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Abstract: Climate change can have an influence on rainfall that significantly affects the magnitude
frequency of floods and droughts. Therefore, the analysis of the spatiotemporal distribution, vari-
ability, and trends of rainfall over the Mahi Basin in India is an important objective of the present
work. Accordingly, a serial autocorrelation, coefficient of variation, Mann–Kendall (MK) and Sen’s
slope test, innovative trend analysis (ITA), and Pettitt’s test were used in the rainfall analysis. The
outcomes were derived from the monthly precipitation data (1901–2012) of 14 meteorology stations
in the Mahi Basin. The serial autocorrelation results showed that there is no autocorrelation in the
data series. The rainfall statistics denoted that the Mahi Basin receives 94.8% of its rainfall (821 mm)
in the monsoon period (June–September). The normalized accumulated departure from the mean
reveals that the annual and monsoon rainfall of the Mahi Basin were below average from 1901 to 1930
and above average from 1930 to 1990, followed by a period of fluctuating conditions. Annual and
monsoon rainfall variations increase in the lower catchment of the basin. The annual and monsoon
rainfall trend analysis specified a significant declining tendency for four stations and an increasing
tendency for 3 stations, respectively. A significant declining trend in winter rainfall was observed
for 9 stations under review. Likewise, out of 14 stations, 9 stations denote a significant decrease
in pre-monsoon rainfall. Nevertheless, there is no significant increasing or decreasing tendency
in annual, monsoon, and post-monsoon rainfall in the Mahi Basin. The Mann–Kendall test and
innovative trend analysis indicate identical tendencies of annual and seasonal rainfall on the basin
scale. The annual and monsoon rainfall of the basin showed a positive shift in rainfall after 1926. The
rainfall analysis confirms that despite spatiotemporal variations in rainfall, there are no significant
positive or negative trends of annual and monsoon rainfall on the basin scale. It suggests that the
Mahi Basin received average rainfall (867 mm) annually and in the monsoon season (821 mm) from
1901 to 2012, except for a few years of high and low rainfall. Therefore, this study is important for
flood and drought management, agriculture, and water management in the Mahi Basin.

Keywords: innovative trend analysis; Mahi Basin; Mann–Kendall test; normalized accumulated
departure from the mean; pre-monsoon and post-monsoon; seasonal and annual analysis

1. Introduction

A comprehensive analysis of rainfall distribution, variability, and trends has great im-
portance for flood and water scarcity management and designing hydraulic structures [1,2].
According to Chiew and McMahon [3], an examination of precipitation trends is essential
for understanding the probable future trend of rainfall. Several scholars have emphasized
that long-term data analysis is indispensable to forecast the accurate future tendency of
rainfall for the planning and management of water in connection with climate variation and
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increasing population [4–9]. The World Meteorological Organization [10] has highlighted
some important points regarding the good qualities of data for trend analysis, such as
periods, record length, and quality of data. Investigations of rainfall distribution, variabil-
ity, and trends have received the attention of several researchers across the world [11–15].
Moreover, the growth or reduction in the intensity of yearly rainfall, temperature, and
evaporation is one of the most noteworthy effects of global warming [16,17]. Although
globally average rainfall displays a positive trend, at the continental and regional levels,
precipitation indicates rising and declining trends [18]. The regional examination of yearly
rainfall trends over the different regions of Africa denotes an increasing trend of rainfall
significantly [19]. Likewise, Wang et al. [20] described a positive trend (rise) in rainfall
over East Asia in 2008. In contrast, a declining tendency of precipitation in South Asia has
been observed since the 1950s [21]. Liu et al. [22] observed precipitation trends (increases
or decreases) in the Yellow River Basin during 1961–2006. According to Perera et al. [23]
precipitation did not show noteworthy increasing or decreasing tendencies in the monthly
rainfall over Trinidad and Tobago from 1981 to 2017.

