M

m=1 Γ13∆ ln LSavtempt−i + γECMt−1.

(3)

From Equation (3), ∆ represents the first difference operator, Γ0 is the intercept term for the
cointegrating equation, Γi represents short-run coefficients, ECMt−1 is the error correction term,
while γ reflects the speed at which deviations from long-run equilibrium are corrected for in the
short run. Variables are defined as in Equation (2). Although a trend variable was included in the
initial specification and estimations of the base model to help control for the effect of technological
investment and other policy initiatives on cassava yield, this variable was dropped in the final
estimation. The coefficient for the trend variable was not significant at any reasonable level (a p-value
of 0.6949 was observed). In addition, including a trend variable in the model selected for this study led
to a reduction in the predictive power of the model (based on a reduced value of the Adj. R-squared
and F-statistic, and based on estimates for the AIC, SIC and HQ). Moreover, estimates for the model
without the trend variable were found to be more stable and reliable (based on CUSUM and CUSUM
of Squares tests). The ARDL model is estimated in EViews 9 (SV).

4.3.2. Pairwise Granger Causality Test

Upon a presumption that a correlation between two variables does not necessarily imply causation,
a pairwise Granger Causality test is carried out after estimation of the ARDL model to ascertain the
direction of causality among variables. This is a statistical hypothesis test for determining whether one
time series is useful in forecasting another [47]. A given series X is said to Granger-cause Y, if and only
if it can be proven through a series of tests (t-tests and F-test) on lagged values of X and Y that the
values of X provide statistically significant information about future values of Y [48,49]. Specification
of the appropriate equations for establishing such causalities depends on the order of integration of
the variables. Further details on the mechanics behind the Granger Causality test are provided in
Section AE 2 in the appendix. In selecting the appropriate number of lags to use for the causality
test, and per proposition by the EViews user’s guide [50], the most appropriate lag length is one that
“corresponds to reasonable beliefs about the longest time over which one of the variables could help
predict the other”. This proposition is based on the presumption that the theory is couched in terms of
relevance of all past information. In this regard, and based on the realities on the ground in the study
area, we use a lag length of 5 for the pairwise Granger causality test.

4.3.3. Data

Data on yield, output, acreages and producer prices for the respective crops were gathered from
the agricultural production and price database of FAO (FAOSTAT) in October 2014. After gathering
these data, a 2010 consumer price index series from IRRI’s (International Rice Research Institute) World
Rice Statistics database was used to convert the price variables from their original nominal values into
real values to correct for inflation. Data on exchange rate and rural population were gathered from the
World Bank’s Development Indicators database and from theGlobalEconomy.com [51]. For weather
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variables, data supplied by the National Meteorological Service for the three synoptic stations in the
‘Cassava belt’ were used to compute representative values for the entire belt. Data for each of the
variables covers the period 1978–2009.

5. Results and Discussion

5.1. Unit Root Test of Variables

Although pre-testing of the variables to ascertain their respective order of integration is deemed
a less vital task in ARDL analysis, it is deemed a necessity for the pairwise Granger causality test.
Along this line, we first test the respective series for stationarity using the Phillips–Perron (PP) unit
root test. This test is basically a Dickey–Fuller test that has been made robust to serial correlation
by using the Newey–West [52] heteroskedasticity and autocorrelation consistent matrix estimator.
As shown in Table 1, except for the exchange rate, all data series are found stationary at level. The data
series for exchange rate becomes stationary on first difference. This renders the exchange rate an I(1)
variable and all other variables I(0). Based on results for the unit root test, levels of the I(0) variables
are used for the pairwise Granger causality test, while the first differenced form of the exchange rate is
used for testing the causation between yield and exchange rate.

Table 1. Results of unit root test.

Variable
Phillips–Perron Test (Adj. t-Stat)

Level First Diff. Status

ln YCass −6.1981 *** I(0)
ln ACass −3.2168 ** I(0)
ln Rulpop −3.7992 *** I(0)

ln RPMaiCass −4.9087 *** I(0)
ln RPYamCass −3.6271 ** I(0)
ln RPBeaCass −3.6846 *** I(0)

ln Exr −1.8033 −4.6475 *** I(1)
ln MSavprec −5.3801 *** I(0)
ln LSavprec −4.9648 *** I(0)

ln MSavprec_Var −5.4896 *** I(0)
ln LSavprec_Var −13.638 *** I(0)

ln MSavtemp −5.0881 *** I(0)
ln LSavtemp −3.1981 ** I(0)

NB: Intercept included at level; no trend nor intercept on first difference; sig. ** 5%, *** 1%.

