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Abstract: Climate influences geographic differences of vegetation phenology through both
contemporary and historical variability. The latter effect is embodied in vegetation heterogeneity
underlain by spatially varied genotype and species compositions tied to climatic adaptation.
Such long-term climatic effects are difficult to map and therefore often neglected in evaluating
spatially explicit phenological responses to climate change. In this study we demonstrate a way
to indirectly infer the portion of land surface phenology variation that is potentially contributed
by underlying genotypic differences across space. The method undertaken normalized remotely
sensed vegetation start-of-season (or greenup onset) with a cloned plants-based phenological model.
As the geography of phenological model prediction (first leaf) represents the instantaneous effect
of contemporary climate, the normalized land surface phenology potentially reveals vegetation
heterogeneity that is related to climatic adaptation. The study was done at the continental scale
for the conterminous U.S., with a focus on the eastern humid temperate domain. Our findings
suggest that, in an analogous scenario, if a uniform contemporary climate existed everywhere,
spring vegetation greenup would occur earlier in the north than in the south. This is in accordance
with known species-level clinal variations—for many temperate plant species, populations adapted
to colder climates require less thermal forcing to initiate growth than those in warmer climates.
This study, for the first time, shows that such geographic adaption relationships are supported at
the ecosystem level. Mapping large-scale vegetation climate adaptation patterns contributes to our
ability to better track geographically varied phenological responses to climate change.

Keywords: bioclimatology; plant phenology; spring index; climate change; phenological response;
geographic adaptation; spring season

1. Introduction

Temperate vegetation phenology demonstrates large spatiotemporal variations that are controlled
simultaneously by current climatic variability and underlying plant heterogeneity. The latter is shaped
by genetic differentiation of plants via adaptation to past long-term climate gradients. While much
attention has been drawn to temporal variations of phenology in response to climate change [1,2],
we have not been able to effectively account for spatial variations of phenological response that are
caused by intra- and inter-specific differences [3,4]. At the continental scale, geographic gradients
of spring land surface greening that show gradually delaying timing towards colder locations are
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well-understood [5,6]. However, within this observed variability, the portion determined by underlying
genotypic difference (vs. immediate temperature effect) remains difficult to quantify [7,8].

Specifically, phenology of diverse plant populations not only varies phenotypically and temporally
in response to current climate, but also genotypically and spatially due to long-term climate impacts,
as reflected by differing climatic requirements of different genotypes for growth and development,
such as varied amounts of thermal forcing (e.g., warm temperature accumulation or growing degree
days) needed to trigger bud burst [9,10]. From common garden studies, many woody species have
shown lower forcing and higher chilling requirements for spring phenology within populations
adapted to colder climates [11–15]. A certain amount of chilling is necessary for many tree species to
break winter dormancy [16,17]. Grass species, however, appear to demonstrate the same forcing-based
clinal variation without obvious chilling requirement [18]. For certain woody species, lengthening
photoperiod can partly compensate for lack of chilling or forcing [19–21]. But the effect of photoperiod
on spring phenology, in addition to being limited to a few species, is supplemental to temperature [22].
Except with very mild winters, plants growing in their natural environments (vs. in common gardens or
growth chambers) usually have their chilling requirements fulfilled early in the year, allowing thermal
forcing to be the most effectual predictor of spring phenological timing. At the interspecific level,
later flushing of species transplanted from warmer locations implies similar forcing-based geographic
patterns [23].

Such cline-based geographic variations allow plants to maximize the use of available heat in
varied climate conditions to initiate growth while minimizing frost risks in spring. Therefore we termed
this phenomenon “growth efficiency” in a previous study, corroborating the findings from common
gardens by comparing naturally adapted plants to a clonal reference [24]. However, now realizing
this name may create confusion regarding the processes being described, we are changing the name
to the hopefully more straightforward “climatic adaptation” moving forward. These species-level
relationships are the basis and rationale for us to explore corresponding geographic vegetation
patterns at the ecosystem level. Given the challenges in directly measuring genotypic variations
underlying vegetation heterogeneity, we employed an indirect approach to remove the effects of
contemporary climate, by normalizing satellite-observed land surface phenology with a cloned
plants-based phenological model. We assume that geographic patterns of normalized land surface
phenology are reflective of genetic differences of vegetation, given that the influences of additional
environmental factors (mainly soil types) are likely negligible compared to the overriding climatic
effect [25], especially at large spatial scales.