According to Thapliyal and Kulshreshtha [24], the average annual rainfall (AAR)
in India did not indicate an increasing or decreasing trend across the country from 1875
to 1989. Nevertheless, Sinha Ray and Srivastava [25] stated that during the southwest
monsoon, some parts of India reported a positive propensity for heavy spells of rainfall
from 1901 to 1990. Sharma et al. [26] identified an increasing tendency in annual rainfall
during 1943–1993 over the Himalayan region. Likewise, Goswami et al. [7] recognized a
remarkably increasing trend of extreme precipitation (magnitude and frequency) in central
India from 1951 to 2000. Recently, Bharatha et al. [27] observed a significant increasing trend
in monsoon rainfall over Shimsha Basin (Southern India) from 1989 to 2018. Singh et al. [28]
noted a greater variability along with decreasing propensity in rainfall over river basins in
central India during the last 100 years (1901–2000). Moreover, they [28] mentioned a decline
of 2% to 19% in the annual rainfall over river basins in India (1901–2000). A comparative
rainfall trend analysis study revealed that rainfall over the Ganga Basin between 1871
and 1994 was stable compared to the Brahmaputra and Meghna Basin [29]. According to
research by Kumar and Jain [30], out of the 22, 15 basins in India showed a decreasing
tendency for rainy days and yearly precipitation from 1951 to 2004. Recent past studies
on the rainfall (annual and monsoon) over the Narmada Basin reported declining trends
in the average annual rainfall (AAR) from 1901 to 2002 [31]. Likewise, Sharma et al. [32]
described a decreasing tendency in the annual rainfall (total) from 1944 to 2013 over the
upper Tapi Basin.

Trend analysis is the best technique to recognize future fluctuations in hydrometeoro-
logical elements for risk management, flood and drought monitoring, and water resource
planning, design, and management [33,34]. Numerous investigators in the world and India
have reported either positive or negative tendencies in hydrological and meteorological
elements using the widely accepted techniques of trend analysis such as Mann–Kendall
(MK), Sen’s slope (SS), and innovative trend analysis (ITA) [35–48]. However, the major
disadvantage of the MK test is that it is not appropriate for time-series data in which auto-
correlation or periodicities exist. In spite of this disadvantage, the MK test is widely applied
in hydrometeorological trend analysis because it does not rely on the length of the time-
series data and does not require data to follow a normal distribution [49]. An investigation
of spatiotemporal rainfall tendencies has an importance for flood and drought management
to check crop failures in India [50]. Moreover, India’s socioeconomic prominence and
economy are ultimately based on agriculture [51]. Numerous scholars have observed the
precipitation trend, pattern, and distribution of rainfall either using rain gauge stations
or satellite-gridded datasets in India [48,52–54]. According to Patakamuri et al. [55] and
Singh et al. [56], investigations of rainfall variability and rainfall distribution have great
importance for agriculture mainly in rain-fed regions in India. Fluctuations in climatic
extremes produce flood and drought events that affect agriculture, food, and water [48,57].
However, the effect of extreme events differs in space and time throughout the world [58].
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The Mahi River is the lifeline of the northwestern part of India because it is the major
source of water (surface water and groundwater) for agriculture, industry, and human life.
Moreover, it is known for flash floods due to heavy rainfall resulting from low-pressure
systems (LPSs). A few studies on rainfall patterns, variability and trends in the Mahi
Basin have been conducted in the past [59,60]. However, none of these studies were based
on long-term rainfall data. Therefore, an attempt was made to study rainfall variability,
distribution, trends, and change detection in the rainfall of the Mahi Basin using long-term
(1901–2012) rainfall data.

2. Materials and Methods
2.1. Study Area

The Mahi River is the third-largest interstate west-flowing river of peninsular India
that flows in western India (Figure 1). It originates near the Minda village (Sardarpur) in the
Dhar district of Madhya Pradesh at an altitude of 500 m ASL. Its total length is 583 km and
meets the Gulf of Khambhat in Gujarat. The Mahi Basin extends between 22◦30′ and 24◦20′

N latitudes and 73◦00′ and 74◦20′ E longitudes. The basin covers the areas of Madhya
Pradesh, Rajasthan, and Gujarat, with a drainage basin area of 34,842 km2 (Figure 1).

Figure 1. Mahi Basin location and study area map.

2.2. Data Used

The long-term monthly rainfall data (1901–2012) of 14 rain gauge stations in the Mahi
Basin, namely, Badnawar, Banswara, Borsad, Devgadh Baria, Godhra, Jhalod, Khairwara,
Kushalgarh, Lunawada, Padra, Ratlam, Sagwara, Salumber, and Sardarpur, were used for
the analysis of the rainfall distribution, variability, and trends over the basin (Figure 1).
Monthly precipitation records were acquired from the India Meteorological Department
(IMD). Moreover, digital elevation model (DEM) data were acquired from the United
State Geological Survey (USGS) website (https://earthexplorer.usgs.gov), accessed on
20 August 2019.

https://earthexplorer.usgs.gov
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2.3. Methodology