5.2. Short- and Long-Term Relationships

We commenced analysis with the selection of an appropriate number of lags and the best model
to use as the estimation equation. In this regard, several lags were used in the initial estimations.
Given the number of explanatory variables used in this study, the permissible maximum number
of lags for the regressors was 1, while that for the dependent variable was 5. Best models for 1 up
to 5 lags of the dependent variable and 1 for the regressors were compared. Based on F-statistic,
Adj-R2, and estimates for Akaike information criterion (AIC), Schwarz information criterion (SIC),
and Hanna–Quinn criterion (HQ), an ARDL (3,0,0,0,0,0,0,0,0,0,0,0,0) was selected as the best model.
From Table A3 in the appendix, a total of about 91.46% of the variations in cassava yields in Togo is
explained by regressors in the base model. To ascertain whether the observed estimates in the base
model reflect the true relationships, a Bounds test was performed. As shown in Table 2, the null
hypothesis of no long-term relationships is rejected at the 5% significance level. This indicates a need
to incorporate short-term dynamics and correct for deviations from the long-term equilibrium through
incorporation of an error correction mechanism in the model.
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Table 2. Bounds test (null hypothesis: no long-term relationship exists).

Test Statistic Value K

F-statistic 5.8722 12

Critical Value Bounds

Significance I0 Bound I1 Bound

10% 4.78 4.94
5% 5.73 5.77

2.5% 6.68 6.84
1% 7.84 4.05

Cointegrating and long-term forms of the base model were therefore estimated. As shown in
Table 3, we note that a total of about 77.56% of deviations from the long-term equilibrium are corrected
in the short term. This high speed of adjustment reflects a system with low persistence of high and
low values of the dependent variable. We observe a consistent negative response of cassava yields to
increasing area harvested of the crop in both the short and the long term. This is in conformity with
documented evidence of an inverse relationship between farm size and productivity (e.g., [27,53,54]).
Reflecting decreasing marginal productivity of land [27], this observed inverse relationship between
area harvested of cassava and yield of the crop is attributed in greater part to a potential increase in the
cost of production with increasing area and to a high land/labour ratio [53]. Keeping labour and other
relevant variables constant, increasing the area of cassava harvested increases the land/labour ratio
and precludes the timely undertaking of relevant cultural and management practices, thereby reducing
the intensification of production. In addition, the need for disease and pest control and the costs
involved are likely to increase with the area harvested. A 10% increase in area of cassava harvested
leads to 9.45% and 11.03% decreases in the yield of the crop in the short and long term, respectively.

Table 3. ARDL Cointegrating and long-term estimates. (Original dep. Variable: ln YCass; Selected
Model: ARDL (3,0,0,0,0,0,0,0,0,0,0,0,0); Included observation: 29).

Cointegrating Form

Variable Coefficient Std. Error Prob

D (ln YCass (-1)) 0.0945 0.0728 0.2167
D (ln YCass (-2)) −0.1632 ** 0.0616 0.0201

D (ln ACass) −0.9447 *** 0.0675 0.0000
D (ln Rulpop) 0.2665 2.6601 0.9218

D (ln RPMaiCass) 0.1543 *** 0.0495 0.0082
D (ln RPYamCass) 0.6321 *** 0.1613 0.0018
D (ln RPBeaCass) −0.4193 *** 0.0831 0.0002

D (ln Exr) 0.2791 *** 0.0915 0.0093
D (ln MSavprec) 0.2021 *** 0.0590 0.0045
D (ln LSavprec) −0.0049 0.0554 0.9316

D (ln MSavprec _Var) 0.0384 * 0.0216 0.0988
D (ln LSavprec _Var) −0.0894 *** 0.0267 0.0052

D (ln MSavtemp) 1.9443 * 0.9887 0.0710
D (ln LSavtemp) −4.7798 *** 1.0950 0.0008

Intercept 6.1557 *** 1.5789 0.0018
ECT (-1) −0.7756 *** 0.2033 0.0021
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Table 3. Cont.

Long-Term Coefficients

Variable Coefficient Std. Error Prob

ln ACass −1.1033 *** 0.1963 0.0001
ln Rulpop 1.4183 *** 0.2902 0.0003

ln RPMaiCass 0.1740 * 0.0969 0.0958
ln RPYamCass 0.6350 ** 0.2608 0.0301
ln RPBeaCass −0.4241 ** 0.1600 0.0200

ln Exr 0.3574 ** 0.1470 0.0303
ln MSavprec 0.2827 ** 0.1026 0.0164
ln LSavprec 0.0110 0.0723 0.8819

ln MSavprec _Var 0.0417 0.0448 0.3681
ln LSavprec _Var −0.1345 * 0.0668 0.0652

ln MSavtemp 2.8315 1.7157 0.1228
ln LSavtemp −5.4506 ** 2.4647 0.0455

NB: significance level *** 1%, ** 5%, * 10%.

