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Abstract: Anthropogenic activities continue to emit potential greenhouse gases (GHG) into the
atmosphere leading to a warmer climate over the earth. Predicting the impacts of climate change (CC)
on food and fiber production systems in the future is essential for devising adaptations to sustain
production and environmental quality. We used the CSM-CROPGRO-cotton v4.6 module within the
RZWQM2 model for predicting the possible impacts of CC on cotton (Gossypium hirsutum) production
systems in the lower Mississippi Delta (MS Delta) region of the USA. The CC scenarios were based on
an ensemble of climate projections of multiple GCMs (Global Climate Models/General Circulation
Models) for climate change under the CMIP5 (Climate Model Inter-comparison and Improvement
Program 5) program, that were bias-corrected and spatially downscaled (BCSD) at Stoneville location
in the MS Delta for the years 2050 and 2080. Four Representative Concentration Pathways (RCP)
drove these CC projections: 2.6, 4.5, 6.0, and 8.5 (these numbers refer to radiative forcing levels in
the atmosphere of 2.6, 4.5, 6.0, and 8.5 W·m−2), representing the increasing levels of the greenhouse
gas (GHG) emission scenarios for the future, as used in the Intergovernmental Panel on Climate
Change-Fifth Assessment Report (IPCC-AR5). The cotton model within RZWQM2, calibrated and
validated for simulating cotton production at Stoneville, was used for simulating production under
these CC scenarios. Under irrigated conditions, cotton yields increased significantly under the CC
scenarios driven by the low to moderate emission levels of RCP 2.6, 4.5, and 6.0 in years 2050 and 2080,
but under the highest emission scenario of RCP 8.5, the cotton yield increased in 2050 but declined
significantly in year 2080. Under rainfed conditions, the yield declined in both 2050 and 2080 under
all four RCP scenarios; however, the yield still increased when enough rainfall was received to meet
the water requirements of the crop (in about 25% of the cases). As an adaptation measure, planting
cotton six weeks earlier than the normal (historical average) planting date, in general, was found to
boost irrigated cotton yields and compensate for the lost yields in all the CC scenarios. This early
planting strategy only partially compensated for the rainfed cotton yield losses under all the CC
scenarios, however, supplemental irrigations up to 10 cm compensated for all the yield losses.
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1. Introduction

Growing post-industrial era anthropogenic GHG concentrations in the atmosphere continue
to warm the world, impacting its climate and natural resources adversely in many locations [1–3].
Even when day-to-day weather remains similar to the average most of the time, intensity, and frequency
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of heavy rainfalls with longer periods of dry spells in between and extreme hot and cold days are
threatening crop production and food security across the globe [4]. Under this still evolving scenario,
our soil, water, and other natural resources are deteriorating (e.g., [5,6]). While the climate change
is a global phenomenon, the increased temperature and associated changes in rainfall patterns are
being manifested at local and regional scales with differing intensities and severities, depending on the
location-specific geography, landscape, and current climate. Such location-specific differences in CC
scenarios and their impacts on agriculture necessitate the development of mitigation and adaptation
strategies for sustained productivity over long-term, using the local experimental data, for example,
combining artificial heating with Free Air CO2 Enrichment (FACE) experiments provide direct evidence
of climate change effects on crop production in the short term, but can be utilized in tools to assess
long-term impacts and develop adaptations across multiple locations [7,8].

Ranking behind poultry, forestry, and soybean, cotton is a major crop in the state of
Mississippi. On average, about half a million hectares of the region are planted to this crop,
annually (Mississippi State University Extension Service: http://extension.msstate.edu/agriculture/
crops/cotton). The optimum temperature for cotton growth and boll development and retention
is around 28 ◦C [9,10], however, it continues to yield better with increase in air temperatures up to
32 ◦C (critical temperature for yield) and then the yield drops severely at higher temperatures [11].
The critical temperature at which its reproductive growth stops completely is around 35 ◦C [12].
Temperatures recorded at Stoneville, Mississippi, in the Delta region have been reported to exceed
35 ◦C, several hours a day, during the cotton growth period [10,13]. Higher than current (390 ppm)
atmospheric CO2 concentrations in the air (major component of the GHG) can increase the productivity
of C3 plants like cotton, but the number of days available for cotton boll and fiber development
decreases with associated increasing of temperature, leading to less than the potential yield expected
with increasing CO2 [14]. Rainfall regimes that are altered with CC also can affect water demand vs.
availability scenarios in the region. Hence, it is of paramount importance to study the impact of CC on
cotton production in the region and develop agro-management practices to mitigate and adapt for
ameliorating the adverse effects.

