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Abstract: This manuscript introduces an exploratory case study of the SIMFAC’s (Sistema de Infor-
mación Meteorológica de la Fuerza Aérea Colombiana) operational implementation of the Weather
Research and Forecasting (WRF) model with a 3DVAR (three-dimensional variational) data assimila-
tion scheme that provides meteorological information for military, public, and private aviation. In
particular, it investigates whether the assimilation scheme in SIMFAC’s implementation improves
the prediction of the variables of interest compared to the implementation without data assimilation
(CTRL). Consequently, this study compares SIMFAC’S 3DVAR-WRF operational implementation in
Colombia with a CTRL with the same parameterization (without 3DVAR assimilation) against the
ground and satellite observations in two operational forecast windows. The simulations are as long
as an operational run, and the evaluation is performed using the root mean square error, the mean
fractional bias, the percent bias, the correlation factor, and metrics based on contingency tables. It
also evaluates the model’s results according to the regions of Colombia, accounting for the country’s
topographical differences. The findings reveal that, in general, the operational forecast (3DVAR) is
similar to the CTRL without data assimilation, indicating the need for further improvement of the
3DVAR-WRF implementation.

Keywords: operational forecast; data assimilation; WRF model

1. Introduction

Colombia is located in the northwestern part of South America. This geographical
location results in a topography influenced by the Andes mountain range, creating unique
meteorological conditions that favor the occurrence of precipitation events [1–3]. The
Colombian Air Force (FAC, Spanish acronym) understands the importance of forecasting
meteorological conditions for the strategic planning and development of aircraft operations
and has created the Sistema de Información Meteorológica de la Fuerza Aérea Colombiana
(SIMFAC), a system to provide applied meteorological products, including aeronautical
meteorology, synoptic meteorology, mesoscale processes, aeronautical climatology, cloud
physics, numerical weather prediction, remote sensing, and meteorological surveillance, to
the public forces (army, navy, FAC, and police), as well as the civil aviation sector.

One of the tools used by SIMFAC to provide meteorological products is the Weather
Research and Forecasting (WRF) model, which is a mesoscale model widely used in
numerical weather prediction (NWP) [4]. Various studies have been conducted in Colombia
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to explore the capabilities of this model. For instance, WRF downscaling was employed
to analyze the complex region of the Cauca River [5]. Another study focused on the
ability of the WRF model to replicate meteorological conditions in several cities throughout
Colombia [6]. Furthermore, investigations were carried out using subkilometer horizontal
resolution in the Aburrá Valley [7], which demonstrated an improved performance in
terms of the surface temperature and wind direction but also revealed the challenge of
overestimating the wind speed at such resolutions. Furthermore, sensitivity analyses were
conducted on the model’s planetary boundary layer (PBL) [8] and initial conditions [9],
highlighting their impact on model outcomes. Notably, identifying the low-level jet, an
atmospheric phenomenon associated with hazardous wind and consequently with aircraft,
has also been documented [1].

Although the WRF is used to predict meteorological events, it is fundamental to
recognize the inherent constraints and uncertainties associated with its output. Factors
that contribute to these constraints, as discussed in [10,11], include the complex terrain
characteristics, the horizontal resolution [12], the specification of the initial and boundary
conditions (IC/BC) [13], the physical parameterizations [13–15], the representation of
the topographic characteristics in the input data [14], or even that the mathematics are a
simplification of reality, as highlighted in [16–18].

The preceding discussion emphasizes the weakness and potential of the WRF model
and the need for its evaluation. One promising approach to enhance the performance of
the model in regional settings, particularly in the complex tropical Andes region (TAR),
by using data assimilation (DA) [19]. DA is a mathematical/statistical technique integrat-
ing the available information from various sources with a mathematical model [20,21].
Therefore, DA can potentially improve forecasts by reducing the accumulated errors [22].
Various DA techniques have been used within the framework of the WRF model. These
include three-dimensional variational data assimilation (3DVAR) [23,24], four-dimensional
variational data assimilation (4DVAR) [25–27], ensemble methods [28,29], and the ensemble
transform Kalman filter–3DVAR (ETKF–3DVAR) system [30]. The operational imple-
mentation of the WRF in SIMFAC utilizes the 3DVAR method and assimilates METAR
(Aviation Routine Weather Report), radio soundings, SYNOP, RADAR, and GOES-16.

