
 

Supplemental Materials 

S1. Material and Methods in Detail 

S1.1. Datasets 

The primary data sets used in the study were NDVI (normalised difference vegetation index), LST 

(land surface temperature), and TRMM (Tropical Rainfall Measurement Mission). Time series NDVI 

were used to extract phenology and productivity metrics (PPMs), and the LST and rainfall data sets were 

used to derive climate variables (temperature and rainfall). 

S1.1.1. NDVI Data 

NDVI time-series were acquired for 2001 to 2011 from moderate resolution sensor (MODIS) images 

taken at 16-day intervals and 250 m spatial resolution provided in a standard product (MOD13Q1, Level 

3 Product) by the Land Processes Distributed Active Archive Center (LP DAAC), at the U.S. Geological 

Survey (USGS) Earth Resources Observation and Science (EROS) Centre (lpdaac.usgs.gov). The study 

area comprises 2 tiles (swath scenes) of the product (h23v05 and h24v05). A total of 253 NDVI 16-day 

composite images were used in the analysis. 

S1.1.2. Temperature and Rainfall Data 

LST derived from MODIS can be considered as an independent climate variable and/or substitute for 

air temperature (e.g., [1,2]). Remotely sensed LST measurements have a high temporal density and 

provide spatially averaged rather than point values [3], which are particularly appropriate for analyses in 

which response variables are averaged over space. The accuracy of the MOD11C3 product has been 

assessed over a widely distributed set of locations and time periods via several ground truth and 

validation efforts [4]. Data for temperature estimates were acquired for 2001 to 2011 from the MODIS 

MOD11C3 product, which provides monthly estimates of LST with a spatial resolution of 0.05° × 0.05° 

(~5.6 km at the equator) [1]. This is a monthly composite average derived from MOD11C1 (daily 

global product) and stored as clear-sky LST values over a month to avoid persistent errors [5]. 

TRMM rainfall measures are estimated from analysis of data from multiple satellites and gauges using 

a calibration-based sequential scheme [6]. Various studies suggest that TRMM rainfall measures can be 

used as a substitute for ground-based observations [7–9]. A high degree of accuracy was achieved in 

developing a predictive hydrological model for the upper Indus basin using TRMM rainfall estimates 

(3B43 product) calibrated with daily discharge data and stream flow [10]. Rainfall estimates were obtained 

from a TRMM monthly global product (3B43), spanning from 50° N to 50° S at a spatial resolution of 

0.25° × 0.25° (~ 28 km), giving a monthly average precipitation rate (mm/h) [1]. The monthly average 

was converted into monthly accumulated rainfall (mm) by multiplying the hourly rate with the total 

hours in the month [6,7,10]. 

S1.1.3. Other Datasets 

In order to understand the land cover dynamics, a MODIS land cover type product (MCD12Q1, 500 m, 

Level 3 product) was acquired for both tiles. Other data sets used included a recent medium resolution  
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(30 m) detailed land cover map of the study area provided by the International Centre for Integrated 

Mountain Development (ICIMOD), and SRTM 90 m digital elevation data provided by CGIAR-CSI [11]. 

S1.2. Methods 

S1.2.1. NDVI Data Cleaning 

The NDVI data nearly always include disturbances caused by cloud contamination, atmospheric 

variability, and bidirectional effects [12]. These disturbances show up as undesirable noise and affect the 

monitoring of land cover and ecosystems [13]. The NDVI product is accompanied by a quality assessment 

(QA) layer with auxiliary information on the quality of the pixels which enables pixels to be excluded, or 

weighted, when reconstructing the time series. A “double logistic regression” approach was used to 

reconstruct a continuous NDVI time-series for phenological analysis of the vegetation [14–17]. This is a 

well-established method particularly suited to phenological monitoring of rangelands or grasslands from 

time series remote sensing data [16]. However, the asymmetry of the function which results from the 

assumed equal and opposite curvature may reduce its ability to fit the time-series [17], although it is 

helpful in avoiding the effect of random noise at the beginning and end of the season. The NDVI time 

series described by the double logistic function is explained by the following equation [17]: 

