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Abstract: We present the detection of the signatures of land use/land cover (LULC) changes 

on the regional climate of the US High Plains. We used the normalized difference vegetation 

index (NDVI) as a proxy of LULC changes and atmospheric CO2 concentrations as a proxy of 

greenhouse gases. An enhanced signal processing procedure was developed to detect the 

signatures of LULC changes by integrating autoregression and moving average (ARMA) 

modeling and optimal fingerprinting technique. The results, which are representative of the 

average spatial signatures of climate response to LULC change forcing on the regional 

climate of the High Plains during the 26 years of the study period (1981–2006), show a 

significant cooling effect on the regional temperatures during the summer season. The 

cooling effect was attributed to probable evaporative cooling originating from the increasing 

extensive irrigation in the region. The external forcing of atmospheric CO2 was included in 

the study to suppress the radiative warming effect of greenhouse gases, thus, enhancing the 

LULC change signal. The results show that the greenhouse gas radiative warming effect in 

the region is significant, but weak, compared to the LULC change signal. The study 

demonstrates the regional climatic impact of anthropogenic induced atmospheric-biosphere 

interaction attributed to LULC change, which is an additional and important climate forcing 

in addition to greenhouse gas radiative forcing in High Plains region.  

 

OPEN ACCESS 



Climate 2014, 2 154 

 

Keywords: landuse/landcover; optimal fingerprinting; ARMA modeling; climate change 

 

1. Introduction 

Extensive land use/land cover changes (LULC) and their climate forcing represent an important 

human influence on atmospheric temperature trends [1]. Several studies using both modeled and 

observed data have documented the perturbation and impacts of LULC changes on climate  

(e.g., [2–12]). Authors in [1] expressed the importance of detecting LULC changes accurately at 

appropriate scales as so to better understand their impacts on climate and provide improved prediction of 

future climate. In this study, we attempt to detect the signature of the external forcing of LULC change 

on the regional climate of the High Plains. The proxy investigated for the forcing on the regional climate 

due to LULC change is the Normalized Difference Vegetation Index (NDVI). The index has been 

widely used to study and monitor vegetation coverage, change, and development in several ecosystems. 

On a daily basis, vegetation as a component of the biosphere interacts with the atmosphere through its 

direct influence on the partitioning between latent and sensible heat fluxes [13,14]. In addition to LULC 

change, we included atmospheric carbon dioxide (CO2) concentrations as a proxy of greenhouse gas 

forcing on climate. The increase in atmospheric CO2 concentration has been used in several studies to 

express the net radiative forcing contribution of anthropogenic greenhouse gases on climate [15].  

For the detection of an external forcing signal on climate, Authors in [16] proposed a rationale of 

developing filters that optimized external forcing signal to natural climate noise ratio. The filters 

function as projectors of the forced climate signals from a dimensional space of high noise to a low noise 

dimensional space. The dimensional space in this study is represented by the two-dimensional signals; 

LULC change and greenhouse radiative warming. This technique referred to as optimal fingerprinting is 

a space and time dependent analysis. The climate response consists of a time series of observed climate 

indices from which the anticipated external forcing signal can most readily be distinguished from natural 

climate noise (also referred to as natural climate variability). Results from climate models indicate that 

temperature and atmospheric moisture content are good indices [17–19]. This is because temperature is a 

smooth field with relatively little variability, and atmospheric moisture is a first order function to 

temperature that shares much of the smoothness. Authors in [20] showed that the signal to noise ratio 

was comparably higher in near-surface temperature than in any other indices. In addition, temperature 

has been observed for a comparatively long time, providing reasonably good information on the time 

dependence of observed climate variability. Therefore in this study we investigated temperature as the 

observed climate response variable.  

