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Abstract: The advancements in global climate modeling achieved within the CMIP6 framework have
led to notable enhancements in model performance, particularly with regard to spatial resolution.
However, the persistent requirement for refined techniques, such as dynamically or statistically
downscaled methods, remains evident, particularly in the context of precipitation variability. This
study centered on the systematic application of a bias-correction technique (quantile mapping) to
four designated CMIP6 models: CNRM-ESM2-6A, IPSL-CM6A-LR, MIROC6, and MRI-ESM2-0. The
selection of these models was informed by a methodical approach grounded in previous research con-
ducted within the southern–southeastern region of Mexico. Diverse performance evaluation metrics
were employed, including root-mean-square difference (rmsd), normalized standard deviation (NSD),
bias, and Pearson’s correlation (illustrated by Taylor diagrams). The study area was divided into two
distinct domains: southern Mexico and the southeast region covering Tabasco and Chiapas, and the
Yucatan Peninsula. The findings underscored the substantial improvement in model performance
achieved through bias correction across the entire study area. The outcomes of rmsd and NSD not only
exhibited variations among different climate models but also manifested sensitivity to the specific
geographical region under examination. In the southern region, CNRM-ESM2-1 emerged as the most
adept model following bias correction. In the southeastern domain, including only Tabasco and
Chiapas, the optimal model was again CNRM-ESM2-1 after bias-correction. However, for the Yucatan
Peninsula, the IPSL-CM6A-LR model yielded the most favorable results. This study emphasizes
the significance of tailored bias-correction techniques in refining the performance of climate models
and highlights the spatially nuanced responses of different models within the study area’s distinct
geographical regions.

Keywords: climate change; southern–southeastern Mexico; CMIP6; precipitation; bias correction

1. Introduction

Climate change is a phenomenon that affects the planet, manifesting itself mainly
through changes such as extreme events [1,2]. The latest assessment report of the
Intergovernmental Panel on Climate Change (IPCC-AR6), as usual, displays data on
projected climate changes globally [1]. This information is based on the use of the
new Coupled Model Intercomparison Project Phase 6 (CMIP6) scenarios [3]. CMIP6
comprises nearly 40 modeler groups with over 70 general circulation models (GCMs) [4].
These GCMs have improved in their complexity to simulate the climate system and
increase the spatial and temporal resolution of climate information, as well as to update
their input information [4–7].

The fact that different general circulation models (GCMs) utilize varied parameteriza-
tions and internal physics is commonly acknowledged. This leads to unique simulations of
climatic conditions in particular regions, resulting in variations in effectiveness based on
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the specific study area [8]. Recently, the CMIP6 initiative has produced valuable outcomes
for multiple geographical regions [9–11], one of them being the Americas [12,13].

Downscaling techniques play a crucial role in enhancing the spatial resolution of
climate information derived from GCMs, which typically operate at resolutions as coarse
as 100 km × 100 km [14]. The need for downscaling arises from the requirement of
GCM information on smaller scales to address more localized and finer-grained climate
phenomena. These methods have been divided into statistical and dynamical categories,
with the latter often characterized by the employment of regional climate models (RCMs)
with boundary conditions determined by GCM variables [15].

On the other hand, there are several types of statistical downscaling techniques that
are commonly used in climate science. Some of the most well-known techniques include [1]
(i) regression-based methods (bias-correction being one of them) [16–23]; (ii) weather typing
approaches [24–27]; (iii) empirical statistical downscaling [28–31]; (iv) weather generator
techniques [24,27,32,33]; and (v) neural network methods [33–38]. Note that there are
different variations and combinations of these techniques, and as research in statistical
downscaling progresses, new approaches may arise.

The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) developed a bias-
correction method to adjust climate model data for systematic departures of the simulated
historical data from observations at a global level [39]. This technique maintains the
warming signal, absolute changes in monthly temperature, relative changes in monthly
precipitation data, and other ISI-MIP-required variables. Later on, ref. [40] introduced a
joint bias-correction (JBC) methodology for correcting the joint distribution of temperature
(T) and precipitation (Pr) fields from climate model simulations. The JBC method corrects
the individual distributions of T and Pr as well as their joint distribution, thereby improving
the assessment of climate change impacts. On the other hand, the JBC method represents
an important step in impact-based research as it explicitly accounts for inter-variable
relationships as part of the bias-correction procedure.