The fundamental objective of this study is to comprehend the precipitation distribution,
erraticism, and trends in the Mahi Basin on an annual and seasonal scale. Therefore, the
long-term rainfall data were categorized into four periods: (i) Monsoon (June-September),
(ii) Post-monsoon (October to November), (iii) Winter monsoon (December to February),
and (iv) Pre-monsoon (March to May). First, PAST version 4.03 software was used to check
the serial autocorrelation in the rainfall time series. The classified data were computed
by applying basic quantitative methods (mean, standard deviation (σ), and coefficient of
variation (Cv)). Further, the precipitation inconsistency over the Mahi Basin was char-
acterized by a normalized accumulated departure from the mean (NADM) and rainfall
departure from the mean (%). The inverse distance weighted (IDW) technique was used
for the interpolation of point rainfall values to show a spatial distribution. In addition,
digital elevation model (DEM) data were used to show the elevation variation in the basin,
to generate the Mahi Basin, Mahi River, and its tributaries. The rainfall trend analysis
methodology is as follows.

2.3.1. Coefficient of Variation (CV)

An analysis of the rainfall variation in the Mahi Basin was calculated by Equation (1):

CV =
σ

X
× 100 (1)

where σ and X are the standard deviation and mean rainfall for the annual and seasonal
scales.

2.3.2. Mann–Kendall (MK) Test

The Mann–Kendall test was used to identify the significant rainfall trends over the
Mahi Basin [61,62]:

S =
n−1

∑
k=1

n

∑
j=k+1

sgn
(
Xj − Xk

)
(2)

where Xj and Xk are the data points for rainfall, n is the length of data j and k (k > j),
respectively, and sgn (Xk − Xj) is the sign function as follows:

sgn
(
αj − αi

)
=


+1, if

(
Xj − Xk

)
> 0

0, if
(
Xj − Xk

)
= 0

−1, if
(
Xj − Xk

)
< 0

(3)

S approximates a normal distribution with a mean of 0 when n is equal to 10. The
variance can be found as given in Equation (4):

VAR(S) =
1

18
[n(n− 1)(2n + 5)− Σt t(t− 1)(2t + 5)] (4)

where t and Σt are the extent of any given tie indicates and the summation of all ties. The
value of Zc is computed using Equation (5):

Z =


S− 1

VAR(S)1/2
, S > 0

0, S = 0
(S + 1)

VAR(S)1/2
, S < 0

(5)

where Z is the standard normal variate; an increasing (or decreasing) trend can be identified
based on the positive (negative) values of Z. A noteworthy trend is observed, and the null
hypothesis is rejected when |Z| > Z1 − α/2. All the outcomes were confirmed at α = 0.05
(Z = ±1.96) and α = 0.10 (Z = ±1.66) significance level.
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2.3.3. Sen’s Slope (SS)

The Sen’s slope method [63] was applied to study the magnitude of rainfall change by
using the following equations:

Qi =
Yj − Yk

j− k
, i = 1, 2, . . . . . . .N (6)

where Yj and Yk are values in a series at time j and k (j > k), respectively. Qi is Sen’s
estimator of slope. If there is a single datum in each time period, then N = n[n − 1]/2,
where n is the number of time periods. However, if the number of values in every year
are many, then N < n[n − 1]/2, where n is total number of observations. First, N values
were ordered from the minimum to maximum. Then, the median of slope (β) is calculated
as follows:

β =


Qn + 1

2
if N is odd

1
2

(
Qn
2

+
Qn + 2

2

)
if N is even

(7)

2.3.4. Innovative Trend Analysis (ITA) Method

The innovative trend analysis (ITA) method was developed by Şen [64,65] to look
at trends in streamflow, temperature, and rainfall. The primary step in ITA is to divide
the long-term data into two equal halves, with each half-series’ data being arranged
independently in ascending order. An ordinate (X-axis) and an abscissa (Y-axis) are used to
plot this subset of data. The diagram in Figure 2 is divided into two equal triangles by the
1:1 (45◦) line of no trend. The inclining and declining tendency of the data is depicted in an
area above and below the 1:1 line [65]. When all the data points in the scattergram are on
or near the 1:1 line, no discernible trend in the time series can be seen.

Figure 2. Illustration of the ITA method, Red arrow indicates line of ‘No Trend’.

2.3.5. Pettitt’s Test

The Pettitt’s test (nonparametric test) developed by [66] Pettitt (1979) is useful for
change detection. The null hypothesis denotes no change in the time series, whereas
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the alternative shows a change point exists in the data series. In order to reject the null
hypothesis, the test statistic should be larger than the critical value.