The intrinsic time dependence of climate variables is a confounding factor in the optimal 

fingerprinting technique, explicitly, in determining the covariance matrix. Authors in [21,22] suggested 

the method of reducing the complexity of the covariance structure by representing the natural climate 

variability as a superposition of a finite number of principal oscillation patterns. The basic idea is to 

introduce an auto-regression moving average (ARMA) type of dynamic modeling approach into the time 

domain. In this study, we used this approach by applying the linear transformation of ARMA pre-filters 

to identify and suppress time dependence/autocorrelation in the analysis. With the assumption that natural 
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climate variability is a stationary process, ARMA pre-filters were fit to generate near-stationary 

residuals, which represent natural climate variability (noise). By introducing the ARMA pre-filters, our 

study developed an enhanced signal processing procedure that maximized the signal to noise ratio to 

detect the signal of LULC change on observed temperatures in the High Plains.  

2. Methodology and Analyses 

2.1. Study Area and Input Data 

The study area is the High Plains region located in the central United States and extending over 

thirteen states: Nebraska, Kansas, South Dakota, North Dakota, Minnesota, Wyoming, Montana, 

Colorado, Iowa, Missouri, Oklahoma, New Mexico, and Texas (Figure 1). The region is geographically 

located between dense eastern forests and the western mountains and deserts [23]. The area is a vast, 

flat-to-rolling plain that is predominately agricultural. A landcover map of the region showing the spatial 

patterns of agricultural areas, natural vegetation, and urban development from the year 2006 is shown in 

Figure 1. 

Figure 1. Map showing the study region, High Plains, the landcover during the year 2006 

(Source: National Land Cover Database, and the weather stations (black dots) used in  

the analysis.  

 

The study developed 2 × 2 degree grids of summer surface temperature anomalies, CO2 measurements 

from Mauna Loa observatory, and Advanced Very High Resolution Radiometer (AVHRR)-based 

NDVI. The United States Historical Climatology Network (USHCN) was the source of the monthly 
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mean, minimum, and maximum temperature datasets for the 204 weather stations across the High Plains. 

The USHCN data are quality assessed by the National Climatic and Data Center (NCDC) [24]. We used 

the climate anomaly method (CAM) [25] to compute the monthly anomalies of the mean, minimum, and 

maximum temperatures for all stations. The based period used to compute the anomalies was the 30 year 

period of 1936 to 1965. The summer anomalies were then derived from averaging the anomalies of June, 

July, and August for each year. The 2 × 2 degree grid sized spatial map of anomalies over the High 

Plains was created by averaging the anomalies for all stations in each grid.  

The atmospheric CO2 concentration data were measured at Mauna Loa, Hawaii (19.5°N; 155.6°W), 

and acquired from the National Oceanic and Atmospheric Administration (NOAA) Earth System 

Research Laboratory (ESRL). The data contain monthly mean CO2 mole fractions, expressed as parts per 

million (ppm). Because the measurements are made in the middle of the Pacific Ocean and at high 

elevations, the data are assumed to represent the mean atmospheric CO2 concentrations of a well-mixed 

atmosphere. The data were used to estimate the average summer CO2 atmospheric concentrations over 

the High Plains by averaging the concentrations of June, July, and August for every year of the study 

period. Prior to averaging, the CO2 concentrations for each month were standardized.  

We obtained the NDVI data from Global Inventory Modeling and Mapping Studies (GIMMS). The data 

is originally acquired from the AVHRR sensor onboard the NOAA polar-orbiting satellites that have a 

biweekly temporal resolution and 4-km onboard resampled spatial grid-size. GIMMS data are resampled to 

8-km pixel size products. The special features of the data include reduced NDVI variation arising from 

calibration, view geometry, volcanic aerosols, and other effects not related to actual vegetation change. The 

details on radiometric calibration, atmospheric correction and cloud screening, satellite drift correction, 

inter-calibration of NDVI, and quality assessment of the data are described by [26–28]. For this study, the 

data were resampled from 8-Km pixel size to 2° grids. The summer NDVI mean values were estimated 

from the biweekly values of June, July, and August for every year of the study period.  

2.2. Spatial Gridding 

The study region was gridded into 36 grids of 2°
 
size. The grids are referenced in the figures and 

tables as column by row (C-R). The columns are numbered as one to six from west to east and the rows 

are numbered as one to six from north to south. Authors in [29] highlight that at small spatial scales, 

natural climatic variability is high and, thus, it is harder to detect significant anthropogenic effects on 

climate. Therefore, the 2° grid size was used in this study as a rational grid size that spatially does not 

smooth the climatological variation over the High Plains and has adaptable natural climatic variability 

for the optimal fingerprinting analysis.  