Another type of technique, quantile mapping, can be used to address bias in the pre-
cipitation variable [41–44]. This method allows the adjustment of a model’s precipitation to
match the actual observed precipitation [45] by applying cumulative distribution functions
to a specific quantile to calculate the probability of observation. The necessary correction is
then determined using the inverse cumulative distribution function. Some of the available
approaches include [46] (a) Normal Distribution Mapping; (b) Empirical Quantile Mapping;
(c) Empirical Robust Quantile Mapping; (d) Quantile Mapping with Linear Transform
Function; and (e) Quantile Delta Mapping.

Ref. [41] investigated the extent to which quantile mapping algorithms modify GCM
trends in mean precipitation and precipitation extremes indices. The study presented a bias-
correction algorithm, Quantile Delta Mapping (QDM), which explicitly preserves relative
changes in precipitation quantiles and compares it with detrended quantile mapping
(DQM) and standard quantile mapping (QM) on synthetic data.

Limited research has been devoted to implementing bias-correction techniques in
the realm of climate studies within Mexico. Among these is the study of [47], which
implemented the Palmer drought severity index to measure the severity of droughts in
continental USA and Mexico. A total of 19 climate models were used to examine the
ability of the models to reproduce observed statistics of drought over North America.
The study found that there were substantial biases in the models’ surface air temperature
and precipitation fields, which needed correction. Even after bias correction, there were
significant differences in the models’ ability to reproduce observations. Nonetheless, the
study found that all the models projected increases in future drought frequency and severity.

Another study evaluated six bias-correction techniques for monthly precipitation
forecasts due to climate change over Costa Rica [48]. The findings demonstrated that
bias adjustment should be taken into account when applying GCM–RCM precipitation
estimates directly across topographically complicated areas like Costa Rica or Mexico.
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The aim of the present study is to statistically downscale precipitation data from
ERA5 [49] and four CMIP6 models in the south and southeast of Mexico by applying a
quantile mapping bias-correction technique. The method, results, discussion, and conclu-
sions are described below.

2. Materials and Methods
2.1. Study Zone

The southern–southeastern region of Mexico (Figure 1) comprises a wide range of
climates, from tropical climates to subtropical marine climates, according to a modified
version of the Köppen classification [50,51]. It is an area affected by tropical cyclones; in the
southern part, these phenomena originate in the Pacific Ocean [52], while in the southeast, it
is affected by events in both the Pacific and Atlantic Oceans [53]. Both areas are influenced
by cold fronts, but the southeastern zone tends to be more exposed to these phenomena
towards the end of the season [54].
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The southeastern region is influenced by various meteorological phenomena, notably
the Intertropical Convergence Zone (ITCZ) and, indirectly, the Caribbean Low-Level Jet
(CLLJ) [55]. Notably, precipitation patterns exhibit distinctive behavior between May and
November, marked by the mid-summer drought (MSD), a phenomenon explored by [56].

Regarding annual precipitation levels, the southeast region, encompassing the Grijalva–
Usumacinta basin, received an average of 2500 to 2880 mm of rainfall for the period
spanning 1960 to 2016 [57]. In contrast, the southern region experienced lower annual
precipitation, averaging approximately 1000 to 1300 mm from 1950 to 2010 [51]. This
distinction underscores the southeast region’s relatively higher moisture content compared
to the southern region [58].

Furthermore, the research of ref. [23] delved into temperature trends in both regions,
revealing remarkable similarities. Any deviations in these trends may be attributed to the
greater altitude gradient present in the southern region compared to the southeast, further
elucidating the complexity of climatic influences in these areas.

The southern–southeastern zone is affected by El Niño-Southern Oscillation (ENSO),
the Atlantic Multidecadal Oscillation (AMO), and the Pacific Decadal Oscillation (PDO),
according to refs. [58,59]. Environmentally, the zone contains significant ecological re-
serves [60]. Its approach to natural resource management and indigenous traditions allows
for sustainable development. However, it is being impacted by major government projects,
such as the Tren Maya and the Isthmus of Tehuantepec Interoceanic Corridor [61].