Xk = 2∑k
i=1 ri − k(n + 1), k = 1, 2, . . . . . . n (8)

If a break occurs in the time series, then the value of Xk reaches the maximum or
minimum near the break year k, which is defined as follows:

XK =
max

1 ≤ k ≤ n
|Xk| (9)

3. Results and Discussion
3.1. Serial Autocorrelation Analysis

Serial correlation in a hydrometeorological data series can have effect on trend and
change-point detection tests [67]. According to numerous studies, the presence of a positive
serial correlation in time-series data increases the Type I error in the MK test, and it will
lead to an over-rejection of the null hypothesis of no trend [68–70]. According to Yue and
Wang [1], the presence of serial correlation in hydrometeorological data will affect the
results of the MK test. Therefore, to obtain precise outcomes of the trends of rainfall in
the Mahi Basin, serial autocorrelation was checked, and the results were represented by
correlograms at various time lags for the annual and seasonal rainfall (Figure 3). For various
time lags, all correlograms demonstrated that the rainfall values (annual and seasonal)
were within the 95% confidence limit (upper and lower). This demonstrates that the time-
series data do not exhibit serial autocorrelation. Independence within hydrometeorological
time-series data is an important postulation of trend detection tests such as the MK test [67].
Due to the nonexistence of serial autocorrelation, the time-series data were directly used for
fundamental statistical analyses, the MK test, and Pettitt’s test of change-point detection
for the analysis of rainfall on the annual and seasonal scale in the Mahi Basin. Serinaldi
and Kilsby [71] mentioned the significance of the existence and nonexistence of sequential
association in hydrometeorological data in the MK and Pettitt’s test.

3.2. Rainfall Characteristics of the Mahi Basin

The Mahi Basin receives monsoon rainfall from mid-June with the inception of the
southwest monsoon. Figure 4 shows the interannual fluctuations in annual rainfall from
1901 to 2012 with some years (1927, 1959, 1973, 1976, and 2006) of high rainfall linked with a
low-pressure system (LPS) [57]. Almost 95% of the rainfall (821 mm) occurs in the monsoon
months (Table 1). The monthly rainfall distribution in the Mahi Basin significantly varies
in time and space (Figures 5 and 6). July was the wettest (288.7 mm) month across the
basin, which accounted for 33.3% of the AAR. About 64.1% of the rainfall in the Mahi Basin
occurred in July (33.3%) and August (30.8%) (Table 1). The post-monsoon rainfall (30.3 mm)
was more than the winter (6.1 mm) and pre-monsoon rainfall (9.0 mm) in the basin. Table 1
indicates that the mean monthly rainfall (MMR) variation ranged between 56.1% (February)
and 14.2% (July) in the Mahi Basin.

Table 1. Rainfall statistics summary of the Mahi Basin (1901–2012).

Time Rainfall
(mm)

SD
(mm)

Cv
(%)

Contribution to
Annual Rainfall (%)

January 2.4 1.2 51.3 0.3
February 1.4 0.8 56.1 0.2

March 1.6 0.7 41.1 0.2
April 1.1 0.4 38.0 0.1
May 5.9 2.2 37.5 0.7
June 111.7 21.2 19.0 12.9
July 288.7 40.9 14.2 33.3
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Table 1. Cont.

Time Rainfall
(mm)

SD
(mm)

Cv
(%)

Contribution to
Annual Rainfall (%)

August 267.4 38.1 14.3 30.8
September 150.6 24.9 16.6 17.4

October 21.7 6.4 29.3 2.5
November 8.9 2.3 25.3 1.0
December 2.3 1.0 43.3 0.3
Monsoon 821.0 220.4 26.8 94.8

Post-monsoon 30.3 36.2 119.6 3.5
Winter 6.1 7.8 127.2 0.7

Pre-monsoon 9.0 12.6 142.1 1.0
Annual 867.0 221.4 25.5

Figure 3. Correlogram for rainfall of the Mahi Basin: (a) For Annual; (b) For Monsoon Season; (c) For
Post-monsoon Season; (d) For Winter Season; (e) For Pre-monsoon Season.
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Figure 4. Annual rainfall of the Mahi Basin from 1901 to 2012.

3.3. Rainfall Distribution (Annual and Seasonal) over the Mahi Basin

Large oscillations with epochal behavior in the rainfall over the monsoonal regions
of the world are the most prominent feature [72]. According to Pawar and Hire [59], low-
pressure systems (LPSs) significantly affect the AAR as well as average monsoon rainfall
(AMR) of the basin and are a major cause of inundations in the Mahi Basin. Therefore, it is
essential to understand the rainfall distribution (annual and seasonal) in the basin (Table 2).
The AAR varied between 649 mm (Khairwara) and 1012.8 mm (Banswara), and the AMR
ranged between 610.7 mm (Khairwara) and 959.6 mm (Banswara) (Table 2). During the
post-monsoon season, Sardarpur received the highest (43.4 mm) rainfall in the basin. All the
rain gauge stations received more than 93% of their rainfall in the monsoon season (Table 2).
Therefore, it shows that the hydrometeorological features of the basin are considerably
associated with monsoon rainfall. Figures 5 and 6 indicate that all the rainfall stations
receive the maximum rainfall during the monsoon season (June to September), and rainfall
in the non-monsoon season is very negligible.