The 3DVAR aims to improve the model’s initial conditions through observation [31]
and reduce the errors propagating through time. Several studies have shown that the
3DVAR in the WRF improves the associated errors in the output. So, for example, ref. [32]
used it in Polar WRF to predict the wind speed, temperature, and radiation, and ref. [33]
showed that assimilating dropsonde and satellite data improved the forecast. However, if
the uncertainty in the model output holds, it is necessary to assess the NWP implementa-
tions to determine whether the errors are controlled.

The study of the performance of the model is so important that the World Meteoro-
logical Organization (WMO) has designed comparison and verification mechanisms for
the different products generated by Centers to provide information to their users [34].
In the same way, the European Center for Medium-Range Weather Forecasts (ECMWF)
conducts daily evaluations of forecast performance to provide feedback to users and model
developers [35]. Moreover, some research centers explore the potential for comparing
different methods. For example, ref. [36] assessed the 4DVAR and 3DVAR DA techniques
in a cyclone case study. The process of evaluation of the operational implementation usually
includes comparing the model’s output with observations [37,38], the sensitivity analysis
of the implementations [39], or comparing the ability of different models to represent a
variable [40].

Despite the indicated importance of evaluating implementations of NWP models,
there is as yet no evidence of research work to account for the operational implementation
of the WRF model used by SIMFAC in its forecasts and the impact of the implemented DA
scheme. This article discusses the outcomes of the operational forecast implementation
of the 3DVAR-WRF (3DVAR from here on) model employed in SIMFAC, compared with
a control run without 3DVAR (CTRL). This discussion covers two operational windows
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and focuses on the surface temperature, pressure, and precipitation variables. For the
analysis of the outcome, we use the root mean square error (RMSE), the mean fractional
bias (MFB), the correlation factor (Corr), the mean bias (MB), the normalized mean bias
(NMB), the percent bias (PBIAS), the equitable threat score (ETS), and associated metrics of
the contingency tables (the false alarm ratio and the probability of detection).

This paper is organized as follows: Section 2 presents a comprehensive overview of the
WRF model, including the specific parameterization used in the SIMFAC WRF operational
implementation and CTRL run. The data used in the assimilation process and the methods
for evaluating the results obtained from the simulations are also described. Section 3
presents the results obtained from the ground-based and satellite data evaluations. Finally,
in Section 4, we discuss the results and show the conclusions.

2. Model, Methods, and Data

This study focuses on SIMFAC’S operational implementation of the WRF that em-
ployed 3DVAR. The 3DVAR data assimilation process seeks the maximum of a posterior
probability density function, which is achieved by minimizing a cost function as in [41]:

J(x) =
1
2

(
x− xb

)T
B−1

(
x− xb

)
+

1
2

(
y− y0

)T
R−1

(
y− y0

)
, (1)

where xa = argmin(J(x)) is the analysis to be found that minimizes the cost function given
the data sources, xb is the forecast for the problem of estimation or the first guess of the NWP
model, and y0 is the assimilated observation. B and R are the background error covariance
matrix and the observation error covariance matrix, respectively. Further, y = H(x) is the
model-derived observation transformed from the analysis by the observation operator H.

The primary assumption in (1) is that the observation and background error covari-
ances are described using Gaussian probability density functions (PDFs) with 0 mean error.
Non-Gaussian PDFs, due, for example, to nonlinear observation operators, are permitted
using an appropriate nonquadratic version of the cost function. If a model state x has n
degrees of freedom (the number of grid points multiplied by the number of independent
variables), calculating the whole background term Jb of the cost function requires O(n2)
calculations. For a typical NWP model with n2 (1012− 1014), a direct solution is not feasible
in the time interval allotted for DA in operational applications. One practical solution to
reduce the computational cost is to calculate Jb with respect to the control variables defined
through the relationship x = Uv. The U transform is designed to non-dimensionalize
the variational problem and permit efficient filtering techniques that approximate the full
background error covariance matrix [42].