Socially, the area faces significant disparities and inequalities [62]. Hence, these projects
aim to promote regional development in the southern–southeastern region [63,64]. The
socioeconomic conditions in this area match the characteristics of the SSP4-6 scenario [65].
The authors of that paper conducted a study using the average temperature variable to
determine the CMIP6 scenario. They also conducted a similar exercise using CMIP5.

The southern region of the study area holds significance in the CORDEX-FPS pilot project
titled “North America: Dynamical Downscaling Experiments and Hydrological Modeling for
Canada and Mexico.” This project aims to conduct thorough investigations and hydrological
modeling in Canada and Mexico (For more details, refer to: https://cordex.org/experiment-
guidelines/flagship-pilot-studies/endorsed-cordex-flagship-pilote-studies/north-america-
dynamical-downscaling-experiments-and-hydrological-modelling-for-canada-and-mexico/,
accessed on 21 August 2023).

2.2. Statistical Downscaling

There are different statistical downscaling techniques available, such as perfect prog-
nosis and model output statistics, for example [66]. When dealing with the precipitation
variable, quantile mapping methods are commonly employed [20,22,66,67]. For this study,
we have chosen to perform bias correction using linear quantile mapping, following the
approach of ref. [22]. The correction was applied using the equation proposed by [46]:

F(τ)−1
era5 = a + b × F(τ)−1

modh (1)

where F−1 is the inverse cumulative distribution function (CDF), and τ denotes the per-
centile between 0 and 1. This method assumes a linear relationship between the quantile
functionals of the ERA5 data (era5) and the models in the historical period (modh), where a
and b are the coefficients of the linear fit by the regression of least squares. Subsequently,
the bias correction is applied for a given time t with the following equation:

x(t)era5 = a + b × x(t)modh for x > 0.1mm/dx(t)era5 = 0 for x ≤ 0.1mm/d. (2)

https://cordex.org/experiment-guidelines/flagship-pilot-studies/endorsed-cordex-flagship-pilote-studies/north-america-dynamical-downscaling-experiments-and-hydrological-modelling-for-canada-and-mexico/
https://cordex.org/experiment-guidelines/flagship-pilot-studies/endorsed-cordex-flagship-pilote-studies/north-america-dynamical-downscaling-experiments-and-hydrological-modelling-for-canada-and-mexico/
https://cordex.org/experiment-guidelines/flagship-pilot-studies/endorsed-cordex-flagship-pilote-studies/north-america-dynamical-downscaling-experiments-and-hydrological-modelling-for-canada-and-mexico/
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To measure the performance of the bias correction, we used the root-mean-square
deviation (rmsd), the normalized standard deviation (NSD), the bias in percentage, and the
Pearson correlation coefficient. The rmsd is defined here as

rmsd =
2

√
∑n

t=1[Prera5(t)− Prmodh(t)]
2

n
(3)

where Pr is the precipitation variable, era5 is ERA5 observations, and mod is the model
historical data. The NSD is

NSD = σmodh/σera5 (4)

where σ is the standard deviation for the historical model (modh) and ERA5 (era5). The bias
in percentage is

Bias(%) = 100 •
[(

Prmodh − Prera5
)
/Prera5

]
(5)

where Prmodh is the mean precipitation of the model in the historical period, and Prera5 is
the mean precipitation of ERA5. Finally, the Pearson correlation coefficient is

ρera5,mod = cov(Prera5, Prmodh)/(σera5σmodh) (6)

where cov is the covariance of both Prera5 and Prmodh, and σ is the standard deviation.
To represent the measurements, we used Taylor’s diagram [68] (Taylor, 2001). These

types of diagrams summarize statistical information for evaluating complex models, i.e., cor-
relation, average square-root difference, and the NSD. In this case, we also represented bias.
The simulation models that are well consistent with observations are near the point marked
“REF”; these models have a high correlation and a low rmsd. Models that are close to the
scoring line will have an NSD equal to 1, i.e., a standard deviation equal to or close to the
observed [69].