Although an increasing availability of labour has no significant effect on cassava yields in the
short term, a 10% increase in labour leads to a 14.18% increase in yield in the long term. In the short
term, where the area of crop harvested is generally fixed, increasing the availability of labour may
induce a ‘flower pot’ effect (increasing labour used on a fixed area of land per unit of time may first increase
output only up to a point, and decline thereafter; this may result in the observed insignificant short-term effect),
and result in the observed insignificant response. In the long run, where farmers adjust appropriately
to changes in the system, an increasing availability of labour becomes highly beneficial to cassava
production. This affirms the importance of labour in cassava production in Togo.

In line with previous studies in West Africa (e.g., [28,34]), a significant effect of changing crop
prices on cassava production is found in this study. Whereas the yield of cassava increases with
an increasing real producer price ratio between the crop and its common intercrops in the country
(maize and yam, [26]), it decreases with an increase in the price ratio between common beans (usually
sown as a monocrop) and cassava. This indicates that while resource re-allocation by farmers in favour
of maize and yam following increments in the relative price ratio may have no adverse effects on
cassava yields, a drift of resources towards production of common beans may significantly reduce
cassava yields. As a tradable (exportable) commodity (mostly in processed form), a depreciating
exchange rate makes exports of this commodity more beneficial for domestic producers and exporters,
stimulates domestic demand for exportable cassava products, and incites investment in innovative
techniques on cassava fields, thereby enhancing yields. A 10% increase in the nominal exchange rate is
associated with 2.79% and 3.57% increases in cassava yield in the short and long term, respectively.

All climate variables, except for total rainfall for the lean season, have a significant effect on the
yield of cassava in the short term. In the long term, however, only changes in total rainfall for the main
season, variability of rainfall during the lean season and changes in lean-season mean temperature
have significant effects on cassava yield. From these, we note that cassava yield is influenced by
both ‘normal’ climate variables (total rainfall and mean temperature) and within-season rainfall
variability. The insignificant effect of total lean-season rainfall on cassava yield is in conformity with
a study in Nigeria by [55], who found that, after seven months of planting, rainfall appears to have
no significant effect on cassava yield. A positive response of cassava yield to increasing volumes
of rain and to increasing mean temperature during the main season is observed. The main season
in Togo coincides with planting, early and late vegetative stages of the crop. Although increasing
temperature is mostly associated with increasing evaporation and transpiration in plants, the high
availability of moisture during the main season (due to intense and persistent rain) enables the
crop to utilize higher temperatures and moisture to increase the rate of germination, leaf number,
leaf formation rate, canopy formation, growth rate and yield [36,56]. A 10% increase in main-season
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rainfall and mean temperature leads to respective increments of 2.02% and 19.44% in cassava yield
in the short term. Yield also increases by 2.83% in the long run, with a 10% increase in main-season
rainfall. The insignificant effect of main-season temperature in the long run may be attributed to
the cumulative effect of warming during the main season, which neutralizes the short-term benefits
derived from increasing main-season temperature. Due to the relatively low rainfall/temperature
ratio in the lean season, the yield of cassava is found to be highly sensitive to increasing lean-season
mean temperature. Given the low soil moisture and limited water supply (due to the high reliance
of farmers on rain for appreciable yields and the limited use of irrigation in the study area) during the lean
season, increasing temperature during this period leads to severe water and heat stress driven by
water deficits, evaporation, and transpiration. This consequently leads to a significant decrease in
the yield of cassava in the country. The observed negative effect of increasing lean-season mean
temperature on cassava yield is in conformity with findings by [36,57]. In a study by [57], the root
initiation and tuberization stages (which coincide with the lean season in the study area) were found to
be the critical period for a water-deficit effect in cassava. Similarly, a study in East Africa by [36] found
that crops are more precipitation-constrained during the lean season, and increasing evaporation due
to increased lean-season mean temperature leads to a significant decrease in output. From Table 3,
a 10% increase in lean-season mean temperature leads to 47.80% and 54.51% decreases in cassava
yield in the short and long term, respectively. Due to the relatively low water availability/supply
during the lean season, increasing within-lean-season rainfall variability induces either drought or
flood, both of which have detrimental effects on yield. Investment in innovative techniques like water
harvesting (in case of excess rainfall), breeding for drought-, heat- and flood-tolerance, adjustment of
cropping calendar and practice of supplemental irrigation (in case of droughts/dry spells) could help
minimize the detrimental effect of within-lean-season rainfall variability and increasing lean-season
mean temperature.