3. ARMA Pre-Filters  

The concept of maximizing the signal-to-noise ratio in the observed climate requires the assumption 

that the background natural climate noise is a near-stationary Gaussian process. The observed climate 

(such as temperature anomalies), external forcings, and natural climate noise are inherently time-dependent, 

which violates the stationarity assumption. The ARMA pre-filters are, therefore, designed to take into 

account the temporal cycles and correlation in climate data ensuring that the noise generated by 

projecting the observed climate into the forcing signals’ dimensional space is a near-stationary process.  
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Considering the observed climate (X) to be a linear combination of external forcings (Z) and natural 

climate noise vector (u): 

       (1) 

where, Z = (z1|...|zt) is the matrix of external forcings (design matrix), and β = ( β1,…, βt) is vector of 

signal amplitudes. In this study t = 2, representing the two external forcings of CO2 concentration and 

LULC change (denote by NDVI). Let C be the covariance matrix of natural climate noise (u). If vector u 

is known, and thus C is known, by using spectral decomposition, it is possible to find a transformation 

pre-filter vector (A) such that: ACA' = σ
2
I. 

Therefore           , where I denotes the n x n identity matrix (n: being number of years of the 

study period),    is the transpose of A and σ
2
 is the variance of the noise vector. With the pre-filter A, 

Equation (1) can be transformed into: 

          (2) 

and re-parameterized as: 

       (3) 

where, G = AZ, Y = AX, and   = Au is the white noise vector with covariance matrix σ
2
I and mean zero.  

However, in this study u is unknown, therefore the first step of the procedure was to model the 

transformation pre-filter A such that   is a near stationary process. To reach this assumption, first, 

ordinary least squares was applied on Equation (1) to generate residuals (u) as shown: 

                     

Then, an ARMA model was fit on   such that the outcome was a near stationary natural climate 

noise    :  

     

     
    (4) 

where,  
    

     
  is the transforming ARMA pre-filter (A). The ARMA pre-filter was fit by determining 

the nominator as an autoregressive model of order [p], and the denominator as a moving average model 

of order [q]. The orders [p] and [q] were determined by constructing the partial autocorrelation function 

(PACF) and autocorrelation function (ACF), respectively, of the estimated residuals ( ). Further details 

on ARMA models and determination the orders are in [30].  

The fitted ARMA pre-filter was then used to transform Equation (1) as shown below:  

     

     
    

     

     
    

(5) 

Letting 

  
     

     
  and   

     

     
  

the ARMA pre-filtered Equation (1) was re-parameterized as:       : which is Equation (3).  

Thus, Equation (3) is the model representation of the linear combination of observed climate response 

(Y) to external forcings (G) and natural climate noise ( ), onto which the optimal fingerprint technique 
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was applied to detect the signals of external forcings, where the elements of vector (β) are the amplitudes 

of the external forcings.  

3.1. Optimal Fingerprinting Technique and Hypothesis Testing 

Optimal fingerprinting is a technique that estimates the amplitude of an external forcing signal in an 

observed climate, [31]. Natural climate noise overwhelms the external forcing signals in observed 

climate data. The technique is developed to overcome this inherent problem by maximizing the distance 

between the signal and natural climate noise or signal-to-noise ratio [32]. We use Figure 2 to describe the 

concept of optimal fingerprinting: The external forcing signal (OB) in the in-situ state is usually 

projected in a direction space where the natural climate noise (OBn) overwhelms the statistical test of 

significance of the signal. Therefore, optimal fingerprinting technique re-projects the signal into a new 

direction space (OD) that minimizes natural climate noise (ODn), thus increasing the statistical power to 

detect the external forcing signal. 

Figure 2. An illustration of the technique of optimal fingerprinting. The green horizontal 

plane represents the natural climate noise. The in-situ signal to noise ratio given by external 

forcing signal/ natural climate noise (OB/OBn) laying in the direction of the overwhelming 

natural climate noise. And the rotated signal to noise ratio new direction space/natural 

climate noise (OD/ODn) laying in the direction of minimized natural climate noise. The 

technique of optimal fingerprinting merely identifies the direction OD. Source: IPCC (2001). 