2. Materials and Methods

2.1. Data Overview

The datasets used span a 30-year period from 1982 to 2011 and cover the conterminous U.S. Land
surface phenology (LSP) start-of-season (SOS or greenup onset) dates were derived from satellite data
collected by Advanced Very High Resolution Radiometer (AVHRR) and Moderate-Resolution Imaging
Spectroradiometer (MODIS). A cloned plants-based Spring Indices-extended (SI-x) first leaf (FL) model
was used to approximate genetically uniform phenological responses to climate. The specifics of these
datasets are provided below.

2.2. Remotely Sensed Land Surface Phenology

AVHRR (available since 1981) and MODIS (available since 2000) are two primary satellite
sensors that have provided continuous global vegetation information at coarse spatial resolutions
(250 m–1 km) [26,27]. Efforts have been made to use these two datasets in tandem. An AVHRR
long-term data record was produced to better align with MODIS observations [28]. This dataset was
processed at the same spatial resolution (0.05 degree, ~5 km) as the MODIS Climate Modeling Grid
product. Consequently, long-term data records of EVI2 (two band enhanced vegetation index) from
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both the AVHRR long-term data record (1981–1999) and MODIS Climate Modeling Grid (2000–2011)
are available [29]. EVI2 is a derivative of the 3-band (blue, red, and near-infrared) enhanced vegetation
index (EVI) and uses only red and near-infrared information [27,30,31]. EVI2 retains the functional
advantage of EVI over the more widely used normalized difference vegetation index (NDVI), in that it
optimizes vegetation change detection with improved sensitivity in high biomass regions.

The AVHRR and MODIS EVI2 time series were first smoothed using an algorithm based on
normal development of the annual vegetation growth cycle [32–34]. Temporal EVI2 trajectory was
then reconstructed using a Hybrid Piecewise Logistic Model [35]. SOS dates were identified according
to the rate of change in curvature of reconstructed EVI2 temporal trajectories during the spring to
summer period. Specifically, an SOS date corresponded to the day of year (DOY) on which curvature
change rate in a fitted EVI2 curve exhibited a local maxima [36]. In addition, if the annual variation
in EVI2 was minimal (<0.04), such as in evergreen forests or deserts, SOS dates were not retrieved.
Moreover, if the annual EVI2 time series was very flat (as in some shrublands), a very early SOS date
may be produced. In such cases, a 5% threshold was used instead to determine SOS.

2.3. Modeled Phenology Based on Cloned Plants

To simulate a genetically-uniform response pattern of phenology that represent the portion of
spatial variation caused solely by contemporary climate, we used first leaf predictions from a cloned
plants-based Spring Indices-extended (SI-x) model [37]. SI-x models are an extension of the original
Spring Indices (SI-o) [38], which include three sub-models built respectively on phenologies of clone
lilac Syringa chinensis “Red Rothomagensis”, clone honeysuckle Lonicera tatarica “Arnold Red”, and
clone honeysuckle L. korolkowii “Zabeli”. SI-o models predict both first leaf and first bloom using
a multi-step regression driven by growing degree hours during specific time windows and high-energy
synoptic events after the date of chilling satisfaction [39]. The SI-x models were developed with the
same methods as SI-o with the exception that chilling is not calculated, and instead, the starting date
of thermal accumulation (leading to first leaf) is always set as 1 January for all stations/years [40].
This adjustment allowed model predictions to be extended into the subtropics to cover southern parts
of the continental U.S. The SI-x outputs showed minimal difference when compared with the SI-o
models and with lilac phenological data over the region for which both models produce outputs.