In summary, this study affirms an inverse farm size and productivity relationship in both the
short and long term. In the long run, where farmers can appropriately adjust to changes in the system,
an increasing availability of labour becomes beneficial to crop production. Prices do influence cassava
yield, but the effects depend on the relative ratios considered. For common intercrops of cassava (maize
and yam), increasing real producer price ratios between the crops and cassava has no detrimental effect
on cassava yield. An increase in the ratio between the price of common beans and cassava, however,
leads to a decrease in cassava yield due to potential resource allocation in favour of common beans
(usually sown as a monocrop). A depreciating exchange rate enhances the yield of cassava in Togo.
With regards to climate effects, we found main-season rainfall, within-lean-season rainfall variability,
and lean-season mean temperature to be the major climatic drivers of cassava yield in Togo. In assessing
the efficiency of estimated coefficients and appropriateness of model specification, we find that the
residuals are normally distributed, non-serially correlated, and homoscedastic (see Table 4). In addition,
the F-statistic for the Ramsey RESET test is not significant, indicating a lack of specification errors.
Both the CUSUM and CUSUM of Squares tests affirm stable and reliable coefficients (see Figure 4)

Table 4. Coefficient diagnostics.

Breusch–Godfrey LM Breusch–Pagan–Godfrey
Heteroskedasticity Test Residual Normality Test Ramsey RESET Test

F-stat (Prob)
0.0401 (0.8447)

F-stat (Prob)
1.7293 (0.1639)

Jarque–Bera (Prob)
1.3972 (0.4973)

F-statistics (Prob)
1.4922 (0.2453)
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5.3. Causality

In analyzing causation, and as shown in Table 5, a bilateral causality is found between area
harvested and yield of cassava. However, four unidirectional causalities are found: from labour
availability (rural population), real producer price ratio between yam and cassava, main-season
rainfall and lean-season mean temperature to cassava yields. These findings indicate that, whereas
the majority of the estimated effects in previous section could be regarded as general correlations,
the effects of area harvested, real producer price ratio between yam and cassava, and of dynamics in
main-season rainfall and lean-season mean temperature have causal implications for cassava yields in
Togo. Measures to couple area expansion with increasing labour availability, increasing water supply
during the main season and minimization of heat and water stress during the lean season, could
enhance cassava yields in the country.

Table 5. Pairwise Granger causality tests (sample: 1978–2009; Lags 5).

Null Hypothesis Obs F-Stat Prob

lnACass does not Granger Cause lnYCass
27

3.74709 0.0195
lnYCass does not Granger Cause lnACass 3.01806 0.0417

ln Rulpop does not Granger Cause lnYCass
27

4.4412 0.0100
lnYCass does not Granger Cause ln Rulpop 2.4099 0.0824

ln RPMaiCass does not Granger Cause lnYCass
27

2.31083 0.0925
lnYCass does not Granger Cause ln RPMaiCass 0.83260 0.5453

ln RPYamCass does not Granger Cause lnYCass
27

3.23633 0.0330
lnYCass does not Granger Cause ln RPYamCass 0.94357 0.4798
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Table 5. Cont.

Null Hypothesis Obs F-Stat Prob

ln RPBeaCass does not Granger Cause lnYCass
27

2.15389 0.1112
lnYCass does not Granger Cause ln RPBeaCass 0.76413 0.5888

D (ln Exr) does not Granger Cause lnYCass
26

0.06309 0.9968
lnYCass does not Granger Cause D (ln Exr) 1.17795 0.3653

ln MSavprec does not Granger Cause lnYCass
27

5.46868 0.0040
lnYCass does not Granger Cause ln MSavprec 1.17301 0.3649

ln LSavprec does not Granger Cause lnYCass
27

0.83759 0.5422
lnYCass does not Granger Cause ln LSavprec 1.76667 0.1768

ln MSavprec _Var does not Granger Cause lnYCass
27

2.0656 0.1234
lnYCass does not Granger Cause ln MSavprec _Var 0.9859 0.4565

ln LSavprec _Var does not Granger Cause lnYCass
27

0.2441 0.9368
lnYCass does not Granger Cause ln LSavprec _Var 1.9943 0.1344

ln MSavtemp does not Granger Cause lnYCass
27

2.42447 0.0810
lnYCass does not Granger Cause ln MSavtemp 1.86988 0.156

ln LSavtemp does not Granger Cause lnYCass
27

3.98566 0.0154
lnYCass does not Granger Cause ln LSavtemp 2.04236 0.1269

NB: D (ln Exr)—log of exchange rate expressed in first-differenced form to ensure that all variables, used for the test
are stationary. Bold—significant at either 5% or 1% level; Source: Output of Pairwise Granger Causality Tests in
EViews 9 (SV).