2.3. Data

In this study, we used the ERA5 database to gather historical daily precipitation data
and conducted a comprehensive comparison of four climate models: CNRM-ESM2-6A,
IPSL-CM6A-LR, MIROC6, and MRI-ESM2-0. The chosen models were in accordance with
the work of ref. [23], and their characteristics are summarized in Table 1.

Table 1. Data used for the precipitation (Pr) of ERA5 and the historical data of four GCMs in the
period 1980–2014 (https://creativecommons.org/licenses /by/4.0/, accessed on 21 August 2023).

Number Data Resolution Reference

1 ERA5 25 km × 25 km [49]
2 CNRM-ESM2-1 250 km × 250 km [70]
3 IPSL-CM6A-LR 250 km × 250 km [71]
4 MIROC6 250 km × 250 km [72]
5 MRI-ESM2-0 100 km × 100 km [73]

To ensure consistency and facilitate analysis, we interpolated the data onto a 0.25◦ × 0.25◦

grid (the same as ERA5). Subsequently, we applied the bias-correction methodology
outlined in Section 2.2 to enhance the reliability of the results.

3. Results
3.1. Linear Adjustment

In our analysis, we conducted linear adjustments to the inverse CDFs for both the
climate models and ERA5 dataset during the historical period 1980–2014. To facilitate
transparency and reproducibility, we have provided the specific parameters (a and b) for
the southern and the southeastern regions in Table 2. These adjustments are essential to

https://creativecommons.org/licenses
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ensure consistency and comparability between the model outputs and the observational
data from ERA5.

Table 2. Parameters a and b of the linear adjustment of quantile mapping [Equation (1)] for the two
regions and four models analyzed in this study.

Number Data a (South) b (South) a (Southeast) b (Southeast)

1 CNRM-ESM2-1 7.743 0.762 10.609 0.281
2 IPSL-CM6A-LR 6.365 0.427 10.896 −0.003
3 MIROC6 15.420 −0.114 9.061 0.236
4 MRI-ESM2-0 12.398 0.195 9.757 0.087

3.2. Bias-Correction Performance

To assess the effectiveness of the bias correction, we employed Equations (3) and (4)
as performance metrics. The rmsd and the NSD values for the southern and southeastern
regions are depicted in Figures 2–5.
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Figure 2. Original (org) and bias-corrected (corr) rmsd for southern (plots on the left) and south-
eastern (plots in the middle) Mexico of the CNRM_ESM2-1 model. In addition, the NSD for both
southern (plot in the top right) and southeastern Mexico (plot in the bottom right) are shown for
the same model.

First, we observed that the degree of improvement through bias correction varied
depending on the model. For instance, with the CNRM-ESM2-1 model (Figure 2), the
rmsd values for the southern region fluctuated between 0 and 23 mm/d, and for the
southeastern region, they ranged from 0 to 14 mm/d. A dispersion of rmsd values was
observed depending on the grid point (Figure 2). That is why the arial average rmsd
was obtained (see Table 3). We will talk about this later. These results indicate a notable
improvement in the performance of the CNRM-ESM2-1 model after applying bias correction
for both regions.

Overall, the bias correction demonstrated significant improvements in the model’s
accuracy, especially for the CNRM-ESM2-1 model, in both the southern and southeast-
ern regions.



Climate 2023, 11, 186 7 of 15

Climate 2023, 11, x FOR PEER REVIEW 6 of 15 
 

 

Table 2. Parameters 𝑎 and 𝑏 of the linear adjustment of quantile mapping [Equation (1)] for the 
two regions and four models analyzed in this study. 

Number Data 𝒂 (South) 𝒃 (South) 𝒂 (Southeast) 𝒃 (Southeast) 
1 CNRM-ESM2-1 7.743 0.762 10.609 0.281 
2 IPSL-CM6A-LR 6.365 0.427 10.896 −0.003 
3 MIROC6 15.420 −0.114 9.061 0.236 
4 MRI-ESM2-0 12.398 0.195 9.757 0.087 

3.2. Bias-Correction Performance 
To assess the effectiveness of the bias correction, we employed Equations (3) and (4) 

as performance metrics. The rmsd and the NSD values for the southern and southeastern 
regions are depicted in Figures 2–5. 