NDVIt = NDVImin + NDVId (
1

1+𝑒 𝛽𝜃(𝑡−𝛽) 
+

1

1+𝑒 𝛼𝜃(𝑡−𝛼) 
− 1) (1) 

where, NDVIt = NDVI of the pixel on Julian day t (JD); NDVImin = minimum NDVI of NDVI 

trajectory during the year (lower asymptote); NDVId = difference of minimum and maximum (lower 

and upper asymptote) of NDVI trajectory during the year; β = position of left inflection point (change 

of concavity, JD) where the slope of the function has maximum change in spring (maximum rate of 

increase in NDVI), the nominal start of the season; α = position of right inflection point (change of 

concavity, JD), where the slope of the function has maximum change (maximum rate of decrease in 

NDVI) in autumn; βθ = maximum slope of the curve at left inflection point; αθ = maximum slope of the 

curve at right inflection point. 

Parameters describing the shape of the fitted model were optimized through a multistep procedure 

involving upper envelope fitting and least square adjustment. Initially, parameters were obtained by 

solving the system of normal equations including the weights (w1, w2, …, wn) from the pixel quality 

index. To reduce the noise, bad quality (cloudy) pixels were excluded from the analysis, and high and 

medium weightage were given to good and mixed quality pixels. Data values lower than the modelled 

NDVI values were considered less important and given weightage in the next loop of system solving that 

led to the upper envelope fitting of the modelled function. A non-linear least square adjustment was done 

by minimizing the difference between the modelled NDVI and input NDVI values using a separable 

Levenberg-Marquardt curve fitting method (MPFIT), where the box constraints on  

non-linear parameters are implemented by projecting on to the feasible parameter interval [16–18]. 

The general form of the above model function, which is a local fit to the data in the interval around the 

maxima and minima of the time series, can be expressed as 

𝛾(𝑡) =  𝛾 (𝑡; 𝐶, 𝑥) =  𝐶1 +  𝐶2 𝜗(𝑡; 𝑥)  
(2) 
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The corresponding form of least square function is 

𝜑2 =  ∑[𝜔𝑖 (𝛾(𝑡; 𝐶, 𝑥)) − 𝑦𝑖]
2

𝑛

𝑖

 (3) 

where, the function depends linearly on “C” and non-linearly on “x”; C = C1, C2 = linear parameters 

defining the base level and amplitude; x = non-linear parameters describing the shape of the basis 

function; yi = input data values. 

S1.2.2. Biome Stratification (Bioclimatic and Elevation Zones) 

The high spatial variability that characterizes mountain areas suggests that regional studies should 

include a microclimatic component which can be defined by proxy variables such as altitude, slope, and 

aspect [19]. Altitude was taken as a proxy micro-ecological zone to further minimize the effect of spatial 

variance; the altitudinal gradient was stratified into 10 classes at 500 m intervals of elevation ranging 

from <500 to >4500 masl [20]. Altitudinal gradient, phenology, and productivity metrics were 

characterized spatially and further analysed for temporal variation in response to climatic factors in each 

zone of elevation, thus defining sub-bioclimatic zones. Table S3 summarizes the main features of the 

four bioclimatic regions identified in the study area, and the grassland classes (vegetation communities) 

associated with them. 

Table S1. Classification scheme for bioclimatic zones and grasslands in the study area. 

Bioclimatic Zone Description 
Elevation Range  

(masl) 

Elevation Zone  

(masl) 

Humid subtropical 

region (HSR) 

Low forests of branchy, thorny, evergreen trees, and shrub, 

xerophytic woods/scrub 
500–1000 

Zone 1(<500) 

Zone 2 (500–1000) 

Temperate region 

(TR) 

Predominantly forest zone with forage areas for livestock 

grazing during summer growing season 
1000–3000 

Zone 3 (1000–1500) 

Zone 4 (1500–2000) 

Zone 5 (2000–2500) 

Zone 6 (2500–3000) 

Subalpine region 

(SAR) 

Predominantly grassland with some small trees and shrubs; 

excellent forage for livestock grazing during growing season 
3000–4000 

Zone 7 (3000–3500) 

Zone 8 (3500–4000) 

Alpine region  

(AR) 
Alpine grassland > 4000 

Zone 9 (4000–4500) 

Zone 10 (>4500) 

S1.2.3. Extraction of Phenology and Productivity Metrics (PPMs) 

NDVI time-series analysis has been widely used to determine timing and productivity metrics and 

thus track the dynamics of vegetation growth [21]. There are a variety of methods available to define 

timing and productivity metrics from NDVI time-series, although as yet no globally accepted definition. 