6. Conclusions and Policy Recommendations

From a leading position in cassava productivity during the late 1960s to early 1980s, Togo is
now one of the countries with the lowest cassava yields in the West and Central African sub-region.
Togo observed a 63.49% decrease in cassava yields between the years 1964 and 2013. Due to the
significant role played by the cassava sub-sector in food security enhancement, poverty reduction,
agricultural growth and national development, this decreasing trend in yield is deemed worrisome.
To inform policy and stakeholder decisions on the measures needed to enhance cassava yields in the
country, several research efforts have been made. Emphasis has, however, so far been placed on biotic
determinants of cassava productivity, with very little (if any) done to ascertain the effects of climatic,
socioeconomic and policy determinants. This study sought to bridge the current knowledge gap in
this regard, making use of secondary data on production statistics, rural population, climate variables,
prices and nominal exchange rate series for the period 1978–2009. An autoregressive Distributed Lag
(ARDL) modelling approach and pairwise Granger Causality tests were used for the analysis.

Besides an inverse farm size and productivity relationship found in this study, results for the short-
and long-term models of ARDL indicate that, although the effect of increasing labour availability is
not significant in the short term (due to the limited ability of farmers to make appropriate adjustments
in the short term), increasing labour availability has a significant positive and elastic effect on cassava
yield in the long run. This reveals the importance of labor in cassava production in Togo. This study
also found that producer prices do influence cassava yields. The specific effect, however, depends
on whether the price change is between cassava and its common intercrops (maize and yam) or
between cassava and crops usually sown in monocropping systems (with an emphasis on common
beans in this study). Whereas changes in the former are found to be beneficial for cassava production,
changes in the latter are found to be detrimental. We found that the yield of cassava is influenced by
both ‘normal’ climate variables (total rainfall and mean temperature) and within-season variability
in rainfall. In both the short and long term, however, the effect of total lean-season rainfall was not
significant. In contrast, the effect of within-lean-season rainfall variability was found to be significant
in both the short and long term. Given the relatively low water availability/supply during the lean
season, high within-lean-season rainfall variability could lead to drought (dry spell) or flooding, both of
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which could have detrimental effects on yield. In addition to these, we found a highly elastic response
of cassava yields to increasing lean-season mean temperature. This elastic response is attributed
in part to the low rainfall/temperature ratio in the lean season and to severe water and heat stress
driven by water deficits, evaporation, and transpiration with increasing lean-season mean temperature.
A 10% increase in lean-season mean temperature is associated with 47.80% and 54.51% decreases
in cassava yield in the short and long term, respectively. Investment in innovative techniques like
water harvesting, breeding for drought, heat and flood tolerance, adjustment of cropping calendar and
practice of supplemental irrigation could help minimize the detrimental effects of within-lean-season
rainfall variability and increasing lean-season mean temperature. Although increasing temperature is
generally associated with increasing evaporation and transpiration in plants, we found that a high
availability of moisture during the main season (due to intense and persistent rain) enables the crop to
utilize higher temperatures and moisture during the main season to increase yields. Through pairwise
Granger Causality tests, we found a bilateral causality between area harvested and yield of cassava,
and four unidirectional causalities from labour availability, real producer price ratio between yam
and cassava, main-season rainfall and lean-season mean temperature to cassava yields. Whereas the
majority of the estimated effects in this study could be regarded as general correlations, the effects
of area harvested, real producer price ratio between yam and cassava, main-season rainfall and
lean-season mean temperature have causal implications for cassava yields. To increase the productivity
of cassava in Togo, efforts should be made to increase the water supply during the main season and
minimize water and heat stress during the lean season. This could be achieved through investment
in low-cost irrigation facilities to enhance the practice of supplemental irrigation, water harvesting,
and breeding for drought, heat and flood tolerance. In addition, efforts should be made to couple area
expansion with increasing availability of labour, through implementation of measures to minimize
rural–urban migration (to ensure the ready availability of labor in the cassava-producing areas).
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Appendix A.1. Sections

Appendix A.1.1. Section AE 1

Per research on Bounds testing approaches by [44], an ARDL model for a dependent variable Y,
a set of independent variables X, and a vector of deterministic variables E (if any) (e.g., time trends,
seasonal dummies, or exogenous variables with fixed lags) can be written as follows [46]:

θ(L, P)Yt =∝0 +∑k
i=1 βi(L, qi)Xi,t + ϕ′Et + µt , (A1)

where
θ(L, P) = 1− θ1 ϕ1L1 − θ2 ϕ2L2 − . . .− θpLp (A2)