While SI models do not reproduce all the details of multi-species phenological data at any site, or
the specific phenology of some types of plants, these models integrate changes in spring temperatures
into indices directly related to the growth and development of many temperature-responsive (but
not water-limited) tree, shrub, and herbaceous plant species [37,38,41]. Spatial patterns outlined by SI
model predictions reflect general bioclimatic differences rather than being tied to the specific cloned
plants used. Therefore, the SI-x models have been widely adopted as standardized measures of the
start of the growing season (similar to what the Palmer Drought Index provides for evaluating moisture
stress). They are employed as one of the “Climate Change Indicators in the United States” by the
U.S. Environmental Protection Agency [42], and proposed as a part of the “Pilot National Climate
Indicators System” under development by the National Climate Assessment within the U.S. Global
Change Research Program [43].

Along with LSP SOS, we produced SI-x first leaf (FL) dates from 1982 to 2011, and at the same
spatial resolution of 0.05 degree. For each year, temperature data from 678 to 771 weather stations
(the total number of stations available varied by year) for the conterminous U.S. were used to run the
model. FL dates predicted for all station locations were then interpolated to the entire region using
an Empirical Bayesian kriging method (ArcGIS, ESRI, Redlands, CA, USA). An LSP SOS normal and
an SI-x FL normal were calculated by averaging the two 30-year data layer time series, respectively.

2.4. Rationale and Algorithms

LSP SOS shows spatial patterns of vegetation phenology that are dependent on both climate
variation and plant heterogeneity, the latter contributed by both intra- and inter-specific differences of
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plants. SI-x FL dates are a function of climate variables (mainly thermal forcing) only, and therefore
insensitive to genetic differences of vegetation. Hence we inferred the portion of variation induced
by vegetation heterogeneity through normalizing the observed LSP SOS with modeled SI-x FL.
The normalized LSP is represented by a phenological index that approximates genetically-controlled
(vs. climate-triggered) spatial variations in vegetation phenology. We term this phenological index
“climatic adaptation index” given that the geographic patterns it depicts primarily result from
adaptation of plants to long-term climate gradients.

Three algorithms were used to derive the climatic adaptation index (CAI). These algorithms
are based on the same rationale of separating instantaneous climate effect (FL) from observed
patterns (SOS), but offering different mathematical solutions to normalization. We assumed that
the instantaneous climate and genotypes contribute to observed patterns in ways of being additive,
interactive, or both, from which the three algorithms are derived, respectively. Allowing these
alternatives provides opportunities to ascertain the pros and cons of each in estimating the climatic
adaptation patterns. Therefore at the risk of redundancy, given that the current work is limited to
developing the initial methodology of CAI, we employed the three algorithms in tandem, in the hope
that an initial comparison can be made, and future studies will shed more light on the utilities of the
indices, when they are tested in additional applications.

Assuming an additive relationship between climate and genotypes, the first type of CAI (CAIDIF)
was developed by subtracting SI-x FL from LSP SOS (1). This transformation retains the units of SOS
and FL in days. A larger value of CAIDIF at a given geographic location corresponds to longer time
and more forcing needed for greenup onset at that location. It should be noted that because SI-x FL is
based on plants different than that underlying vegetation observed by LSP SOS, absolute values of
CAI do not carry an explicit meaning. But the spatial pattern does reflect normalized phenological
differences; therefore it is the relative difference of CAI values over space that matters.

CAIDIF “ SOS ´ FL (1)

Further, interaction between climate and plant genotypes may also be approximated with
a multiplicative relationship. Hence, a second type of CAI (CAIDIV) is calculated by dividing SOS with
FL (2). Resultant values carry similar utility and limitation as those from the subtraction approach, but
they are dimensionless quantities. A larger CAIDIV value corresponds to a relatively later phenology
and a higher forcing requirement of vegetation for greenup onset.