The quality of a DA method depends on its analysis state, which relies on several
components, including the impact of observations [43]. In the case of the 3DVAR method,
the effect of observations depends on the background error statistics matrix B, which is crucial
for the optimal initialization of the method and, therefore, for its overall success [43,44].

The WRF model estimates the background error statistics matrix using the GEN_BE
(Generalized Background Error Covariance Matrix Model), which assumes that the errors
are Gaussian and calculated using control variables [45]. However, there are limitations
to calculating this vital factor of the DA process, which can introduce uncertainty in the
results. The SIMFAC 3DVAR-WRF, reviewed here, used the control variables (CV) for u, v
(horizontal wind components in the x and y direction, respectively), T (temperature), Ps
(surface pressure), and RHs (pseudo relative humidity), denominated CV7 [46,47]. The
matrix B is defined as:

B = εεT ≈ x′x′T , (2)

with ε = x− xb, and the background error and x′ are the perturbed states of the model
used to calculate this matrix because ε is unknown. The background error statistics matrix
B in the SIMFAC’s implementation was estimated with six prognostics from one month of
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the WRF model (00, 06, 12, and 18 UTC) of 12 h of duration with six shared and x′ being
the difference between two consecutive outputs [47].

The methodology employed in this case study involved using SIMFAC’s WRF model
as implemented without any modifications in its physical parameterizations, data source,
and, in general, architecture. The implementation incorporated the 3DVAR DA techniques
to assimilate the observational data.

2.1. WRF Model Setup

The WRF model operational implementation performs four daily runs at 00 UTC,
06 UTC, 12 UTC, and 18 UTC, and its parameterization, described here, is based on the
study by [48]. SIMFAC’s 3DVAR implementation involves two forecast horizons in cold-
start mode. The first horizon, spanning 73 h, is utilized for aircraft operations planning,
while the second horizon, lasting 6 h, is specifically for executing these operations.

The SIMFAC application assumes the nested domains shown in Figure 1. This domain
configuration is designed to simulate and predict weather patterns in Colombia and the
surrounding continental area [48].

Figure 1. Visual representation of the SIMFAC’s domains utilized in the WRF model over Colombia,
superimposed on the topography of the region.

The first domain (D01) covers the entirety of Colombia. The second domain (D02)
extends beyond the country’s borders and excludes the San Andrés, Providencia, and Santa
Catalina islands in the north of Colombia. The topography includes the Andean mountain
range in the northwest region of South America.

The San Andrés, Providencia, and Santa Catalina islands belong to Colombia but are
not included in the domain D02. Consequently, information regarding these locations is
obtained from the output generated by domain D01. The distribution of the domains, in
terms of grid number and horizontal resolution, is presented in Table 1.

Table 1. Number of grid points per domain in the WRF model configuration.

Domain Latitude Longitude Grid

D01 (9 km) (−8.42264, 17.5811) (−85.1025,−60.8975) 300× 326
D02 (3 km) (−4.90034, 12.8275) (−80.0936,−65.7439) 532× 661
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The SIMFAC’s WRF implementation provides IC/BC data every 3 h to the model
and is obtained from the Global Forecast System (GFS) [49] to a resolution of 0.25◦ × 0.25◦,
consequently, these are the data used in the experiment.

Table 2 presents the parameterization used in the SIMFAC operational implementation,
which is based on the results of [47,48]. It includes the WSM six-class graupel scheme for
microphysics, which is appropriate for high-resolution simulations when precipitation is
of interest [50]. The Goddard scheme is used for short-wave radiation, considering both
diffuse and direct solar radiation and cloud effects [51]. The Community Atmospheric
Model (CAM) scheme is used for longwave radiation [52].

Moreover, the implementation uses the Mellor–Yamada–Janjic (Eta) TKE scheme for
the PBL [53] and the Kain–Fritsch (new Eta) scheme for the cumulus option [54] for domain
D01. The land surface model uses four soil layers, corresponding to the Noah land surface
model. The urban canopy model is configured to activate shadow effects from neighboring
points and slope effects. Refer to Table 2 for additional simulation setups.