β1(L, P1) = βi0 + βi1L1 + βi2L2 + . . . + βiqiLqi, i = 1, 2, . . . , k , (A3)

where ∝0 represents the intercept, and L is a lag operator.
In the long term,

Yt = Yt−1 = Yt−2 = . . . = Yt−p ; Xi,t−1 = Xi,t−2 = . . . = Xi,tq , (A4)

where Xi,tq represents the qth lag of the ith independent variable.
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From Equation (A1), the long-term response of Yt to a unit change in Xi,t is estimated as follows:

βi =
β̂i(l, q̂i)

θ(l, p̂)
=

β̂i0 + β̂i1 + . . . + β̂iq̂

1− θ̂1 − θ̂2 − . . .− θ̂ p̂
, i = 1, 2, . . . , k. (A5)

From Equation (A5), q̂i and p̂ are the estimated values of p and qi.
Following a confirmation of long-term relationships by the Bounds test, Equation (A1) is

re-parameterized to produce the following error correction representation of the ARDL:

∆Yt = γ0 −
p̂−1

∑
j=1

θj∆Yt−j +
k

∑
i=1

βi0∆Xit −
k

∑
i=1

q̂t−1

∑
j=1

βij∆Xi,t−j + ϕ′∆Et − θ
(
1, P̂

)
ECMt−1 + µt (A6)

and
ECMt = Yt − ∝̂−∑k

i=1 β̂iXit − ϕ′Et , (A7)

where ∆ represents first difference operator, θj, βij, and ϕ′ are estimated coefficients for the short-term
(error correction) model, γ0 represents the short-term intercept and θ

(
1, P̂

)
the coefficient for the error

correction term. This latter value reflects the speed at which deviations from long-term equilibrium for
the systems are corrected for in the short term.

Appendix A.1.2. Section AE 2

As defined by [48,49], causality is based on two basic principles:

(i) The cause happens prior to its effects and
(ii) The cause has unique information about the future values of its effect.

In line with these two basic principles, [48] proposed testing the following hypothesis for
identification of causality:

P[Y(t + 1) ∈ A|
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Table A1. Cassava production, acreage and yield statistics for Togo. 

Variable Period Year Min max Min Max Mean Std. Dev 
CoV, 

% 
Annual 

Growth, % 

Output 
(tons) 

1964–1973 1964 1969–71 380,000 500,000 442,034.9 46,723.4 10.57 1.31 
1974–1983 1977 1979  319,060 432,535 383,191.7 34,922.9 9.11 −1.09 
1984–1993 1987 1990 355,200 592,867 445,134 68,100.1 15.3  0.66 
1994–2003 1994 2003 531,526 778,865 643,736.1 83,117.5 12.91 4.02 *** 
2004–2013 2004 2011 675,475 998,540 835,525.9 113,564.1 13.59 4.31 *** 
1964–2013 1977 2011 319, 060 998,540 549,924.5 183,975.9 33.45 1.80 *** 

Area 
(Ha) 

1964–1973 1973 1971 21,000 33,000 26,700.00 4,056.5 15.19 −0.52 
1974–1983 1976 1982 20,630 108,700 43,980.00 32,923.0 74.86 21.05 *** 
1984–1993 1987 1984 45,104 79,600 62,461.10 10,270.2 16.44 −0.19 
1994–2003 1994 2003 90,403 132,943 108,771.2 15,246.7 14.02 4.10 *** 
2004–2013 2005 2012 113,470 155,000 136,691.1 14,565.7 10.66 3.26 *** 
1964–2013 1976 2012 20,630 155,000 75, 720.68 44,906.9 59.31 4.51 *** 

Yield 
(tons/ha) 

1964–1973 1971 1973 15.15 20.35 16.71 1.54 9.24 1.84 * 
1974–1983 1982 1974 3.38 19.63 12.61 6.36 50.47 −18.29 *** 
1984–1993 1984 1987 5.58 7.88 7.18 0.69 9.62 0.85 
1994–2003 2000 1997 5.65 6.23 5.93 0.21 3.61 −0.08 
2004–2013 2006 2011 5.62 6.56 6.10 0.25 4.17 1.02 ** 
1964–2013 1982 1973 3.38 20.35 9.70 5.16 33.45 −2.60 *** 

NB: *** 1%, ** 5%, * 10%. Source: Author’s own computation with data from FAOSTAT.  
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(iii) Feedback, or bilateral causality (when H0 is rejected in both cases); 
(iv) No causality (when we fail to reject H0 in both cases).  

Appendix A.2. Tables 

Table A1. Cassava production, acreage and yield statistics for Togo. 