Agro-management practices that are effective on a long-term basis at a location need to be
based on long-term experiments that have captured all possible climate variabilities at the location
for robust climate-smart (management based on climate) solutions. In this context, agricultural
systems models are proven tools for interpreting, synthesizing, and extending past location specific
experiments (long-term or short-term) across long-term climate, soils, and crop cultivars for testing
and developing alternate management practices that have better probabilities of success under
the CC scenarios (for example, [15–17]). A number of agricultural system models have been
extensively used for studying the impacts of climate change on crop production: APSIM [18],
ARCWHEAT [19], FAO/IIASA Global Agro-Ecological Zones Model (GAEZ) [20], PEGASUS
model [21], CropSyst model [22], and SIMPLACE model [23]. Some authors of this paper have used the
RZWQM2 (Root Zone Water Quality Model of USDA, ARS; [24]) linked with DSSAT (Decision Support
Systems for Agrotechnology Transfer) suite of crop modules [25], to simulate the effects of both FACE
and GCM projected temperatures and rainfall on wheat, corn, and millet based cropping systems and
crop rotations under various rainfed, irrigations, and N levels in the Great Plains of the USA [26–29].
Several studies have reported on the use of DSSAT suite of cropping system models for studying the
impacts of climate change on various crop production systems over the globe (for example, [15,17,30]).

The DSSAT suite includes the CSM-CROPGRO-cotton model for simulating cotton based
cropping systems [25]. Garcia y Garcia et al. [31] used this model to simulate the impacts of climate
variability-related stresses on cotton production in Georgia, USA. Gerardeaux et al. [32] studied the
impacts of climate change on cotton production in Cameroon. The CSM-CROPGRO-cotton v4.6 is
available for simulation within the RZWQM2 for simulation of cotton (http://arsagsoftware.ars.usda.
gov/). Saseendran et al. [33] validated this model for simulation of cotton response to various planting
dates in the Mississippi Delta region.

http://extension.msstate.edu/agriculture/crops/cotton
http://extension.msstate.edu/agriculture/crops/cotton
http://arsagsoftware.ars.usda.gov/
http://arsagsoftware.ars.usda.gov/
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While GCMs are the primary tool for simulating the response of the global climate system to
increasing GHG concentrations, they provide estimates of changes in climate variables on a coarser
scale. The site-specific agricultural system simulation models and other decision-making processes
require this information at a finer field to farm scale. As such, spatial downscaling of GCM outputs to
the location of interest is required for CC impact assessment studies in agriculture [34]. Meanwhile,
rapid advances in computing technology have increased the number of GCMs giving projections of
CC over the globe and the number keeps increasing [35]. GCMs, in general, represent the climate
processes mechanistically, but projections of climate by different models diverge due to the inherent
complexities in the climate processes, the ways the numerical schemes for solving the equations
representing these processes are implemented, and the manner in which the sub-grid scale processes are
parameterized and initial conditions specified, analyzed, and assimilated in them [36,37]. The diverging
projections of future climate complicate the selection of an ideal model for location-specific CC scenario
development. The IPCC-Fourth Assessment Report pooled the outputs of the contributing models to
form an ensemble average, giving all models equal weight [38]. A detailed analysis of the IPCC-AR4
contributing models by Reifen and Toumi [39] also failed to show any advantages of selecting any
subset of models for CC generation over the use of the total ensemble.

Our objectives were to (1) study vulnerabilities of rainfed and irrigated cotton production under
CC scenarios projected by an ensemble of GCMs in the CMIP5 driven by the RCP emissions scenarios;
and (2) explore crop management adaptation strategies to ameliorate possible adverse CC impacts on
the system.

2. Materials and Methods

2.1. Cropping System Data

Cotton field trials for calibration and evaluation of the model for simulating cotton growth
under projected CC were conducted in a Dubbs silt loam soil (fine-silty, mixed, active, thermic Typic
Hapludalfs) at Stoneville, Mississippi (33.45◦N, 90.87◦W, 32 amsl) located in the Mississippi Delta region
of the state of Mississippi during the years 2005–2008 [40]. In this experiment, cotton variety ST5599BR
was grown under both irrigated and rainfed conditions on two planting dates every season: (1) early
plantings (EP) occurring in the last week of March or first week of April (4 April 2005, 30 March 2006,
2 April 2007, and 31 March 2008); and (2) normal plantings (NP) occurring typically in the first week
of May or last week of April (2 May 2005, 2 May 2006, 27 April 2007, and 6 May 2008). The irrigated
treatments were furrow irrigated, with approximately 2.54 cm of water applied at each irrigation
event. Weather data during the field trial and long-term weather data for this location were obtained
from the Delta Research and Extension Center, Mississippi State University, weather station located
at Stoneville (http://www.deltaweather.msstate.edu). Field measurements of soil textural properties
in the experiment indicated the textural components, sand = 10%, silt = 55%, clay = 35%, and bulk
density = 1.42 g·cm−3, were uniform down to a depth of 120 cm. Therefore, soil hydraulic properties
were obtained from the RZWQM2 model database for a silt loam soil: soil water content (SWC) at field
saturation = 0.471 cm3·cm−3, field capacity (FC) or drained upper limit for SWC = 0.343 cm3·cm−3,
wilting point or drained lower limit for SWC = 0.210 cm3·cm−3, and pore size distribution index
obtained by fitting the Brooks-Corey equation for obtaining the soil water retention curve = 0.151 [41].
Saseendran et al. [33] calibrated and validated the CSM-CROPGRO-cotton model v4.6 within RZWQM2
using the data from this experiment with reasonable accuracy. We used the Saseendran et al. [33]
calibrated model for simulations of CC impacts on cotton production in this study.