Table 2. The WRF model setup in the SIMFAC operational implementation.

Parameter Selection in WRF

Domain settings

Coordinate system Mercator
Vertical levels 42

Nesting
One way,
run using adaptive time steps

Physic Settings

PBL Scheme MYJ

Cumulus option KF

Longwave scheme CAM

Shortwave scheme Goddard

Microphysics WSM 6-class graupel scheme

Land surface Noah Land Surface Model

2.2. The 3DVAR Implementation of SIMFAC

Various data sources are integrated into the SIMFAC’s 3DVAR operational implemen-
tation. These include the Geostationary Operational Environmental Satellite (GOES) 16,
METAR, radio soundings, and radar [55].

METAR, SYNOP, and radio soundings used for the SIMFAC’s 3DVAR are provided
by IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales), a public in-
stitution in Colombia that offers scientific and technical support for studying nature and
environmental resources. IDEAM operates stations to measure meteorological variables at
28 airports in Colombia, some of which provide frequent METAR information.

IDEAM also generates radio soundings and SYNOP. The first is retrieved from the
Wyoming radio soundings database [56] and the other from the IDEAM database.

It is important to note that the SIMFAC’s 3DVAR implementation assimilates the
radiance of GOES-16 and the radial velocity and reflectivity of radar. All the steps followed
in the implementation are depicted in Figure 2. The procedures follow the WRF user
guide [4]. It starts with processing static data (boundary and initial conditions) by WPS
and continues with the real module. When DA is used, the METAR, SYNOP, and radio
soundings observations are organized and transformed to a LITTLE_R file corresponding
individually. After that, the data go to OBSPROC, where they are organized and filtered
according to the domain and simulation time. In addition, information about altitude and
pressure is retrieved based on the data. Finally, a text file is produced to be employed by
the WRFDA module. PREPBUFR or BUFR checks the GOES-16 and radar information
following a similar process to OBSPROC for the WRFDA module. Having the observation,
the WRFDA module updates the boundary and initial conditions, and this information and
that generated by the WPS go to the ARW, where the simulation is conducted.
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Figure 2. Scheme of the SIMFAC’s 3DVAR implementation and model evaluation procedure in the
simulation window selected.

In examining the SIMFAC’s implementation, it was possible to see that there was
no bias correction when GOES-16 was assimilated; consequently, the implementation is
exposed to systematic errors for this kind of data. Furthermore, it was observed that there
was no defined warning when a low amount of information was assimilated or when one
kind of data was unavailable. Additionally, it was observed that the bias accepted for the
radar data was high. Consequently, the implementation admitted significant errors in this
type of information, which could introduce further uncertainty into the forecast.

2.3. Evaluation of the Operational Implementation

The simulations in the experiment spanned the same duration as the 3DVAR oper-
ational implementation. While acknowledging that a comprehensive evaluation might
be limited within a 73 h window, the obtained results were expected to contribute to the
application utilized by SIMFA’s procedure to provide information for aircraft operations in
Colombia.

The experiment for the evaluation of the case study consisted of two operational
forecast windows (73 h long), where the model implementation was run with DA (3DVAR)
and without DA (CTRL), and the results were compared with the actual observations. Both
simulations used the same parameterization of the model given in Table 2.

The first simulation window corresponded to 18 August 2020, at 00:00:00, until 21
August 2020, at 00:00:00 UTC (W1), and the second simulation window was 1 September
2020, at 00:00:00, until 4 September 2020, at 00:00:00 UTC (W2).

The selection of the two windows, W1 and W2, offered a valuable opportunity to
observe the model’s performance during a critical period of the year when Colombia
experiences some of its highest precipitation accumulations. Additionally, these windows
coincided with the transition from a drier period to a rainier one in the Andean region.

Each simulation followed the scheme shown in Figure 2 and comprised two stages.
In the first stage, the SIMFAC architecture incorporated multiple observation sources
(Section 2.2) through WRF-3DVAR directly before running the model. In the second stage,
a control run (CTRL) was conducted without DA, where the BC/IC remained unchanged.
However, the parameterization, static data, domain setup, and other essential components
of the model remained identical to those of the 3DVAR run.