The methods can be grouped into four types: thresholds, derivatives, smoothing functions, and fitting 

methods [22]. This study used a combination of derivative [16] and threshold [22] methods. First, the 

NDVI values describing the maximum rates of increase and decrease within 11 years of mean annual 

values were calculated. These NDVI values were used as thresholds in determining the annual timing 

metrics of vegetation growth. Three timing and two productivity metrics were characterized to give 
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vegetation patterns: SGS (start of growing season), EGS (end of growing season), LGS (length of 

growing season), SIN (seasonally integrated NDVI), and MSN (maximum seasonal NDVI (Table S1). LGS 

was calculated as the difference between SGS and EGS; SIN is the area under the function curve of SGS 

and EGST or the sum of all NDVI values from SGS to EGST, and MSN is the maximum NDVI value 

between SGS and EGS [23–27]. The selected metrics were chosen to reveal spatio-temporal response 

patterns of grasslands to climatic variables [19–20]. 

Table S2. Ecological relevance of PPMs derived from NDVI time-series. 

PPM Metric Type Description Ecological Meaning 

Start of growing season (SGS) 

Phenology 

Time when NDVI reaches a 

defined threshold value in spring 

Approximates the start of the season when green forage 

becomes available; time of highest quality forage  

End of growing season time  

(EGS) 

Time when NDVI decreases to a 

defined threshold value in autumn 

Approximates the end of the season when seasonally 

active vegetation becomes senescent or has been 

covered in snow; green forage becomes scarce 

Length of growing season  

(LGS) 

Number of days between start and 

end of growing season 
Number of days when forage is available 

Seasonally integrated NDVI  

(SIN) 
Productivity 

Cumulative positive NDVI values 

of the season 
Proxy for seasonal primary production of vegetation  

Maximum seasonal NDVI (MSN) Biomass Maximum NDVI value of season Proxy for maximum forage biomass of the season 

S1.2.4. Climate Variables (Seasonal and Annual Rainfall and Temperature) 

Annual and seasonal (four seasons) layers of variables were created for rainfall (cumulative) and 

temperature (average) (Table S2); December, January, and February (DJF) were taken as winter; March, 

April, May (MAM) as spring; June, July, and August (JJA) as summer; and September, October, and 

November (SON) as autumn [28–30]. DJFT (mean seasonal temperature of winter), MAMT (mean 

seasonal temperature of spring), JJAT (mean seasonal temperature of summer), SONT (mean seasonal 

temperature on autumn), ANNT (Mean annual temperature), DJFR (cumulative seasonal rainfall of 

winter), MAMR (cumulative seasonal rainfall of spring), JJAR (cumulative seasonal rainfall of summer), 

SONR (cumulative seasonal rainfall of autumn) ANNR (cumulative annual rainfall); Winter (December, 

January, February), spring (March, April, May), summer (June, July, August), autumn (September, 

October, November). 

S1.2.5. Grasslands Mask 

A preliminary analysis of the available land cover map using the NDVI seasonality indicated 

commission errors in the grassland classes. Ground truth information from field surveys in 2010 and 

2011 showed that grasslands are usually mixed with croplands along valley bottoms and low altitude 

plains, with scrub forest at mid altitudes, and with sparse forest (mostly small broadleaved trees) at 

higher elevations and in the alpine regions. The lack of pure grassland patches meant that it was first 

necessary to prepare a grasslands mask with minimum commission errors so that grassland variation 

could be analysed [29]. A rule based exclusion approach based on a combination of mean PPMs, a digital 

elevation model (DEM), in situ information, the land cover map, and mean “NDVI climatology” (11 years 

of mean PPMs, MSNm) was followed to identify grassland patches with no or a minimum admixture of 
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other land cover regimes. Pixels with weak NDVI values (MSNm < 0.05) were excluded. Pixels already 

classified in classes such as forest, snow and glaciers, cultivated land, water, bare land, and urban areas 

were removed. At higher elevation, evergreen scrub forest was eliminated using a decision rule of 