 
Figure 2. Original (org) and bias-corrected (corr) rmsd for southern (plots on the left) and south-
eastern (plots in the middle) Mexico of the CNRM_ESM2-1 model. In addition, the NSD for both 
southern (plot in the top right) and southeastern Mexico (plot in the bottom right) are shown for 
the same model. 

 
Figure 3. The same as in Figure 2 but for the IPSL-CM6A-LR model. Figure 3. The same as in Figure 2 but for the IPSL-CM6A-LR model.

Climate 2023, 11, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 4. The same as in Figure 2 but for the MIROC6 model. 

 
Figure 5. The same as in Figure 2 but for the MRI-ESM2-0 model. 

First, we observed that the degree of improvement through bias correction varied 
depending on the model. For instance, with the CNRM-ESM2-1 model (Figure 2), the rmsd 
values for the southern region fluctuated between 0 and 23 mm/d, and for the southeast-
ern region, they ranged from 0 to 14 mm/d. A dispersion of rmsd values was observed 
depending on the grid point (Figure 2). That is why the arial average rmsd was obtained 
(see Table 3). We will talk about this later. These results indicate a notable improvement 
in the performance of the CNRM-ESM2-1 model after applying bias correction for both 
regions. 

  

Figure 4. The same as in Figure 2 but for the MIROC6 model.

In the analysis of the NSD, interesting patterns emerged for different regions. For the
southern region, we observed a smaller range of dispersion between values compared to
the central and eastern parts, but the western part exhibited a much greater dispersion, with
values exceeding 1. This significant dispersion in the western part can be attributed to its
proximity to surrounding mountain ranges, which likely influenced the climate dynamics.

Focusing on the southeastern region, we found that the Yucatan peninsula showed a
higher dispersion than expected (~1.2), indicating greater variability in its climate. Con-
versely, the state of Chiapas displayed a much lower dispersion in the model than what was
observed (~0.7). It is worth noting that the state of Chiapas experiences notable orographic
changes, contributing to its climate’s substantial variability. In contrast, the relief of the
Yucatan Peninsula and the state of Tabasco remained relatively stable, and thus, their
dispersions are not as significant.
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Table 3. The rmsd and NSD values for the four models and the regions in the study area. Note that
the southeast was divided into Southeast 1 (Tabasco, Chiapas) and Southeast 2 (Yucatan Peninsula).

Data
South
rmsd
Orig

South
rmsd
Corr

South
rmsd

Corr/Orig

Southeast
1 rmsd
Orig

Southeast
1 rmsd
Corr

Southeast
1 rmsd

Corr/Orig

Southeast
2 rmsd
Orig

Southeast
2 rmsd
Corr

Southeast
2 rmsd

Corr/Orig

CNRM-ESM2-1 12.155 6.756 0.556 12.928 9.735 0.753 9.870 8.535 0.865
IPSL-CM6A-LR 12.639 6.322 0.500 10.951 9.934 0.907 10.066 8.704 0.865

MIROC6 12.600 7.126 0.566 12.940 9.323 0.720 9.823 7.782 0.792
MRI-ESM2-0 11.260 6.998 0.621 12.620 9.389 0.744 9.649 8.411 0.872

Moreover, the influence of orographic factors on local precipitation becomes evident.
The orographic component seems to play a role in shaping the patterns observed in the
southern region, as indicated by the IPSL-CM6A-LR model (Figure 3). Similarly, the
CNRM-ESM2-1 model showed a comparable signal of the orographic component for the
southern region.

When examining the IPSL-CM6A-LR model, we found that its rmsd was also higher
for the southern region, ranging from 0 to 22 mm/d, whereas the southeast region exhibited
an rmsd range of 0 to 18 mm/d. Applying bias correction to the model data improved the
rmsd, which highlights the importance of addressing biases in climate modeling.

For Tabasco and Chiapas, the dispersions of the model with respect to the observations
were less than 1 (range 0.4 to 0.8), which suggests a reasonably good fit with the observed
values, while for the Yucatan peninsula, values greater than 1 were observed (range from
0.8 to 1.3).