CAIDIV “
SOS
FL

(2)

A third algorithm combines additive and interactive (multiplicative) relationships to produce
a CAI (CAIND) with a normalized difference equation. The difference between SOS and FL is
normalized by dividing the sum of SOS and FL (3). Thus, resultant values are ratios in the range
of ´1 to 1. This approach maximizes contrast between the two measurements and increases the
overall consistency by reducing local base variations across a study region. CAIND shares the similar
connotations of the two previous types in that a higher value at a location corresponds to a relatively
later phenology caused by a higher forcing requirement.

CAIND “
SOS ´ FL
SOS ` FL

(3)

The algorithms of CAI derivation were implemented to 30-year (1982–2011) normals of LSP
SOS and SI-x FL for the conterminous U.S. But large areas in the west and southwest of the U.S.
were omitted for lack of valid predictions, given that SI-x FL and LSP SOS are mostly applicable to
temperature-sensitive and moist ecosystems. Hence, we further extracted latitudinal gradients of
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CAIs for only the humid temperate domain in the eastern U.S. [44]. The latitudinal gradients were
calculated through averaging CAI values in that region by latitude at 0.05-degree intervals.

3. Results

The 30-year normal LSP SOS transitions from earlier dates (smaller DOY) in the south to later
dates (larger DOY) in the north (Figure 1a). This well-known latitudinal gradient is most prevalent in
the eastern U.S. and disrupted by altitudinal effects towards the western mountains. The Appalachians
and agricultural fields in the Midwest are identifiable by regional variations they contribute. In the
arid Southwest where vegetation is sparse and leaf flush is primarily rain triggered, very few valid
SOS values are present. The 30-year normal of predicted SI-x FL follows the same geographic patterns
(Figure 1b), but demonstrates a much smoother and more continuous spatial pattern compared to that
of the LSP SOS. This reflects SI-x FL representing phenological variation induced by current climate
only and not including contributions from the underlying vegetation heterogeneity. In addition, LSP
SOS is systematically later than SI-x FL at most locations. This has led to predominantly positive
values for CAIDIF and CAIND, and values > 1 for CAIDIV, but does not affect the geographic variations
they represent, as only the relative differences across space matter.
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Figure 1. Phenological variations in the conterminous U.S. (a) Land Surface Phenology (LSP)
Start-of-Season (SOS) in day of year (DOY) based on 30-year (1982–2011) normal; (b) Spring
Indices-extended (SI-x) first leaf (FL) in DOY based on 30-year (1982–2011) normal; (c) Climatic
adaptation index (CAI) based on the difference between the SOS and FL (CAIDIF); (d) CAI based on
the division of SOS and FL (CAIDIV); (e) CAI based on the normalized difference between SOS and FL
(CAIND); (f) U.S. Forest Service ecological domains.

The three CAIs show very similar geographic patterns that are traced by latitudinal and altitudinal
variations (Figure 1c–e). Notably, the direction of CAI gradients is opposite to that of LSP SOS and SI-x
FL, i.e., higher CAI values are found in southern and warmer areas, and lower values at colder locations
of higher latitude or higher elevation. The latitudinal gradients of CAIs are most obvious, especially
in the eastern humid temperate domain (Figure 1f). Lower CAI values in the north reflect relatively
earlier SOS in reference to FL, and correspondingly lower forcing requirement of vegetation than in
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the south. More specifically, the continuous latitudinal gradients in the eastern U.S. are interrupted
by slightly higher CAI values in the central Midwest region, affected by wide spread agricultural
fields. Towards the western mountains, lower CAI values are common for vegetated areas at higher
elevations. In the relatively low-lying Appalachians, less distinct (in comparison to western mountains)
orographically-induced CAI variations are blended into the more dominant latitudinal gradients.