2.2. RZWQM2 Model

The RZWQM2 is a process-oriented cropping system model developed for simulating the
impacts of tillage, residue cover, water, fertilizers, pesticides, and crop management practices on crop
production and the environment by integrating the physical, chemical, and biological processes in the

http://www.deltaweather.msstate.edu
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soil-water-crop-climate system [24,42]. In addition to a generic crop model that can be parameterized to
simulate specific crops, the model contains the CSM (Cropping System Models) crop modules of DSSAT
v4.6 for simulation of specific crops [25,43–45] (http://arsagsoftware.ars.usda.gov/). Studies verifying
the capabilities of RZWQM2 for explaining and managing dryland and irrigated cropping systems
in the Great Plains have been reported (for example, [43,46–48]). Most recently, Saseendran et al. [33]
successfully modeled the effects of planting dates on seed cotton production in the Mississippi Delta
region (Figure 1). Saseendran et al. [48] modified the water stress factor for photosynthesis related
processes (SURFAC) in the CSM crop modules in RZWQM2 using the daily potential root water
uptake (TRWUP) calculated by the approach of Nimah and Hanks [49] and accounting for stress due
to additional heating of the canopy from unused energy of potential evaporation. The modified water
stress factor in RZWQM2 was found to be superior to other stress factors in various experiments across
soils and climates [48]. The modified model was used for simulations of yield responses to rainfall and
irrigations under current and future climates in this study.
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Figure 1. Measured and simulated seed cotton yield from normal and early plantings under rainfed
(a) and irrigated (b) conditions during 2005–08 at Stoneville, MS. Error bars indicate one SD from the
mean of the measured yield across the four treatment replications. RMSE = Root Mean Squared Errors.
RRMSE = RMSE relative to mean values. ME = Arithmetic Mean Error.
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The RZWQM2 is a daily time-step model and the essential-minimum inputs required for
simulating cropping systems include: daily weather (solar irradiance, maximum and minimum
temperature, wind speed, relative humidity, and rainfall representing the experimental location),
soil physical properties (soil profile depth and horizons, soil texture, bulk density, and organic matter
content), soil hydraulic parameters (water retention curves and saturated hydraulic conductivity
of each soil horizon represented in the form of the Brooks and Corey equations), crop and soil
management information (tillage dates and methods; planting date, density, depth, and row spacing;
dates, amounts, and methods of irrigation; and fertilizer applications), and soil initial conditions
(soil water, N, and carbon contents in the profile at the start of the simulation).

Leaf photosynthesis simulation in CSM-CROPGRO-cotton model was an adaptation of the
Farquhar et al. [50] photosynthesis equations in an hourly leaf-level to canopy assimilation scaling
approach with hedgerow light interception [51]. The effects of temperature and CO2 on photosynthesis
were modeled by modifying the Farquhar and von Caemmerer [52] (1982) method [53,54]. In RZWQM2,
the enhanced CO2 concentration in the air correspondingly decreases stomatal conductance in the
Shuttleworth and Wallace [55] equation to modulate the computed potential transpiration based on
a combination of algorithms presented by Allen et al. [56], Allen [57], and Rogers et al. [58].

2.3. Climate Change Scenarios

We adopted the delta-change method for developing climate change scenarios for the location,
in which the monthly temperature and rainfall changes between a future and current climates projected
by a GCM or an ensemble of GCMs is used to modify a historical (recorded during 1960–2015 at the
location)—baseline (BL) daily time-series of the same weather variables. In this procedure, the GCM
projected monthly temperature and precipitation data from 1985 to 2015, 2035 to 2065, and 2065 to
2095 were averaged to represent projected climates centered in 2000 (current climate), CC scenario
centered in 2050, and CC scenario focused in 2080, respectively. Delta changes in monthly rainfall
were expressed as a percentage change, hence, it changed any particular day’s data only if the rainfall
value for that day was above zero; whereas, the monthly averaged daily maximum and minimum
temperature changes for 2050 and 2080 were used to modify all the observed daily climate variables
at the location from 1960 to 2015. Within each month, these delta changes were applied uniformly to
all the daily data. This procedure produced two climate series from 1960 to 2015 representing future
years 2050 and 2080 and was used to study the impacts of climate variability and climate change on
cotton production systems by integrating them with the CSM-CROPGRO-cotton model in those years.

The bias-corrected and spatially disaggregated (BCSD) projections from the World Climate
Research Program’s (WRCP) Coupled Model Intercomparison and Improvement Project Phase 5
(CMIP5) climate projections archive (ftp://gdo-dcp.ucllnl.org/pub/dcp/archive/cmip5/bcsd/
BCSD/; http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/) were downscaled to the nearest
grid point in the database for Stoneville, MS (33.45◦N, 90.87◦W, 32 amsl) location for developing the
above CC scenarios. We averaged the GCM projections from 97 ensemble members for temperature
(maximum and minimum separately) and precipitation as available from the above climate projection
archives. The average CC scenarios were used as future climates in 2050 and 2080 for assessing their
impacts on cotton production. Out of several types of data projection tailored and archived for different
applications in natural resources research, we used the hydrologic projections over the contiguous U.S.
associated with monthly BCSD CMIP5 climate. A list of participating model groups and model names
can be found at http://cmippcmdi.llnl.gov/cmip5/docs/CMIP5_modeling_groups.pdf.