Table 2. Average annual and seasonal rainfall distribution in the Mahi Basin.

Stations/Basin AAR Monsoon Post-
Monsoon Winter Pre-

Monsoon Monsoon Non-
Monsoon

(mm) (mm) (mm) (mm) (mm) % %

Badnawar 878.0 829.1 39.2 5.0 4.7 94.4 5.6
Banswara 1012.8 959.6 35.2 9.1 8.9 94.7 5.3

Borsad 823.9 791.8 23.6 2.9 5.6 96.1 3.9
Devgadh Baria 959.0 919.5 28.2 3.7 7.5 95.9 4.1

Godhra 956.8 914.9 28.4 4.2 9.3 95.6 4.4
Jhalod 813.8 767.6 31.8 6.4 8.0 94.3 5.7

Khairwara 649.0 610.7 20.3 5.2 12.9 94.1 5.9
Kushalgarh 1010.9 953.0 38.1 7.6 12.2 94.3 5.7
Lunawada 769.8 735.4 22.7 3.9 7.9 95.5 4.5

Padra 906.5 869.2 30.4 4.1 2.8 95.8 4.2
Ratlam 943.4 879.2 39.9 12.2 12.1 93.2 6.8

Sagwara 759.8 720.3 25.4 5.8 8.3 94.8 5.2
Salumber 691.3 652.2 22.8 6.4 10.0 94.3 5.7
Sardarpur 904.4 842.7 43.4 7.8 10.5 93.2 6.8
Mahi Basin 867.0 821.0 30.3 6.1 9.0 94.8 5.2

Note: Bold values in the table show the highest AAR and seasonal rainfall.
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Figure 5. Station wise mean monthly rainfall distribution.
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Figure 6. Spatial distribution of the mean monthly rainfall of the Mahi Basin: (a) For January; (b) For
February; (c) For March; (d) For April; (e) For May; (f) For June; (g) For July; (h) For August; (i) For
September; (j) For October; (k) For November; (l) For December.

Figure 7 shows that AAR and AMR decrease from the east and southeast part of the
Mahi Basin toward the northwestern and western catchment of the basin. The central
and eastern part of the Mahi Basin receives the maximum AAR and AMR (>900 mm),
specifically, at Banswara, Devgadh Baria, Godhra, Kushalgarh, and Ratlam (Figure 7a,b).
The western catchment area of the basin receives less precipitation in the post-monsoon
period due to the early withdrawal of the monsoon (Figure 7c). The northern and north-
western catchment of the Mahi Basin receives the maximum precipitation in the winter
and pre-monsoon months due to the effect of western disturbances (Figure 7d,e). Dimri
and Mohanty [73] noted the features of the western disturbances (WDs) over the western
Himalayas in 2009.
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Figure 7. Average rainfall distribution in the Mahi Basin: (a) For Annual; (b) For Monsoon; (c) For
Post-monsoon; (d) For Winter; (e) For Pre-monsoon.

3.4. NADM and Rainfall Departure from the Mean

The rainfall disparity on the annual and seasonal scales is one of the characteristics of
the monsoon [74]. The long-term variation in monsoon rainfall is very well understood
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by the NADM. It is one of the most effective and frequently applied quantitative methods
and can resolve successive properties contained by long-term data [75–78]. Normally,
monsoon rainfall shows an epochal nature, alternating between 30 years of dry and wet
monsoons [79]. According to Joseph [80,81], tropical disturbances originate above the Bay
of Bengal and move in the direction of west and northwest and have a significant impact on
the epochal behavior of the monsoon. The NADM graph of the Mahi Basin shows a period
of below-average rainfall from 1901 to 1930 and above-average rainfall between 1930 and
1990, followed by a period of fluctuating conditions of the annual and monsoon rainfall
(Figure 8a,b). Kripalani et al. [82] also detected random oscillations in annual rainfall and
the epochal behavior of above-average and below-average rainfall for decadal rainfall. The
maximum positive departure from the mean in the annual and monsoon rainfall represents
wet years associated with major floods in the Mahi Basin, such as 1927, 1952, 1959, 1973,
1976, and 2006 [59]. The percent departure from mean rainfall shows a remarkable negative
departure from the AAR and AMR during 1901–1930 (Figure 8a,b). The maximum positive
departure in annual and monsoon rainfall was associated with LPSs and floods in the
basin [59]. Post-monsoon rainfall showed the maximum years of the negative departure
of rainfall with notable phases of dry periods (Figure 8c). The winter rainfall shows some
remarkable years of the maximum positive departure from the mean rainfall (Figure 8d).
Further, Figure 8e shows that pre-monsoon rainfall was recurrently below the long-term
average of the pre-monsoon rainfall of the basin.