Extracted north-south (latitudinal) gradients of CAIs within the humid temperate domain in
the eastern U.S. (cf. Figure 1f) are evident (Figure 2). All CAIs demonstrated gradually decreasing
values with increasing latitude. Further, CAI decline with latitude is relatively rapid up to 38˝N;
afterwards the change becomes small. Among the three CAIs, CAIDIF is most noisy and shows
a sharper transition across the 38˝N parallel. CAIDIV is most smooth and resembles an exponential
decline process that can be modeled with a logistic function [45]. CAIND integrates features of the
previous types and additionally provides a wider range of CAI variability as shown by a slightly
steeper slope. The CAIND gradient also shows a piece-wise response divided by approximately the
38˝N parallel. Interestingly, this latitude coincides with the boundary of mesothermal (above-freezing
winter) and microthermal (sub-freezing winter) climates [46], and is around a transitional zone between
areas with different long-term phenological trends [47].
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Figure 2. Latitudinal gradients of averaged climatic adaptation indices (CAIs) for the eastern Humid
Temperate Domain in the U.S. (cf. Figure 1f). The three CAIs are respectively developed through
difference (DIF), division (DIV) and normalized difference (ND) of observed and modeled phenologies.
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4. Discussion

All three CAIs with their algorithms and results were reported to show alternative ways
of normalizing land surface phenology, albeit the similarity of patterns revealed. Both additive
and interactive (multiplicative) relationships appeared to have mathematically separated current
climate effects from the primarily genotypic influences on spatial variation in vegetation phenology.
The difference-based CAI (CAIDIF) retains the unit in days, which more directly conveys ecological
information as of the number of days the normalized phenology is different from one location to
another. While the CAI based on division (CAIDIV) yielded a smoother transitional pattern than
CAIDIF, the normalized difference CAI (CAIND) appeared to include information from both previous
CAIs. Therefore, we generally recommend CAIND for potential future use as far as the units are not of
concern for intended applications. However, this does not rule out the utility of CAIDIF and CAIDIV,
which may turn out to be more straightforward in particular cases. We leave the decision to potential
users in consideration of their specific research questions or needs.

In this study, we derived CAIs primarily based on thermal forcing, given that SI-x models do not
take into account photoperiod effects and adopt a uniform chilling fulfillment date (i.e., 1 January)
for all locations. The smaller latitudinal gradient beyond the 38˝N parallel may indicate relatively
higher chilling requirements of the northern vegetation which could have “held the reins” of spring
phenology progression through counteracting with thermal forcing [48,49]. This hypothesis, however,
requires further testing with additional data and models. Future CAI development can be improved by
explicitly incorporating these additional climatic factors. Nevertheless, thermal forcing is the dominant
factor affecting spring phenological timing for the majority of tree species [22,23], and even more
so for grass and understory species [18,50]. Hence, under the current climate, neglecting occasional
mild winters that could hamper chilling requirement fulfillment in limited regions, the forcing-based
approach likely captures the first-order variability in temperate vegetation phenology that is caused
by climate adaptation.

The influence of climate on vegetation operates at two very different temporal scales:
The contemporary variability that is mostly accommodated by phenotypic plasticity, and long-term
averaged conditions that have shaped the genotypes through adaptation [51,52]. In spite of the
similar spatial gradients, the short-term and long-term climatic effects on vegetation phenology
take two distinct pathways (i.e., environmentally and genetically) and should be assessed separately.
It is the latter that is often neglected in describing and accounting for phenological patterns over
space and is here approximated using the derived climatic adaptation indices. Earlier studies
comparing weather-predicted phenology and satellite-derived phenology noticed the fundamental
difference between the two types of measurements [53,54], which is primarily that current
ecosystem-scale phenological models (e.g., Spring Indices) assume a genetically-uniform phenological
response to climate, while satellite observations capture the integrated effect of both climatic and
genetic differences.