In the context of the MIROC6 model (Figure 4), the rmsd for the southern region
exhibited a range of 0 to 24 mm/d, while for the southeast region, it ranged from 0 to
14 mm/d. We observed that applying bias correction to the model data resulted in a slight
improvement in rmsd, but significant optimization was not evident.

Regarding the NSD, it is noteworthy that the dispersion of the model was considerably
lower than that of the observations, as indicated by values of NSD well below 1. However,
despite this difference, the orographic pattern was still evident in the representation of the
model in the southern region.

While the southeast region appears distinct, there were variations in the NSD for
different areas: for the Yucatan peninsula, the NSD ranged from 0.7 to 1.3, whereas for
Tabasco and Chiapas, it ranged from 0.4 to 0.8.
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Now, focusing on the MRI-ESM2-0 model (Figure 5), we found that the rmsd for the
southeast region showed improvement, particularly in Tabasco and Chiapas, but not for
the southern region. The behavior of the NSD in this model was similar to MIROC6, except
for the Yucatan peninsula, where its values reached about 1.1.

We have observed that the values of rmsd and NSD not only vary between different
climate models but also depend on the specific region under consideration. In order to
provide a more comprehensive analysis, we divided the southeast region into two sub-
regions: Southeast 1, comprising the states of Tabasco and Chiapas, and Southeast 2, which
included the Yucatan Peninsula. To assess the model performance, we calculated the
average values for both unbiased and bias-corrected data, as shown in Table 3.

Upon analyzing the results, it becomes evident that bias correction improves the
overall signal of the data, particularly for the southern region, followed by the Southeast
1, and the Southeast 2 regions. For the southern region, IPSL-CM6A-LR emerged as the
best-performing model with bias correction, followed by CNRM-ESM2-1 and MIROC6.

On the other hand, for the Southeast 1 region, the best bias-corrected model was
MIROC6, followed by MRI-ESM2-0 and CNRM-ESM2-1, while for the Southeast 2 region,
MIROC6 again was the best model with bias correction, followed by a tie in the performance
between CNRM-ESM2-1 and IPSL-CM6A-LR with bias correction.

However, it is crucial to consider the NSD as well, as it indicates the similarity in
dispersion with the observed data. When combining the NSD with the rmsd, we found that
CNRM-ESM2-1 presented the best overall value for all three regions.

Figure 6 presents the Taylor diagrams for the four models, comparing their perfor-
mance with and without bias correction. It is evident from all three diagrams that bias
correction significantly enhances the performance of the models.

Upon analyzing the Pearson correlation coefficient, we found that the best correlation
was observed in the Southeast 2 region, specifically for the Yucatan Peninsula. However, for
the south and the Southeast 1 regions, encompassing Tabasco and Chiapas, the correlation
was relatively low.

Another important observation is the improvement in the NSD for the south and the
Southeast 2 region after bias correction. However, for the Southeast 1 region, although there
are changes in the NSD values, the improvement is not as evident as in the other regions.

Regarding the bias itself, we note that after bias correction, all the models exhib-
ited positive values, indicating that they tended to be wetter compared to the original
uncorrected data.
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Figure 6. Taylor diagrams comparing the performance of the four models with and without bias
correction. Each model is represented by a number: (1) CNRM-ESM2-6A, (2) IPSL-CM6A-LR,
(3) MIROC6, and (4) MRI-ESM2-0. The diagrams are presented in blue for the case with bias
correction and in red for the case without bias correction. The top diagram relates to the southern
region, the middle one to the Southeast 1 region (Tabasco and Chiapas), and the bottom one to the
Southeast 2 region(Yucatan Peninsula). The dotted semicircles represent the difference between the
rmsd of the model and that of the observations.
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4. Discussion and Conclusions

According to the results, bias correction significantly improved the model performance
for the study area.