The CC scenarios representing all four of the RCPs, 2.6, 4.5, 6.0, and 8.5, which represent GHG
emission pathways that can lead to radiative forcing levels in the atmosphere up to 2.6, 4.5, 6.0,
and 8.5 W·m−2, respectively, by the end of the 21st century [59], were developed separately for
analyzing the possible impacts of these differing carbon concentration pathways for the future on
cotton production at the location. The four RCPs reflect literature on historical GHG emission scenarios
in which the RCP 2.6 includes one mitigation scenario leading to a very low forcing level (2.6 W·m−2),

ftp://gdo-dcp.ucllnl.org/pub/dcp/archive/cmip5/bcsd/BCSD/
ftp://gdo-dcp.ucllnl.org/pub/dcp/archive/cmip5/bcsd/BCSD/
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
http://cmippcmdi.llnl.gov/cmip5/docs/CMIP5_modeling_groups.pdf
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RCPs 4.5 and 6.0 represent two medium stabilization scenarios, and RCP 8.5 represents one very high
baseline emission scenario [59]. For crop simulations, the CO2 concentrations in 2050 and 2080 under
RCP 2.5, 4.5, 6.0, and 8.5 were obtained from the data presented in van Vuuren et al. [59], and were 442,
486, 477, and 539 ppm, respectively, in 2050, and 431, 531, 594, and 757 ppm, respectively, in 2080.

2.4. Crop Simulations

The cotton crop was simulated both under the BL climate (actual data as recorded at the location)
for the period 1960 to 2015 and CC scenarios in 2050 and 2080 with atmospheric CO2 concentration
values corresponding to RCP 2.6, 4.5, 6.0, and 8.5. All the simulations were seasonal with no carry-over
effect between crop seasons and the same initial conditions on the first of January of every year.
Fertilizer applications were 120 kg·N·ha−1 in a single dose at planting every year. Under the irrigated
cotton scenario, the irrigations were applied every seventh day after planting until physiological
maturity to replenish the cumulative actual crop evapotranspiration (ET) loss less the rainfall received
during the previous seven days.

To understand the relative contributions of rainfall, temperature (maximum and minimum),
and CO2 in the simulated crop performance under the CC scenarios, we simulated the crop response
to only one of these three variables at a time, keeping the other two variables constant. Seasonal seed
cotton yield, ET, and irrigations across 1960–2015 simulations (BL and CC scenarios) were arithmetically
averaged for mean values. Mean yields between CC scenarios were compared using a single factor
ANOVA (analysis of variance) procedure available in the MS Excel (Microsoft Office Suite Professional
Plus 2016) software for significance (p < 0.01).

3. Results and Discussion

3.1. Climate Change Scenarios for the Location

The normal cotton growth season in the MS Delta region extends from about the beginning of the
month of May until the end of October. The downscaled CC scenarios for average monthly rainfall
and monthly averaged daily air-temperature, under RCPs of 2.6, 4.5, 6.0, and 8.5 for Stoneville differed
significantly from the climate in the year 2000 (Figures 2–4). The CC scenarios under all the RCPs
showed month-to-month variations in amounts of rainfall and air temperature changes. The rainfall
changes under RCP 2.6 showed higher variabilities compared to temperature and rainfall changes
under other RCPs (4.5, 6.0, and 8.5; Figure 2a). For example, under RCP 2.6 in 2050, rainfall was
projected to increase by 37% in the month of May and decrease by 28% in the month of October.
However, such enhanced variability in the rainfall scenario in response to this RCP was not reflected
in the case of air temperature (both maximum and minimum; Figures 3 and 4). Otherwise, in all
the CC scenarios in response to the remaining three RCPs, on a cotton crop-seasonal average basis,
rainfall fluctuated only between −1% and 2% (Figure 2a–d).
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Figure 2. Coupled Model Inter-comparison Project Phase 5 (CMIP5) multi-climate model ensemble 
projections of rainfall change at Stoneville, MS, for the four emissions scenarios of the Representative 
Concentration Pathways (RCPs), RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d), as used in the IPCC Fifth 
Assessment Report. Dotted lines in the vertical demarcate the normal cotton growth season (May to 
September). 
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Representative Concentration Pathways (RCPs), RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8,5 (d), as used in the 
IPCC Fifth Assessment Report. Dotted lines in the vertical demarcate the normal cotton growth season 
(May to September). 
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Figure 2. Coupled Model Inter-comparison Project Phase 5 (CMIP5) multi-climate model ensemble
projections of rainfall change at Stoneville, MS, for the four emissions scenarios of the Representative
Concentration Pathways (RCPs), RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d), as used in the IPCC
Fifth Assessment Report. Dotted lines in the vertical demarcate the normal cotton growth season
(May to September).
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Figure 3. Coupled Model Inter-comparison Project Phase 5 (CMIP5) multi-climate model ensemble
projected maximum temperature changes at Stoneville, MS, for the four emissions scenarios of the
Representative Concentration Pathways (RCPs), RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d), as used in the
IPCC Fifth Assessment Report. Dotted lines in the vertical demarcate the normal cotton growth season
(May to September).
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Figure 4. Coupled Model Inter-comparison Project Phase 5 (CMIP5) multi-climate model ensemble
projected minimum temperature change at Stoneville, MS, for the four emissions scenarios of the
Representative Concentration Pathways (RCPs), RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d), as used in the
IPCC Fifth Assessment Report. Dotted lines in the vertical demarcate the normal cotton growth season
(May to September).