Figure 8. NADM and rainfall departure from the mean rainfall of the Mahi Basin: (a) For Annual;
(b) For Monsoon; (c) For Post-monsoon; (d) For Winter; (e) For Pre-monsoon.
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3.5. Rainfall Varaiation over the Mahi Basin

The AAR and AMR of the Mahi Basin did not show significant variations in rainfall
(Figure 9a,b). However, rainfall variations are remarkable in the non-monsoon season
(Figure 9c–e). The annual and seasonal variations increase from the eastern Mahi Basin
toward the west (Figure 9a–e). The highest variations in the AAR and AMR were observed
for the Padra station (Figure 9a,b). The lowest variability in the AAR and AMR was reported
for the Badnawar station (Figure 9a,b). Figure 9c indicates the average post-monsoon
rainfall (APMR) variability ranges between 110% (Sardarpur) and 210% (Borsad). Moreover,
the AWR variability ranges between 125% and 350% (Figure 9d). The highest average
pre-monsoon rainfall variability (313%) was noticed for the Padra station (Figure 9e). The
winter and pre-monsoon rainfall show higher variability in the Mahi Basin (Figure 9d,e).
The interannual and interseasonal dissimilarity in rainfall is a significant characteristic of
the southwest monsoon [83]. Jhajharia et al. [84] reported a greater variability in rainy
days during the non-monsoon season than the monsoon. Guhathakurta and Saji [85] also
emphasized that the examination of rainfall variability has great significance for better
water resource planning, as well as flood and drought disaster management.

Figure 9. Cont.
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Figure 9. Rainfall variations in the Mahi Basin: (a) For Annual; (b) For Monsoon; (c) For Post-
monsoon; (d) For Winter; (e) For Pre-monsoon.

3.6. Rainfall Trend and Magnitude Change in the Mahi Basin

A significant increasing trend of annual rainfall was noted for the Banswara, Ratlam,
and Sagwara stations, whereas the Devgadh Baria, Godhra, Khairwara, and Padra stations
denoted a significant decreasing rainfall trend on the annual scale (Table 3; Figure 10a).
The Godhra station showed a substantial decrease in monsoon rainfall from 1901 to 2012
(1.89 mm/y). Conversely, Ratlam and Sagwara denoted a noteworthy increasing tendency
(1.5 mm/y) in monsoon rain from 1901 to 2012 (Table 3; Figure 10b). The post-monsoon
rainfall does not exhibit a statistically important decreasing or increasing trend in the
Mahi Basin (Table 3; Figure 10c). A noteworthy declining trend of winter precipitation
was detected for nine stations, excepting Badnawar, Kushalgarh, Padra, Salumber, and
Sardarpur (Table 3; Figure 10d). A significant decrease in pre-monsoon rain was identified
for the Badnawar, Borsad, Devgadh Baria, Godhra, Jhalod, Khairwara, Lunawada, Padra,
and Sardarpur stations (Table 3; Figure 10e). On the basin scale, a substantial declining
tendency was observed for the winter (0.02 mm/y) and pre-monsoon rainfall (0.04 mm/y)
during 1901–2012 (Table 3). The annual and monsoon rainfall neither displayed a major
increasing nor decreasing tendency on the basin scale. Likewise, Kumar and Jain [30]
mentioned that out of 22 river basins in India under investigation, only 2 basins showed
noteworthy trends, and the rest of the basins neither indicated an increase nor decrease in
annual and seasonal rainfall significantly. Nevertheless, Mooley and Parthasarathy [76] and
Thapliyal and Kulshreshtha [24] notified that there is no remarkable positive or negative
trend in mean annual rain over India. Therefore, it is concluded that the rainfall trend
(increasing or decreasing) was observed in certain pockets of India in the non-monsoon
period [25]. This declining trend in seasonal rainfall could be decreasing the frequency of
WDs over the northwestern part of India [86]. Moreover, Shekhar et al. [87] observed a
decrease in winter rainfall in the Western Himalayan Region (WHR).