“prolonged seasonal length together with high productivity with lower maximum seasonal NDVI”. At 

mid altitudes in forest zones, forested areas were identified and eliminated based on extended seasonal 

length and high NDVI throughout the year. The noisy pixels were further filtered using a histogram 

analysis of PPMs, such as very late start of growing season (SGSm > 230) and end of season (EGSm > 

360); where SGSm and EGSm are the average of 11 years mean SGST and  

EGS, respectively. 

S1.2.6. Spatial and Temporal Aggregation 

The variability of phenological metrics within each elevation zone in terms of both space and time 

was taken as a measure for assessing the heterogeneity within each zone. The spatial variability of a 

metric within an elevation zone may result from a range of biotic and environmental gradients and 

associated responses in the grassland system; a high spatial variability represents a diversity of habitat 

conditions. Temporal variability (over 11 years) represents how the system is experiencing change over 

time; a high temporal variability indicates a high degree of change. 

PPMs and climate variables (CVs) derived from time-series were aggregated to give a spatial average 

per grasslands zone [16,28]. Averaging the variables in elevation zones provided annual values for the 

representative class and reduced the effect of inter pixel spatial variations. Spatial and temporal statistics 

were also calculated. The temporal standard deviation, σt, refers to the dispersion of the phenology 

metric in time. The standard deviation for a time series of a phenology metric was calculated per pixel 

and averaged over all pixels within an elevation zone. The spatial standard deviation, σs, is the standard 

deviation of the (temporal) mean phenology pixel values that fall within a grassland zone and indicates 

the dispersion of the phenology metric in space. High values of σt indicate that the metric has high 

temporal variability and high values of σs indicate that the phenology metric is spatially heterogeneous 

within the grassland class [28]. 

S1.2.7. Modelling PPMs as a Function of Climate Variables 

The year to year responses of the five PPMs to the climate variables (CVs) were evaluated. For each 

of the PPMs, a regression model was run for each class of grasslands over the 11 years from  

2001–2011 [28]. A total of 500 separate models were computed. Inter annual variation of the PPMs was 

modelled as a function of yearly change in the seasonal and annual climate variables. Measures of 

explanatory power, R, sign of proportionality, slope, and significance of the relation were obtained for 

individual climate variables using the function—PPM = f(CV). 
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Table S3. Significant correlations between start of growing season and climate variables. 

Elevation Zone DJF
T
 MAM

T
 JJA

T
 SON

T
 ANN

T
 DJF

R
 MAM

R
 JJA

R
 SON

R
 ANN

R
 

Zone 1 –– 0.92 –– –– –– −0.77 −0.64 –– –– –– 

Zone 2 –– 0.89 –– –– –– –– −0.74 –– –– –– 

Zone 3 –– –– –– –– –– –– –– –– –– –– 

Zone 4 0.66 –– –– –– –– –– –– –– –– –– 

Zone 5 0.69 –– –– –– –– –– –– –– –– –– 

Zone 6 0.63 –– –– –– –– –– –– –– –– –– 

Zone 7 –– −0.79 –– –– −0.69 0.62 –– –– –– –– 

Zone 8 –– −0.69 –– –– –– –– –– –– –– –– 

Zone 9 –– −0.62 –– –– –– –– –– –– –– –– 

Zone 10 –– −0.58 –– –– –– –– –– –– –– –– 

Table S4. Significant correlations between end of growing season and climate variables. 