During the cotton growth season, under the CC scenario in response to RCP 2.6, monthly averaged
daily maximum temperature increases in 2050 were between 1.2 and 1.9 ◦C and minimum temperature
between 0.6 and 1.1 ◦C. In 2080, the maximum temperature increases were between 0.9 and 1.8 ◦C and
minimum temperature increases were between 0.6 and 1.3 ◦C across the months (Figures 3a and 4a).
The slight decreases in temperatures in 2080 compared to 2050 were due to the one GHG mitigation
scenario applied in the RCP 2.6 pathway, which helped to reverse the warming trend in the later part of
the century [59]. In the CC in response to the RCP 4.5 scenario, maximum temperature increases were
between 1.7 and 2.0 ◦C in 2050, and between 2.4 and 2.6 ◦C in 2080; minimum temperature increases
were between 1.5 and 1.9 ◦C in 2050, and 2.0 and 2.4 ◦C in 2080 (Figures 3b and 4b). Under RCP 6.0,
averaged across the crop season, maximum temperature increase was 1.9 ◦C in 2050, and 3.1 ◦C
in 2080, and the average minimum temperature increase was 1.5 ◦C in 2050 and 2.7 ◦C in 2080
(Figures 3c and 4c). Under the CC in response to RCP 8.5, on average, the maximum temperature
increased by 2.6 and 4.6 ◦C in 2050 and 2080, respectively, and the minimum temperature by 2.4 and
4.4 ◦C, respectively (Figures 3d and 4d).

3.2. CC Impacts on Irrigated Cotton Production

Under irrigated conditions, in general, compared to the BL climate seed cotton production showed
a small increase under the CC scenarios (Figure 5a–c). In 2050, the average increase in yields was 3%,
4%, and 2%, respectively, under the RCPs 2.5, 4.5, and 6.0. Under the CC scenario in response to
RCP 8.5, yield still increased by 2% up to 2050, but then it declined to end with a 10% reduction
compared to the BL climate in 2080 (Figure 5d). In Figures 5–7, the cumulative probabilities plotted
on the y-axes are created by ordering seed cotton yields over 56 years (1960–2015) so that highest
yields have the lowest cumulative probability and vice versa. Hence, for a given yield on the x-axis
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(imagine a vertical line from this point) the curve on the right relative to another curve in the Figure
represent higher probabilities of achieving the same yield. Farmers and policy makers can use these
probability distributions as risk assessment tools as they anticipate changes in cotton yield production
with climate change in years 2050 and 2080 relative to the BL climate.
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The projected temperature and rainfall changes were not considered. 
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stages (effectively reducing the cotton seed and boll growth duration—the time the crop takes to 
complete different growth stages), in the current simulations, the effect of phenology dominated over 
photosynthesis (Figure 8a–d). On average, in 2050, crop duration decreased by 6%, 8%, 10%, and 10% 
due to increased temperature in response to RCPs 2.5, 4.0, 6.0, and 8.5, respectively. Similar decreases 
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hence, lessened the yield return at harvest. 

  

Figure 7. Simulated impacts of temperature rises alone on irrigated seed cotton yield in 2050 and 2080
under RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) greenhouse gas (GHG) scenarios. Projected changes in both
maximum and minimum temperatures alone were considered assuming no CO2 and rainfall changes.

In irrigated cotton, CO2 concentration changes in the atmosphere alone (maximum and minimum
temperature and rainfall changes were assumed to remain as in the BL climate) were found to increase
simulated cotton yields steadily from the BL climate to all the CC scenarios in response to RCP 2.6 to
RCP 8.5 in 2050 to 2080, except for the case of RCP 2.6 from 2050 to 2080 (Figure 6a–d). Relative to
the BL climate, the changes in yield due to changes in CO2 concentration alone in the four RCP levels
were 4%, 6%, 6%, and 7% in 2050 and 4%, 7%, 9%, and 10% in 2080, respectively. When the projected
temperatures associated with the CC in response to the RCPs were applied alone in the crop model
simulations, on average, the yields declined by 1%, 2%, 5%, and 6% in 2050 and 1%, 5%, 8%, and 22%
in 2080, respectively (Figure 7a–d). While the yield declines due to elevated atmospheric temperatures
can be attributed to their effects on both photosynthesis and phenological growth stages (effectively
reducing the cotton seed and boll growth duration—the time the crop takes to complete different
growth stages), in the current simulations, the effect of phenology dominated over photosynthesis
(Figure 8a–d). On average, in 2050, crop duration decreased by 6%, 8%, 10%, and 10% due to increased
temperature in response to RCPs 2.5, 4.0, 6.0, and 8.5, respectively. Similar decreases in crop duration
in 2080 were 6%, 10%, 11%, and 14%, respectively. Shortened crop duration leaves the crop with fewer
days to accumulate dry-matter in seeds and fibers before the crop matures and, hence, lessened the
yield return at harvest.
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Figure 8. Comparison between the simulated crop durations in baseline climate and crop durations 
under climate change (CC) in 2050 and 2080 under RCPs of 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for 
normal date of planting (2 May). Also, shown are the crop durations for earlier than normal plantings 
of three weeks (week-3) under RCP 2.5, four weeks (week-4) under RCP 4.5, five weeks (week-5) 
under RCP 6.0, and six weeks (week-6) under RCP 8.5 driven climate changes in 2080. 
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Roberts [11] predicted that cotton has the potential of losing yield of approximately 36%–40% under 
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However, they considered neither the positive effects of CO2 fertilization on the photosynthesis 
processes nor the impacts of irrigation management on yield returns in cotton in their analyses. 
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Figure 8. Comparison between the simulated crop durations in baseline climate and crop durations
under climate change (CC) in 2050 and 2080 under RCPs of 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) for normal
date of planting (2 May). Also, shown are the crop durations for earlier than normal plantings of three
weeks (week-3) under RCP 2.5, four weeks (week-4) under RCP 4.5, five weeks (week-5) under RCP 6.0,
and six weeks (week-6) under RCP 8.5 driven climate changes in 2080.