 

The next steps of optimal fingerprinting were applied on ARMA pre-filtered and re-parameterized 

Equation (3) above. The determination of signal amplitudes (β) of the external forcings is the objective 

of the optimal fingerprinting technique. These amplitudes represent the magnitude and direction of the 

climate response to the external forcings. Based on the Gauss-Markov theorem, the optimal estimates of 

the amplitudes (     also referred to as the Best Linear Unbiased Estimators (BLUE), were estimated as.  

                      (6) 

Authors in [33] referred to the                  as the operator which extracts    from Y. The 

intent of optimal fingerprinting is not to maximize the explained variance in observed climate response 

due to the external signals, but to maximize the signal to noise ratio. Therefore, authors in [34] derived a 
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statistic equivalent to the maximized-squared-signal-to-noise-ratio (R
2
), which was used to test the null 

hypothesis of a multivariate statistical significance of an external forcing signal. 

                          (7) 

where    is a chi-square (χ
2
) variable with p degrees of freedom. The null hypothesis is that:  

Ho: β = 0 vs. Ha: β   0, in other words, the observed climate change originates only from natural 

climate noise. The null hypothesis test was rejected when: 

         
  (8) 

where,       
  is the critical value and α (0.05) is the set level of significance for the test. If one or both of 

the signals were not significant, then each external forcing signal was tested individually by reducing the 

G matrix to one dimension. Since C was estimated, the test is only reasonable if the number years is large 

enough. In this analysis, the study period was 26 years (1981–2006). 

4. Results and Discussion 

4.1. Model Fitting on Observed Summer Temperature Data 

This section discusses the performance of fitted models in predicting the observed temperature 

anomalies during the study period. It is observed in Figure 3 that the model predicted anomalies practically 

agreed with observed temperature anomalies, with a coefficient of determination (r
2
) of 0.92 and Root 

Mean Square Error (RMSE) of 0.31. The year 1992 had the lowest anomalies (<−1.5). The cooling of 

summer 1992 has been associated with volcanic aerosol-induced cooling of the global mean temperature 

due to the June 1991 Pinatubo eruption in the Philippines [35]. The warmest anomalies (>2.0) were from 

the year 1988 due to the extreme dry and hot drought that lasted from 1987 to 1989. According to [36] the 

drought of 1988 covered 36% of USA at its peak. The cooling and warming of temperatures during the 

summers of 1992 and 1988, respectively, demonstrate the impact of the natural forcings in masking out 

external forcing signals and trends on climate. Such large events in natural climate variability make 

statistical detection of external forcing signals practically impossible. The suppression of these events by 

subtracting or modeling them out of natural climate variability could simplify the estimation of the 

undisturbed or “normal” natural climate variability, thus enhancing the detection of external forcing 

signals. Indeed, authors in [33] minimized the impact of volcanic activities of Mt. Agung and Mt. Pinatubo 

in detection analysis by omitting the data over the period effected by the events.  

4.2. Spatial Signatures of Climate Response to LULC Changes Using NDVI Proxy 

The spatial signatures of optimally estimated signal amplitudes of LULC changes are presented in 

Figure 4. The relative magnitude of the amplitude in each grid is represented by the solid cycle that is 

referenced the legend of the figure. Statistically, the amplitudes are estimates of the main effect of the 

LULC changes forcing on the observed temperature anomalies. The positive or negative sign of the 

amplitude indicates whether the external forcing on temperature was a warming or cooling effect, 

respectively. Since the amplitudes appear mostly negative in Figure 4, the effect of LULC changes on 

the regional temperature is mostly a cooling effect. The blue grids in Figure 4 show areas with 

significant a LULC change cooling effect on the regional temperatures, with both NDVI and CO2 
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forcings in the model. The light blue grids show areas with significant cooling effect, but with only 

NDVI forcing in the model. That is, when both NDVI and CO2 forcings were in the model, the NDVI 

signal was insignificant, however when CO2 was dropped from the model, the signal of NDVI became 

significant. The change in significance or even direction of a signal when another signal is added to or 

dropped from the model is referred to as multicollinearity [37]. Multicollinearity is caused by probable 

presence of correlation between forcing signals, making it difficult to identify and interpret the signals 

that have the most effect.  