Variable Period Year Min max Min Max Mean Std. Dev 
CoV, 

% 
Annual 

Growth, % 

Output 
(tons) 

1964–1973 1964 1969–71 380,000 500,000 442,034.9 46,723.4 10.57 1.31 
1974–1983 1977 1979  319,060 432,535 383,191.7 34,922.9 9.11 −1.09 
1984–1993 1987 1990 355,200 592,867 445,134 68,100.1 15.3  0.66 
1994–2003 1994 2003 531,526 778,865 643,736.1 83,117.5 12.91 4.02 *** 
2004–2013 2004 2011 675,475 998,540 835,525.9 113,564.1 13.59 4.31 *** 
1964–2013 1977 2011 319, 060 998,540 549,924.5 183,975.9 33.45 1.80 *** 

Area 
(Ha) 

1964–1973 1973 1971 21,000 33,000 26,700.00 4,056.5 15.19 −0.52 
1974–1983 1976 1982 20,630 108,700 43,980.00 32,923.0 74.86 21.05 *** 
1984–1993 1987 1984 45,104 79,600 62,461.10 10,270.2 16.44 −0.19 
1994–2003 1994 2003 90,403 132,943 108,771.2 15,246.7 14.02 4.10 *** 
2004–2013 2005 2012 113,470 155,000 136,691.1 14,565.7 10.66 3.26 *** 
1964–2013 1976 2012 20,630 155,000 75, 720.68 44,906.9 59.31 4.51 *** 

Yield 
(tons/ha) 

1964–1973 1971 1973 15.15 20.35 16.71 1.54 9.24 1.84 * 
1974–1983 1982 1974 3.38 19.63 12.61 6.36 50.47 −18.29 *** 
1984–1993 1984 1987 5.58 7.88 7.18 0.69 9.62 0.85 
1994–2003 2000 1997 5.65 6.23 5.93 0.21 3.61 −0.08 
2004–2013 2006 2011 5.62 6.56 6.10 0.25 4.17 1.02 ** 
1964–2013 1982 1973 3.38 20.35 9.70 5.16 33.45 −2.60 *** 

NB: *** 1%, ** 5%, * 10%. Source: Author’s own computation with data from FAOSTAT.  

−x(t) denote complete
information until time t in the entire universe and the modified universe in which X is excluded,
respectively. In instances where the above hypothesis is accepted, X is said to Granger cause Y.
Specification of the appropriate equations for establishing such causalities depends on the order of
integration of the variables. Given two stationary variables X and Y, and lag order ‘N’, Granger
causality can be assessed directly through the following regressions involving lagged values of each of
the variables and their originals:

Yt = β0 + β1Yt−1 + . . . + β jYt−j+ ∝1 Xt−1 + . . .+ ∝j Xt−j + ut (A9)

Xt = γ0 + γ1Xt−1 + . . . + γjXt−j + δ1Yt−1 + . . . + δjYt−j + vt (A10)

where ut and vt are the error terms and are assumed to be uncorrelated. In the above specifications,
emphasis is placed on testing the following hypotheses:

1. Null: Xt does not Granger cause Yt

H0 :∝1=∝2= . . . =∝j= 0

H1 :∝1=∝2= . . . =∝j 6= 0

2. Null: Yt does not Granger cause Xt

H0 : δ1 = δ2 = . . . = δj = 0

H1 : δ1 = δ2 = . . . = δj 6= 0
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Should H0 be rejected in either or both cases, Granger (‘predictive’) causality is said to exist
between the variable. A rejection or non-rejection of the null hypothesis could lead to four
possible outcomes:

(i) A unidirectional Granger causality from Xt to Yt (when H0 is rejected in the first case);
(ii) A unidirectional Granger causality from Yt to Xt (when H0 is rejected in the second case);
(iii) Feedback, or bilateral causality (when H0 is rejected in both cases);
(iv) No causality (when we fail to reject H0 in both cases).

Appendix A.2. Tables

Table A1. Cassava production, acreage and yield statistics for Togo.