The enhancement in photosynthesis response in crop plants to increased CO2 concentration in the
air is termed a “fertilization effect”, and this effect can be more pronounced in a C3 plant like cotton,
compared to other C4 plants [60]. Our simulations showed that the adverse effect of temperature
on cotton yields (reduction in crop period, photosynthesis, and leaf expansion growth) either fully
canceled or exceeded this fertilization effect of CO2 on cotton growth in all the CC scenarios in response
to RCPs 2.6, 4.5, and 6.0 in both 2050 and 2080, but only in 2050 under the CC scenario in response
to RCP 8.5. Under the CC scenario in 2080 in response to RCP 8.5, the adverse effect of temperature
superseded the fertilization effect of CO2 in cotton growth, resulting in a net yield loss of 10% from the
BL climate. Using statistical approaches and modeling Schlenker and Roberts [11] predicted that cotton
has the potential of losing yield of approximately 36%–40% under CC driven by low GHG emission
(B1) scenario, and 63%–70% under a high emission scenario (A1F1). However, they considered neither
the positive effects of CO2 fertilization on the photosynthesis processes nor the impacts of irrigation
management on yield returns in cotton in their analyses.

Normally, enhancements in demand for water due to increasing temperatures (under the projected
CC scenarios) are expected, as temperature is one of the main driving factors for evaporative water
losses in the earth-atmospheric system. Notwithstanding, the enhancement in ET demand due to rise
in temperature were compensated for by reductions in the total crop duration in the field (Figure 8a–d),
bringing seasonal crop ET demand and, hence, total-crop-season irrigation water requirements to
levels that may be less than the BL climate scenario. In the CC scenarios in response to RCPs 2.6,
4.5, 6.0, and 8.5, the changes in seasonal irrigation requirements in all the CC scenarios in response
to the four RCPs in both 2050 and 2080 were found to vary only between −1% and 3%. Also,
conspicuous was the decline in the seasonal ET demands with time from 2050 to 2080 in all the CC
scenarios, excepting the climate in response to RCP 2.6 in 2080, in which, as expected, ET increased
by a half percent compared to the BL scenario. The reasons were that the RCP 2.6 scenario included
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one mitigation scenario leading to a very low radiation forcing level (2.6 W·m−2) at the end of 2080,
and the predicted CO2 concentration levels under this RCP for 2080 (430.9 ppm) were also lower than
2050 (441.9 ppm), and the projected maximum and minimum temperatures also dropped in 2080
relative to 2050. The increase in yield due to CO2 increase (alone, keeping other variables constant)
under RCP 2.6 was 4% in the year 2080 against the increase in yield of 5% in 2050 (Figure 6a).

3.3. CC Effects on Rainfed Cotton Production

In general, average rainfed cotton yields declined significantly under all the CC scenarios
(combined effects of changes in rainfall, temperature, and CO2) in response to RCPs 2.5, 4.5, 6.0,
and 8.5 (Figure 9a–d) in both 2050 and 2080. Under the CC in response to RCP 2.6, the yield reductions
were more or less uniform across the range of yields simulated (375 to 4050 kg·ha−1) (Figure 9a),
however, under the CC scenarios in response to RCPs 4.5, 6.0, and 8.5, yields declined at the lower-end
of the simulated yield spectrum (low-yield in response to low rainfall) and enhanced at higher-end
of the simulated yield spectrum (high-yield in response to higher rainfall; Figure 9b–d). On average,
in response to RCP 2.6, yields were reduced by 3% in 2050 and 6% in 2080. Similarly, the simulated
yields were also reduced by 4% in 2050 under the CC in response to RCP 6.0, and by 7% under the
CC in 2080 in response RCP 8.5. However, yield increased, on average, by 2% in 2050 and 3% in 2080
under the CC in response to RCP 4.5.
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Figure 9. Simulated impacts of climate change (changes in temperature, rainfall, and CO2) on rainfed 
seed cotton yield in 2050 and 2080 for RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) emission scenarios.  