Elevation Zone DJF
T
 MAM

T
 JJA

T
 SON

T
 ANN

T
 DJF

R
 MAM

R
 JJA

R
 SON

R
 ANN

R
 

Zone 1 –– –– −0.77 –– –– –– –– –– –– –– 

Zone 2 –– –– –– –– –– –– –– –– –– –– 

Zone 3 –– –– –– –– –– –– –– –– –– –– 

Zone 4 –– –– –– –– –– –– –– –– –– –– 

Zone 5 –– –– –– –– –– –– –– –– –– –– 

Zone 6 –– –– –– –– –– –– –– –– –– –– 

Zone 7 –– –– –– –– –– –– –– 0.73 –– –– 

Zone 8 –– –– –– –– –– –– –– 0.69 –– –– 

Zone 9 –– –– –– –– –– –– –– –– –– –– 

Zone 10 –– –– –– –– –– –– –– –– –– –– 

Table S5. Significant correlations between length of growing season and climate variables. 

Elevation Zone DJF
T
 MAM

T
 JJA

T
 SON

T
 ANN

T
 DJF

R
 MAM

R
 JJA

R
 SON

R
 ANN

R
 

Zone 1 –– –– −0.66 –– 0.64 –– –– –– –– –– 

Zone 2 –– –– −0.71 –– 0.67 –– –– –– –– –– 

Zone 3 –– –– –– –– –– –– –– –– –– –– 

Zone 4 −0.73 –– –– –– −0.62 –– –– –– –– –– 

Zone 5 −0.92 –– –– –– −0.66 –– –– –– –– –– 

Zone 6 −0.85 –– –– –– –– –– –– –– –– –– 

Zone 7 –– 0.62 –– –– 0.73 –– –– 0.74 –– –– 

Zone 8 –– 0.64 –– –– 0.84 –– –– 0.60 –– –– 

Zone 9 –– 0.59 –– –– 0.85 −0.60 –– –– –– –– 

Zone 10 –– 0.61 –– –– 0.83 −0.59 –– –– –– –– 



Climate 2015, 3 S7 

 

 

Table S6. Significant correlations between maximum seasonal NDVI and climate variables. 

Elevation Zone DJFT MAMT JJAT SONT ANNT DJFR MAMR JJAR SONR ANNR 

Zone 1 –– –– –– –– −0.63 –– –– 0.69 –– 0.92 

Zone 2 –– –– –– –– −0.69 –– 0.64 –– –– 0.93 

Zone 3 –– −0.61 –– –– −0.82 0.69 –– –– –– 0.80 

Zone 4 –– −0.74 −0.61 –– −0.81 0.65 0.63 –– –– 0.68 

Zone 5 –– −0.84 −0.77 –– −0.81 –– 0.69 –– –– 0.66 

Zone 6 –– −0.74 −0.80 –– −0.64 –– 0.66 –– –– –– 

Zone 7 –– –– –– –– –– –– –– –– –– –– 

Zone 8 –– –– –– –– –– –– –– –– –– –– 

Zone 9 –– –– –– –– –– –– –– –– –– –– 

Zone 10 –– –– –– –– –– –– –– –– –– –– 

Table S7. Significant correlations between seasonally integrated NDVI and climate variables. 

Elevation Zone DJFT MAMT JJAT SONT ANNT DJFR MAMR JJAR SONR ANNR 

Zone 1 –– –– –– –– –– –– –– 0.78 –– 0.81 

Zone 2 –– –– –– –– –– –– –– 0.66 –– 0.80 

Zone 3 −0.71 −0.64 –– –– −0.67 0.76 –– –– –– 0.67 

Zone 4 −0.66 −0.70 −0.65 –– −0.74 0.66 0.64 –– –– 0.66 

Zone 5 −0.64 −0.84 −0.76 –– −0.79 –– 0.79 –– –– 0.71 

Zone 6 –– −0.62 −0.81 –– −0.60 –– 0.63 –– –– 0.69 

Zone 7 –– 0.62 –– –– 0.69 –– –– 0.72 –– –– 

Zone 8 –– 0.65 –– –– 0.81 –– –– 0.60 –– –– 

Zone 9 –– 0.66 –– –– 0.82 –– –– –– –– –– 

Zone 10 –– 0.62 0.64 –– 0.84 –– –– –– –– –– 
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