Figure 3. Model-predicted temperature anomalies vs. observed temperature anomalies.  

“N” is the number of points. RMSE: root mean square difference.  

 

In Figure 4, the red colored grids are areas where the LULC change forcings yielded a significant 

positive or warming effect. These grids are mostly covered with natural vegetation and grassland for 

cattle ranching. The white grids represent areas where LULC change forcing had an insignificant effect. 

Probably due to the natural climate variability completely overwhelming the LULC change signal or due 

to inadequate evidence to detect the LULC change signal on observed temperature in those grids. For 

instance, in Grid 1–5, which covers most of the areas on the eastern slopes of the Rocky Mountains, the 

elevation of the weather stations ranged between 1600 and 2800 m above mean sea level. The 

temperature measurements of these stations are most likely to be mainly influenced by topographic and 

high elevation effect. Additionally, the area is subjected to periodic, severe turbulent conditions from the 

effects of high westerly Chinook winds over the mountain barrier. The winds are highly episodic, thus 

tremendously noisy, which makes the extraction of external forcing signals on measured temperatures 

practically difficult to detect statistically. Importantly, due to the grid size used in this study, the exact 

spatial extent of the significant or insignificant signatures of the forcings in the region is coarsened. These 

results are only representative of the average spatial patterns of climate response to LULC change forcing 

over the High Plains during the 26 years of this study. The signatures of climate response to LULC 

changes and CO2 forcings are not temporally and spatially stationary over the years, but rather physically 
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dynamic, evolving spatially and in significance as seasons, natural forcings (such as solar and volcanic 

activities, ENSO, droughts, etc.), and other external forcings influence the climate in the region. 

Figure 4. Spatial signatures of climate response to NDVI effect on the High Plains’ regional 

climate. Blue grids indicate areas with significant cooling signal, white grids indicate areas 

with insignificant NDVI signal, and light blue grids indicate areas with significant cooling 

signal from one-signal pattern model. Red grids indicate areas with significant warming 

signal. The solid green and red circles represent the magnitude of the amplitudes of NDVI 

signal in each grid. 

 

The widespread cooling effect in Figure 4 is probably due to the evaporative cooling originating from 

the extensive irrigation in the region. A study by [38] using RegCM2 revealed a warming hole 

(minimum warming) in the High Plains that was attributed to evaporative cooling suppressing daytime 

maximum temperatures of the region during the summer months of June, July, and August. In fact the 

warming hole was observed to start developing in June, reaching its maximum value in September and 

gradually diminishing through October and November. The months of June, July, August, and 

September are characterized by extensive irrigation in the High Plains. A similar climate change study 

by [39] using the global Community Climate System Model Version 3 (CCSM3) earth systems model 

also shows the projected July temperatures between 2000 and 2050 to be increasing at a slower rate in 

the High Plains relative to surrounding regions, especially the western Region.  

The irrigated area in the High Plains has steadily increased from about 8 million ha in 1980 to more 

than 13.4 million ha by 2000. This trend has continued into the 21st century as economical profitability 

and other incentives of maize, soybean, wheat, and other crops have led farmers to convert natural 

grasslands of the High plains into irrigated croplands. Studies [10,40–44] have shown that irrigation and 

vegetation coverage have a direct influence on regional surface temperatures. These studies show that 
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irrigation can consistently reduce maximum daily temperatures by as much as 7.5 °C. In a simulation 

study by [45] more evidence was provided on the impact of agricultural-related land use change on the 

surface climate of the High plains. In some regions (Nebraska) they observed a significant 

irrigation-induced surface cooling effect of 1.2 °C. 