Normalized land surface phenology revealed geographic patterns that reflect inherent differences
of vegetation resulting from adaptation to past climate. Given that the normalization removed spatial
variation caused solely by phenotypic plasticity (as in cloned plants), the derived CAI maps can be
analogously understood as showing how greenup onset date of vegetation would vary across the
country if a uniform contemporary climate existed everywhere, mimicking the situation in a common
garden, only applied more comprehensive (i.e., targeting vegetation as a whole vs. particular species).
Under this analogy, due to lower thermal requirements, northern vegetation would initiate growth
earlier than vegetation in the south, opposite to the annually observed latitudinal gradient of vegetation
phenology. As widely documented in common garden studies [23,55,56], northern populations of
a species may show either earlier or later spring phenology than southern populations [10,12,13,18,48].
The former case is referred to as a countergradient variation in evolutionary biology, as the gradient
of common garden (or normalized) phenology is opposite to that of in situ (or locally-observed)
phenology; and the latter case a cogradient variation [57,58]. A countergradient variation (north
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being earlier, as in the Northern Hemisphere) is reflective of different thermal forcing requirements of
populations, while a cogradient variation (south being earlier) of different chilling requirements [59].
Given temperature changes simulated by common garden experiments via transferring seeds across
large distances from their source locations are often substantial (e.g., 10–20 ˝C), chilling-controlled
gradient could thus be manifested. But the magnitude of current climate change (e.g., <2 ˝C) is
unlikely to cause widespread chilling deficits for temperate plant phenology, hence a forcing-based
countergradient variation is likely dominant in the present and upcoming decades. This study for the
first time mapped this underlying countergradient pattern of temperate vegetation phenology at the
ecosystem level.

Such ecosystem level patterns indicate that temperate vegetation grown in colder climates tends
to require less thermal forcing for greenup onset than that adapted to warmer climates. A crucial
implication is that temperate vegetation at different latitudes may respond to the same degree of climate
change differently. Mean bud burst dates of multiple temperate U.S. tree species have been predicted
to advance more in the north than the south under projected climate scenarios [60]. An underlying
cause of this predicted latitudinal difference of phenological response is likely the climatic adaptation
gradient unveiled in this study. Hence, development of climatic adaptation indices and mapping of
the intrinsic variability in climatic requirements of vegetation phenology is significant in terms of
enabling monitoring and modeling of geographically-explicit responses of vegetation phenology to
climate change. As demonstrated in this study, such applications can be potentially done at large
spatial scales using satellite remote sensing. This makes it operationally feasible to build continental
scale phenoclimatic models that are able to account for vegetation heterogeneity in tracking climate
change impact on ecosystems.

Furthermore, climate-normalized phenology is additionally useful for tracking vegetation
changes under other environmental stresses, such as forest fire and insect outbreak. This is because
a climate-normalization, when implemented on an annual or decadal basis, helps remove spatial
variations in observed vegetation phenology caused by short-term weather fluctuations. The derived
CAIs, therefore, may more directly reflect variations in inherent vegetation properties, and when used
in change detection, can better reveal underlying ecosystem changes. The U.S. Forest Service has used
multi-year land surface phenology-based phenoregions to track anomalous phenological changes in
relation to forest health [61–64]. By implementing normalized land surface phenology with related
climatic adaptation indices in monitoring tasks as such, we could better target vegetation changes
related to processes such as forest succession or ecological disturbances.

Finally, the current study covered the conterminous U.S., with a focus on the eastern humid
temperate ecological domain. Future work is needed to test the CAIs in other land regions around the
world. We expect that similar patterns can be found, especially for vegetation in the humid temperate
climates. Therefore similar applications of CAIs for tracking geographically-explicit impacts of climate
change on vegetation phenology and other ecological transitions may be promising in additional
temperate land regions.

5. Conclusions

In this study, we derived normalized land surface phenology over the conterminous U.S. that is
independent of current climatic influence and reflects underlying vegetation heterogeneity as shaped
by long-term climatic adaptation. The resultant climatic adaptation indices (CAIs) revealed geographic
adaptation patterns of temperate phenology at the ecosystem level. A countergradient variation in
spring phenology by latitude is particularly evident for temperate vegetation in the eastern U.S.,
suggesting that colder-climate adapted vegetation requires less thermal forcing for greenup onset
than warmer-climate adapted vegetation, embodying the dominant clinal relationships within and
among species at the ecosystem level. Such intrinsic geographic variability of vegetation phenology
due to climatic adaptation has not been mapped previously. Normalized land surface phenology with
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climatic adaptation indices is potentially useful for tracking spatially-explicit phenological responses
to climate change and additional underlying changes in vegetation.
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