The simulated variability in yield, basically, reflected the recorded inter-annual variability in 
rainfall at the location. However, on the higher side of the yield spectrum produced in response to 
years with higher rainfall (water availability) for crop growth, yields simulated under the CC in 
response to RCPs 4.5, 6.0, and 8.5 in both 2050 and 2080 were higher than crop seasons with lower 
rainfall (Figure 9b–d). The higher yield responses in higher rainfall years were observed when the 
higher water demand for sustaining enhanced growth due to higher CO2 in the air was supported by 
higher water availability from the rainfall received. Compared to the BL climate, averaged across the 
spectrum of yields, yields in response to rainfall were higher by 3% each under CC in response to 
RCP 4.5 in 2050 and 2080, and 1% each under CC in response to RCP 6.0 in 2080 and in response to 
RCP 8.0 in 2050. 

Figure 9. Simulated impacts of climate change (changes in temperature, rainfall, and CO2) on rainfed
seed cotton yield in 2050 and 2080 for RCP 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d) emission scenarios.

The simulated variability in yield, basically, reflected the recorded inter-annual variability in
rainfall at the location. However, on the higher side of the yield spectrum produced in response
to years with higher rainfall (water availability) for crop growth, yields simulated under the CC in
response to RCPs 4.5, 6.0, and 8.5 in both 2050 and 2080 were higher than crop seasons with lower
rainfall (Figure 9b–d). The higher yield responses in higher rainfall years were observed when the
higher water demand for sustaining enhanced growth due to higher CO2 in the air was supported
by higher water availability from the rainfall received. Compared to the BL climate, averaged across
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the spectrum of yields, yields in response to rainfall were higher by 3% each under CC in response to
RCP 4.5 in 2050 and 2080, and 1% each under CC in response to RCP 6.0 in 2080 and in response to
RCP 8.0 in 2050.

Simulations of the crop with elevated CO2 concentrations in the atmosphere alone, keeping
temperature and rainfall at the BL climate scenario level, resulted in an increase in yields of 11%, 20%,
19%, and 29% above the BL scenario in 2050 in response to RCPs 2.6, 4.5, 6.0, and 8.5, respectively
(Figure 10a–d). In 2080, a similar increase in yields under the CC scenarios in response to the four RCPs
were 8%, 28%, 35%, and 54%. Notwithstanding, these yield increases were canceled by decreasing
yield levels due to the temperature increases (Figure 9a–d and Figure 11a–d). The yield decreases were
14%, 17%, 18%, and 26% below the BL climate scenario in 2050, and 13%, 23%, 31%, and 49% below
the BL climate scenario in 2080 under the CC scenarios in response to the four RCPs, respectively.
The contribution of the projected rainfall changes under the CC scenarios in response to the four RCPs
to the rainfed cotton yield reductions in both 2050 and 2080 were negligible (Figure 12a–d). Therefore,
under the CC scenarios, the reduction in rainfed yield can mainly be attributed to the yield reductions
due to the enhanced temperatures that affected both the crop photosynthesis and phenology growths
over and above the possible yield enhancements from the CO2 fertilization effect on photosynthesis.

Compared to the BL climate scenario, the CC scenarios in response to RCPs 2.5, 4.0, 6.0, and 8.5,
resulted in less ET loss from the crop; in 2050, ET demand was less by 2%, 4%, 5%, and 6%,
and in 2080, the ET demands were reduced by 1%, 6%, 7%, and 10%, respectively, than under the BL
climate. While the instantaneous (daily time-step) ET demand increased with increasing temperature,
the observed reduction in the ET demands was due to the significant reduction in the number of days
required for the crop to mature under the CC scenarios compared to the BL climate (Figure 8a–d).
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3.4. Adapting Rainfed and Irrigated Cotton to Climate Change Effects

As discussed above, the rising temperature associated with the CC scenarios across the four RCPs
carry the potential for decreasing the crop growth period substantially (Figure 8a–d). There were
losses in yields from increased temperatures above the optimum for the cotton growth (29–32 ◦C) and
numerous increases above the critical limit for yield growth, 34 ◦C. In 2080, the fertilization effect of
enhanced CO2 concentration on photosynthesis compensated for the loss of yield due to the enhanced
temperature under irrigated conditions under the RCPs 2.6, 4.5, and 6.0. However, the compensating
effects of CO2 fell short of the adverse effects of temperature on cotton growth under the CC scenario in
response to RCP 8.5 (Figure 5d). Therefore, as a first adaption strategy, for the year 2080, we simulated
the crop in the 10-week period immediately preceding the normal planting date of 2 May and looked
for the week in which to plant for achieving the crop growth duration coinciding with the current BL
climate. We observed that plantings 3, 4, 5, and 6 weeks before the normal planting date, respectively,
under climates in response to RCPs 2.6, 4.5, 6.0, and 8.5, on average, produced crop durations similar
to the current BL climate (Figure 8a–d). As the phenological growth of the crop was not drastically
affected by water availability levels in the humid climate of the MS Delta region, these results did not
differ between the rainfed and irrigated cotton growth regimes.