Ref. [70] reported, for the same study area, that the CNRM-ESM2-1 model exhibited a
bias of 0.30 mm/day for winter precipitation and 0.28 mm/day for summer precipitation,
with a corresponding root-mean-square error (rmse) of 1.47 and 1.56, respectively, for the
period 1981–2010. In the study area, model errors ranged between 1 and −1 mm/day for
winter and between −2 and −6 mm/day for summer when compared to observations. The
application of bias correction resulted in a considerable improvement in rmse, reducing it
by almost 50% for the south and approximately 15–25% for the southeast. It is worth noting
that the regional error was greater than the worldwide average. CNRM-ESM2-1, being
a second-generation model with increased code complexity, physical parameterization,
and improved mesh resolution, was reported to exhibit a 10% increase in future processes
according to Séférian et al. (2019).

For the IPSL-CM6A-LR model, ref. [71] noted an improvement in simulating precipita-
tion climatology for the south–southeast region of Mexico compared to its CMIP5 version
for the period 1980–2005. However, the model tends to globally overestimate precipitation
by 0.3 mm/day, which corresponds to 10% of the observed value. In the study area, the
NSD was 38% below observations for the south region, 45% below observations for the
Southeast 1 region, and 15% below observations for the Southeast 2 region. IPSL-CM6A-LR
exhibited improved equilibrium climatic sensitivity, and a better simulation of variables
like wind, temperature, and precipitation. Nonetheless, some persisting issues remain,
such as the double Intertropical Convergence Zone and the frequency of blocks in winter at
medium altitudes.

Ref. [72] showed that the MIROC6 model continued to underestimate global precip-
itation in the tropical zone, although it was an improvement compared to MIROC5. In
the study area, MIROC6 underestimated precipitation in winter for both the south and
southeast, while for summer, underestimation was observed only for the south. The NSD
values for the study area showed a 25% underestimation for the south, 37% for Southeast
1, and 13% for Southeast 2. MIROC6’s improvements over its predecessor include a new
parametrization for convection processes and the inclusion of the stratosphere.

Ref. [73] reported that MRI-ESM2-0 exhibited behavior similar to its predecessor but
with an improved correlation of 0.84 compared to 0.79. Globally, MRI-ESM2-0 has a bias of
0.32 mm/day and an rmse of 1.28 mm/day. For the study area, the bias ranged between −1
and −2 mm/day. Like other models, the regional rmse was higher than the global average,
exceeding 10 mm/day in the study area. However, applying bias correction reduced this
error by up to 50% for the southern region and 15–25% for the southeast. Improvements in
MRI-ESM2-0 include a spatial resolution of 100 km, a better redistribution of radiation, and
improvements in the parameterization of nonorographic gravitational waves. Nevertheless,
the model still presented an overestimation of the temperature during the cooling period
from 1950 to 1960.

In summary, the four models showed improvements in the rmsd, of up to 50% for the
southern region and between 15 and 25% for the southeast. However, in the case of the
NSD and its correlation with ERA5, the best model was CNRM-ESM2-0 for the south and
Southeast 1 region. In the Southeast 2 region, this model was last.

Analyzing the diagrams for the southern and the Southeast 1 regions, we observed
that IPSL-CM6A-LR and MIROC6 exhibited a strong positive correlation with low rmsd
compared to the observations. However, they displayed minimal variability in relation to
the observed data. On the other hand, CNRM-ESM2-1 demonstrated a moderate correlation
and rmsd difference, aligning closely with the observed variability. Therefore, CNRM-ESM2-
1 emerges as the preferred model for these two regions in the southern sector.

Conversely, in the case of the Southeast 2 region, CNRM-ESM2-1 exhibited a notably
higher rmsd difference and greater variability compared to the observed data. In contrast,
IPSL-CM6A-LR, MIROC6, and MRI-ESM2-0 displaed a strong positive correlation, minimal
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rmsd difference, and variability patterns that closely resembled the observations. Conse-
quently, these three models emerge as the more suitable choices for modeling the Southeast
2 region.

These results allow us to discriminate between these four models in both the study
regions for the future analysis of projections under climate change. This study offers
updated information on the use of the MGC of the new generation of CMIP6 for the south–
southeast area of Mexico. Finally, it provides a basis for the generation of climate change
scenarios in the area for rainfall.
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