Furthermore, the rainfall trend over the Mahi Basin was denoted by ITA graphs
(Figure 11a–e). The ITA plots for the annual, monsoon, and post-monsoon rainfall rep-
resent that almost all the data points are either on the 1:1 line (no trend) or fall between
the 10% upper and lower limits (Figure 11a–c). The ITA graphs obtained for winter and
pre-monsoon rainfall show that all the data points are below the 10% lower limit (11d–e).
Therefore, it is specified that winter and pre-monsoon rain in the Mahi Basin have signif-
icantly declined in the last 112 years. On the basin scale, the comparative rainfall trend
analyses of the MK and ITA indicated insignificant increasing or decreasing trends in the
annual and monsoon rainfall.
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Figure 10. Rainfall trends in the Mahi Basin: (a) For Annual; (b) For Monsoon; (c) For Post-monsoon;
(d) For Winter; (e) For Pre-monsoon.



Climate 2023, 11, 163 16 of 22

Table 3. Summary of the rainfall trend analysis (Mann–Kendall and Sen’s slope).

SN Stations

Annual Monsoon Post-Monsoon Winter Pre-Monsoon

MK
z

SS
mm/y

MK
z

SS
mm/y

MK
z

SS
mm/y

MK
z

SS
mm/y

MK
z

SS
mm/y

1 Badnawar 1.24 1.52 1.11 1.50 −0.54 0.00 −0.83 0.00 −2.74 0.00

2 Banswara 1.68 1.77 1.34 1.6 0.61 0.00 −2.10 0.00 −1.54 0.00

3 Borsad −0.45 −0.67 −0.68 −0.58 −0.86 0.00 −3.59 0.00 −3.60 0.00

4 D. Baria −1.65 −1.63 −1.22 −1.37 −0.41 0.00 −4.22 0.00 −4.65 0.00

5 Godhra −1.71 −1.92 −1.71 −1.89 0.49 0.09 −4.46 0.00 −3.43 0.00

6 Jhalod −0.47 −0.33 −0.13 −0.13 −0.45 0.00 −4.45 0.00 −4.94 0.00

7 Khairwara −1.78 −1.25 −1.37 −1.07 −0.07 0.00 −4.17 0.00 −2.30 0.00

8 Kushalgarh 0.5 55 0.27 0.33 1.39 0.14 −1.01 0.00 −0.18 0.00

9 Lunawada 0.45 0.38 0.33 0.28 1.09 0.04 −2.97 0.00 −2.78 0.00

10 Padra −1.88 −6.11 −1.64 −5.04 −1.13 −0.25 −0.58 0.00 −1.99 0.00

11 Ratlam 1.88 1.83 1.86 1.56 1.31 0.01 −2.34 −0.01 −1.61 −0.05

12 Sagwara 1.75 1.41 1.68 1.50 0.10 0.00 −1.72 0.0 −1.49 0.00

13 Salumber 0.53 0.36 0.94 1.16 −0.08 0.27 0.54 0.03 0.20 0.00

14 Sardarpur 0.06 0.07 0.20 0.25 −0.26 0.00 −1.25 0.00 −1.93 0.00

15 Mahi Basin −0.23 −0.14 0.02 0.01 0.90 0.03 −2.44 −0.02 −2.48 −0.04

Bold values are statistically significant at 0.05%, and bold and italic values are statistically significant at 0.10%.

However, there are some critics of the usage of the ITA method for determining
climatic trends [88]. The research presented here is not built on the ITA method but on the
often-used MK test. Understanding these critics of the ITA method, the results from the
MK test and Sen’s slope estimator test were compared against the ITA method.

3.7. Analysis of Change-Point Detection Tests of Rainfall

Pettitt’s test of change-point detection was used to identify the existence of changes
in the annual and seasonal rainfall series from 1901 to 2012 (Table 4). The analysis of
change-point detection showed that all stations in the Mahi Basin under investigation
denoted similar years of shift in annual and monsoon rainfall except Sagwara (Table 4).
It strongly suggested that changes (increasing or decreasing) in the monsoon rainfall are
eventually reflected in the annual rainfall. Therefore, it is specified that the Mahi Basin is
influenced by monsoon rainfall. There are notable variations in years of post-monsoon,
winter, and pre-monsoon rainfall from 1901–2012 (Table 4). In addition, annual and seasonal
rainfall shifts on the basin scale are represented in Figure 12a–e. On the basin scale, an
annual and monsoon rainfall shift was noted after 1926 (Figure 12a,b). According to Pawar
et al. [57,59], the shift in the annual and monsoon rainfall of the basin might be influenced
by low-pressure systems that affect the rainfall of the Mahi Basin [57,59]. In the case of
the post-monsoon season, a shift in rainfall pattern was observed after 1953 (Figure 12c).
Nevertheless, the winter and pre-monsoon seasons denoted shifts in rainfall after 1982 and
1933, respectively (Figure 12d,e).
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Figure 11. Rainfall trends by ITA over the Mahi Basin: (a) For Annual; (b) For Monsoon; (c) For
Post-monsoon; (d) For Winter; (e) For Pre-monsoon.
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Figure 12. Rainfall change-point detection using Pettitt’s test for rainfall in the Mahi Basin: (a) For
Annual; (b) For Monsoon; (c) For Post-monsoon; (d) For Winter; (e) For Pre-monsoon.