Under irrigated conditions, planting six weeks before the normal planting date, on average,
compensated for the yield loss due to CC in response to the four RCPs (Figure 13a–d). The six-week
earlier plantings, compared to normal planting, resulted in average seed cotton yield gains of 9%, 12%,
11%, and 2% under the CCs in response to the four RCPs, respectively. Notwithstanding, under the
CC in response to RCP 8.5, in 25% of the years the simulated grain yields still remained below the
BL climate level (Figure 13d). Earlier plantings before the six-week period or increase in fertilizer or
water inputs did not compensate for this effect. Therefore, in the event of a CO2 raise at this RCP
level, the realized climate will cause cotton yield loss in 25% of the years it is planted, irrespective of
adaptation measures of earlier planting.
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Figure 13. Comparison between the simulated irrigated seed cotton yield under baseline (BL) climate and 
climate change (CC; changes in CO2, temperature, and rainfall) in 2080 for RCP 2.6 (a), 4.5 (b), 6.0 (c), and 
8.5 (d) for normal day of planting (2 May) and earlier than normal-day plantings of six weeks (week-6).  

In 2080, under rainfed conditions, planting six weeks before the normal planting date resulted 
in marginal yield rises of 6% each under CC scenarios in response to RCP 4.5 and 6.0 (Figure 14a–d). 

Figure 13. Comparison between the simulated irrigated seed cotton yield under baseline (BL) climate
and climate change (CC; changes in CO2, temperature, and rainfall) in 2080 for RCP 2.6 (a), 4.5 (b),
6.0 (c), and 8.5 (d) for normal day of planting (2 May) and earlier than normal-day plantings of
six weeks (week-6).
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In 2080, under rainfed conditions, planting six weeks before the normal planting date resulted
in marginal yield rises of 6% each under CC scenarios in response to RCP 4.5 and 6.0 (Figure 14a–d).
However, similar plantings under the CC scenarios in response to RCP 2.6 and 8.5 still produced yield
declines of 3% and 2%, respectively. As an adaptation strategy, we investigated if the yield losses
under the CCs can be compensated by providing irrigation water, and found that irrigating the crop
with at least 10 cm of water to supplement the water available through rainfall for crop growth can
boost seed cotton yield, on average, by 7%, 19%, 15%, and 8% over the baseline (BL) climate yield
(Figure 15a–d).
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Figure 15. Comparison between the simulated rainfed seed cotton yield under baseline (BL) climate 
and climate change (CC; changes in CO2, temperature, and rainfall) in 2080 under RCP 2.6 (a), 4.5 (b), 
6.0 (c), and 8.5 (d) for normal day of planting (2 May) with normal planting plus 10 cm irrigation.  
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6.0 (c), and 8.5 (d) for normal day of planting (2 May) and earlier than normal-day plantings of
six weeks (week-6).
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6.0 (c), and 8.5 (d) for normal day of planting (2 May) with normal planting plus 10 cm irrigation.  

Figure 15. Comparison between the simulated rainfed seed cotton yield under baseline (BL) climate
and climate change (CC; changes in CO2, temperature, and rainfall) in 2080 under RCP 2.6 (a), 4.5 (b),
6.0 (c), and 8.5 (d) for normal day of planting (2 May) with normal planting plus 10 cm irrigation.
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4. Conclusions

Climate change scenarios for 2050 and 2080 were downscaled for the Mississippi Delta region from
the bias-corrected and spatially disaggregated (BCSD) projections from the World Climate Research
Program’s (WRCP) Coupled Model Inter-comparison and Improvement Program phase 5 (CMIP5),
that informed IPCC Fifth Assessment Report (IPCC AR5) climate projections archive. Under the
CC with GHG emissions corresponding to the RCPs 2.6, 4.5, 6.0, and 8.5, the air temperatures (both
maximum and minimum) over the MS Delta region increased substantially in years 2050 and 2080.
Rainfall changes were small. From our investigations on the possible impacts of the CC on irrigated
cotton in the region, we conclude that in both 2050 and 2080, climates under emission scenarios of RCP
2.6, 4.5, and 6.0, and in 2050 under RCP 8.5, did not adversely impact seed cotton yield in the MS Delta,
as the negative effects of temperature on crop growth were compensated by the positive effects of CO2

increase on cotton growth, in spite of a reduction in growth duration caused by increased temperature.
However, in the CC scenario in response to the highest emission level of RCP 8.5 in 2080, severe yield
reductions are expected due to the projected increase in temperature that were not compensated by
the positive effects of CO2. In contrast, under the rainfed scenario, cotton yield declined slightly under
all the four emission scenarios in both 2050 and 2080. The rainfall did not seem to provide enough
plant-available water to benefit from the CO2 fertilization effect as observed in the irrigated cotton
production scenarios; however, yield still increased when the received rainfall was sufficient to meet
the water requirements of the crop (in about 25% of the cases). Planting cotton six weeks in advance
of the normal day of planting compensated for the yield loss due to shorter crop growing period
by increased temperature under the projected CC scenarios. This early planting partially (in 75% of
the years) compensated for the irrigated cotton yield loss in 2080 under RCP 8.5 and boosted yield
under the CC under RCPs 2.6, 4.5, and 6.0. However, early planting under rainfed conditions failed to
compensate for the rainfed cotton yield loss under the CC in both 2050 and 2080 in response to the
four RCPs. Providing a “life-saving” irrigation of 10 cm compensated for this yield loss.
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