4.3. Spatial Signatures of Climate Response to Greenhouse Gases Using CO2 as Proxy 

The main purpose of including atmospheric CO2 forcing in the model was to suppress the radiative 

effect of greenhouse gases from the observed climate, thus enhancing the LULC change signal to noise 

ratio. Atmospheric CO2 concentration has often been used to express the net radiative forcing 

contribution of anthropogenic greenhouse gases on the climate [46]. The spatial signatures of optimally 

estimated amplitudes of CO2 are presented in Figure 5. The solid circles in the grids also represent the 

relative magnitude of the estimated amplitudes of the atmospheric CO2 signal. Compared with the 

LULC change amplitudes, the CO2 amplitudes were mainly positive, indicating a radiative warming 

effect on regional climate of the High Plains. The red colored grids show areas with a significant 

radiative warming effect. The two blue colored grids (3–4 and 5–5) indicate areas with a significant 

cooling effect. Four white grids (2–2, 2–3, 3–3, and 5–3) had an insignificant CO2 radiative effect on the 

regional climate. The magnitudes of the amplitudes of these grids were indeed the smallest, an indication 

that the atmospheric CO2 signal in these areas was weak. Grids 2–2 and 3–3 also had insignificant LULC 

change signals which raised the possibility that the natural climate variability in the observed 

temperature of these areas completely overwhelmed both signals of LULC changes and atmospheric 

CO2 concentrations or the observed temperature in the two grids had insufficient footprints of the two 

external forcings.  

Since we used global atmospheric CO2 concentrations from Mauna Loa, Hawaii, the variation in the 

spatial signatures of climate response to atmospheric CO2 forcing was not expected to fluctuate much 

over the region. However, in Figure 5, the amplitudes of atmospheric CO2 signals were observed to be 

strongest in the northern part relative to the rest of the region. In a recent study by [47], the trends in 

average annual temperatures over the region also show the strongest amount of warming to be in North 

Dakota and the least in Colorado. The warming signal of atmospheric CO2 forcing was observed to be 

weakest in the central part of the High Plains and appears to increase again from the central part towards 

the south. In Figure 5, the amplitudes of atmospheric CO2 forcing are smaller in magnitude compared to 

LULC changes amplitudes. The optimal fingerprinting technique automatically assigns higher weights 

to variables with high signal-to-noise ratio [48]. These results, therefore, indicate that the atmospheric 

CO2 signal in the region was weak compared to the LULC changes signal. Authors in [42] observed that 

the expanding evaporative cooling from irrigation over the past years might have introduced a 

countervailing temperature effect, limiting the detection of global greenhouse warming signal in 

observational records of temperature. Our results and recent studies, such as [38,42,49], demonstrate 

that the regional climatic effect originating from anthropogenic induces an atmospheric-biosphere 

interaction attributed to LULC change, which is probably masking the global greenhouse gas radiative 

warming in the High Plains region. 
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Figure 5. Spatial signatures of climate response to CO2 radiative effect on the High Plains’ 

regional climate. Red grids indicate areas with significant warming signal, white grids 

indicate areas with insignificant CO2 signal, and blue grids indicate areas with significant 

cooling signal. The solid red circles represent the magnitude of the amplitudes of CO2 signal 

in each grid.  

 

5. Conclusions 

By integrating ARMA modeling and the optimal fingerprinting technique, an enhanced signal 

processing procedure was developed to detect the signals of LULC changes on the regional climate of 

the US High Plains. The ARMA pre-filters were used as linear transformation models that ensured the 

output residuals were near-stationary processes, thus enforcing the assumption of stationarity of natural 

climate variability. The study used NDVI as a proxy of LULC changes and atmospheric CO2 

concentrations as a proxy of greenhouse gases. The results, which are representatives of the average 

spatial signatures of climate response to LULC change forcing on the regional climate of the High Plains 

during the 26 years of the study period, show a significant cooling effect on the regional climate during 

the summer season. The cooling effect is probably due to the evaporative cooling originating from the 

increasing extensive irrigation in the region. Atmospheric CO2 forcing was added into the model to 

suppress the radiative effect of greenhouse gases, thus enhancing the LULC change signal to noise ratio. 

The results show that the greenhouse gas warming effect was mostly significant in the region, but weak 

compared to LULC change signal. This study demonstrates the regional climatic impact of 

anthropogenic induced atmospheric-biosphere interaction attributed to LULC change, which is an 

additional important climate forcing besides greenhouse gas radiative forcing in the High Plains region. 
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