Table 4. Summary of the rainfall change-point detection using Pettitt’s test.

Stations/Basin

Annual
Rainfall

Monsoon
Rainfall

Post-Monsoon
Rainfall

Winter
Rainfall

Pre-Monsoon
Rainfall

Shift Year Shift Year Shift Year Shift Year Shift Year

Badnawar Yes 1957 Yes 1957 Yes 1953 Yes 1957 Yes 1938

Banswara Yes 1940 Yes 1940 Yes 1972 Yes 1982 Yes 1943

Borsad Yes 1959 Yes 1959 Yes 1985 Yes 1948 Yes 1959

D. Baria Yes 1962 Yes 1962 Yes 1963 Yes 1955 Yes 1947

Godhra Yes 1959 Yes 1959 Yes 1926 Yes 1942 Yes 1957

Jhalod Yes 1984 Yes 1984 Yes 1988 Yes 1968 Yes 1967

Khairwara Yes 1963 Yes 1963 Yes 1973 Yes 1948 Yes 1933

Kushalgarh Yes 1926 Yes 1926 Yes 1953 Yes 1997 Yes 1916
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Table 4. Cont.

Stations/Basin

Annual
Rainfall

Monsoon
Rainfall

Post-Monsoon
Rainfall

Winter
Rainfall

Pre-Monsoon
Rainfall

Shift Year Shift Year Shift Year Shift Year Shift Year

Lunawada Yes 1940 Yes 1940 Yes 1953 Yes 1944 Yes 1947

Padra Yes 1929 Yes 1929 Yes 1931 Yes 1943 Yes 1928

Ratlam Yes 1932 Yes 1932 Yes 1954 Yes 1967 Yes 1962

Sagwara Yes 1964 Yes 1978 Yes 1964 Yes 1974 Yes 1936

Salumber Yes 1946 Yes 1946 Yes 1917 Yes 1922 Yes 1918

Sardarpur Yes 1978 Yes 1978 Yes 1903 Yes 1963 Yes 1962

Mahi Basin Yes 1926 Yes 1926 Yes 1953 Yes 1982 Yes 1933

4. Conclusions

Spatiotemporal rainfall analysis showed that the central Mahi Basin receives the
maximum rainfall (>900 mm) compared to other parts of the basin. Moreover, winter and
pre-monsoon rain spells were observed in the northern and northwestern catchments of
the basin. However, the seasonal rain of the basin varied between 26.8% (monsoon) and
142.1% (pre-monsoon). The NADM showed a period of below-average rainfall from 1901 to
1930 and above-average rainfall between 1930 and 1990, followed by a period of fluctuating
conditions. The high rainfall variability was observed throughout the post-monsoon, winter,
and pre-monsoon seasons. The rainfall trend analysis revealed that annual, monsoon, and
post-monsoon rainfall do not show statistically significant decreasing or increasing trends
on the basin scale. Nevertheless, a statistically significant declining trend was observed
for winter and pre-monsoon rainfall in the Mahi Basin. A noteworthy reduction in annual
and monsoon rainfall was observed for Godhra, while Ratlam and Sagwara showed a
remarkable rise (1.5 mm/yr.) in monsoon and annual rain (1.83 mm/yr. and 1.49 mm/yr.)
from 1901 to 2012. Likewise, 9 stations out of 14 showed a significant decline in winter and
pre-monsoon rainfall. The MK test and ITA analyses show that annual, seasonal, and post-
monsoon rainfall did not exhibit a substantial rise or fall on the basin scale. A change-point
detection showed that after 1926, annual and monsoon rainfall in the Mahi basin shifted
(increased). However, there is no significant increase in the annual and monsoon rainfall of
the basin. Therefore, it is concluded that rainfall in the Mahi Basin is steady.
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