Variable Period Year Min Max Min Max Mean Std. Dev CoV, % Annual
Growth, %

Output
(tons)

1964–1973 1964 1969–71 380,000 500,000 442,034.9 46,723.4 10.57 1.31
1974–1983 1977 1979 319,060 432,535 383,191.7 34,922.9 9.11 −1.09
1984–1993 1987 1990 355,200 592,867 445,134 68,100.1 15.3 0.66
1994–2003 1994 2003 531,526 778,865 643,736.1 83,117.5 12.91 4.02 ***
2004–2013 2004 2011 675,475 998,540 835,525.9 113,564.1 13.59 4.31 ***
1964–2013 1977 2011 319, 060 998,540 549,924.5 183,975.9 33.45 1.80 ***

Area (Ha)

1964–1973 1973 1971 21,000 33,000 26,700.00 4,056.5 15.19 −0.52
1974–1983 1976 1982 20,630 108,700 43,980.00 32,923.0 74.86 21.05 ***
1984–1993 1987 1984 45,104 79,600 62,461.10 10,270.2 16.44 −0.19
1994–2003 1994 2003 90,403 132,943 108,771.2 15,246.7 14.02 4.10 ***
2004–2013 2005 2012 113,470 155,000 136,691.1 14,565.7 10.66 3.26 ***
1964–2013 1976 2012 20,630 155,000 75, 720.68 44,906.9 59.31 4.51 ***

Yield
(tons/ha)

1964–1973 1971 1973 15.15 20.35 16.71 1.54 9.24 1.84 *
1974–1983 1982 1974 3.38 19.63 12.61 6.36 50.47 −18.29 ***
1984–1993 1984 1987 5.58 7.88 7.18 0.69 9.62 0.85
1994–2003 2000 1997 5.65 6.23 5.93 0.21 3.61 −0.08
2004–2013 2006 2011 5.62 6.56 6.10 0.25 4.17 1.02 **
1964–2013 1982 1973 3.38 20.35 9.70 5.16 33.45 −2.60 ***

NB: *** 1%, ** 5%, * 10%. Source: Author’s own computation with data from FAOSTAT.

Table A2. Distribution of major crops/livestock by region.

Regions Population in 2010 Area (km2) Main Crops/Livestock

Coastal zone/Maritime 2,599,955 6100 Corn, cassava, cotton, oil palm, peri-urban livestock
farming (poultry, pigs) market gardening

Western/Plateaux forest

1,375,165 16,975

Diversified farming: coffee, cocoa, oil palm to the
southeast (Kpalimé), corn, cassava, yams, lowland rice,
fruits, small ruminants, traditional poultry

Eastern Plateaux Cotton, corn, black-eyed peas, peanuts, lowland rice,
cattle, small ruminants, traditional poultry

Centrale 617,871 13,317
Cotton, corn, sorghum, millet, rice, cassava, yams,
black-eyed peas, peanuts, soya, cattle, small ruminants,
traditional poultry

Kara 769,940 11,738
Cotton, corn, sorghum, yams, tomatoes, rice, black-eyed
peas, soya, peanuts, cassava, millet, cattle, sheep, goats,
traditional poultry, bees, etc.

Savanes 828,224 8470 Cotton, sorghum, millet, rice, yams, peanuts, black-eyed
peas, cattle, small ruminants, traditional poultry

Source: Government of Togo and United Nations [21] and Wikipedia. (https://en.wikipedia.org/wiki/Regions_of_Togo).

https://en.wikipedia.org/wiki/Regions_of_Togo
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Table A3. Estimation equation (base model). Selected ARDL (3,0,0,0,0,0,0,0,0,0,0,0,0); Maximum
dependent lags:3 (Automatic selection); Model selection method: Schwarz criterion (SIC); Trend
specification: Unrestricted intercept; Included Observations: 29 after adjustments.

Coefficient Std. Error Prob.

ln YCass (−1) 0.2521 ** 0.0906 0.0155
ln YCass (−2) −0.2572 ** 0.1030 0.0267
ln YCass (−3) 0.1551 ** 0.0584 0.0197

ln ACass −0.9377 *** 0.0972 0.0000
ln Rulpop 1.2054 *** 0.1817 0.0000

ln RPMaiCass 0.1479 * 0.0793 0.0849
ln RPYamCass 0.5397 ** 0.1877 0.0130
ln RPBeaCass −0.3604 *** 0.1156 0.0082

ln Exr 0.3038 *** 0.0985 0.0087
ln MSavprec 0.2403 *** 0.0763 0.0077
ln LSavprec 0.0093 0.0609 0.8808

ln MSavprec _Var 0.0355 0.0400 0.3913
ln LSavprec _Var −0.1143 ** 0.0518 0.0458

ln MSavtemp 2.4065 * 1.3262 0.0927
ln LSavtemp −4.6325 ** 1.8269 0.0249

Intercept 6.7240 5.3919 0.2344
Adj. R-squared 0.9146 Log likelihood 52.565

F-statistic 20.993 Akaike info criterion −2.522
Prob (F-statistic) 0.0000 Schwarz criterion −1.767
Durbin-Watson 2.0046 Hannan–Quinn criter. −2.285

NB: *** 1%, ** 5%, * 10%. Source: Output of EViews 9 (SV).
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