2.4. Ground-Based Data

The simulations obtained in Section 2.3 were compared with the actual surface temper-
ature, surface pressure, and precipitation retrieved from IDEAM and IMERG (Integrated
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Multisatellite Retrievals for the Global Precipitation Measurement (GPM) mission). Particu-
larly for the validation of precipitation, studies such as [47,57] have classified this variable
into rain events for days where the accumulated precipitation is more significant than
0.1 mm or no rain when the accumulated precipitation is less than or equal to 0.1 mm. The
categorization of precipitation is important for SIMFAC because the warning for aircraft is
given in this term as the likelihood of rain or not. This operational need means we did not
use the quantitative precipitation forecast (QPF), a method of verification more commonly
used in the literature.

Furthermore, we used data from the integrated multi-satellite recovery for the Global
Precipitation Measurement (GPM) mission (IMERG) [58]. The IMERG database provides
precipitation information every half hour with a spatial resolution of 0.1◦ × 0.1◦.

IMERG data for spatiotemporal validation is valuable because it provides a high
level of detail regarding the precipitation patterns over time and space. Some evaluations
have shown that it is one of the gridded precipitation products with the best performance
in the country ([59]). This product can help identify areas where the model may not
accurately predict precipitation. Furthermore, using satellite data for validation is beneficial
because it provides an independent source of information not affected by ground-based
measurement limitations.

Using actual observations for comparison is crucial for this case study. By comparing
the model’s output with the actual observations, the experiment was able to determine
how closely the model’s predictions matched real-world conditions.

2.5. Statistical Performance Metrics

The evaluation metrics included in the model study included the root mean square
error (RMSE), the mean absolute fractional bias (MFB), the correlation factor (CF) [60], and
a contingency table that includes the false alarm ratio (FAR) and the probability of detection
(POD) [23]. Additionally, it used percent bias (PBIAS) and the success percentage, which
is calculated as the ratio between the number of times the model successfully detects an
event and the total number of occurrences of that event. The comparison was conducted
by comparing the observed data with the corresponding nearest neighbor values obtained
from the output of the WRF model.

The PBIAS is defined in Equation (3) as a percentage that indicates overestimation or
underestimation.

PBIAS[%] =

(
y f
)

i
− yo

i

yo
i

× 100, (3)

where y f
i is the model simulation output, and yo

i is the observation.
The MFB, defined in Equation (4), is a statistical measure commonly used in assessing

weather and climate models and represents the average of the normalized bias for each
model–observation pair.

MFB =
2
M

M

∑
i=1

(
y f
)

i
− yo

i(
y f
)

i + yo
i

. (4)

M is the number of observations from all valid monitoring station data for the com-
parison period of interest. A zero value indicates perfect agreement between the model and
observations, while positive or negative values indicate overestimation or underestimation.
The MFB has a numerical range from −2 to 2.

The RMSE represents the differences between the predicted values and the observed
values (Equation (5)), defined as

RMSE =

√√√√ 1
M

M

∑
i=1

((
y f
)

i − yo
i
)2. (5)
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The RMSE tries to penalize a high variance by giving errors with larger absolute values
more weight than errors with smaller ones. Finally, the Pearson correlation coefficient mea-
sures the linear relationship between the simulated values and the observations, written as:

CF =
∑M

i=1

(
(y f )i − (y f )(yo

i − yo)
)

√
∑M

i=1

(
(y f )i − (y f )

)2 √
∑M

i=1(y
o
i − yo)2

. (6)

A CF value close to 1.0 indicates a strong positive relationship, while values around
0.5 suggest a moderate relationship. Values below 0.3 indicate a weak relationship, and a
low negative value approaching −1 represents a strong inverse relationship. A value near
0 indicates a small or negligible relationship between the variables.

The precipitation is considered a categorical event, and its performance is evaluated
using contingency tables, which provide information about hits, false alarms, and errors.
Hits occur when the model predicts rain, and it does rain, whereas false alarms occur when
the model predicts rain, but it does not rain. Errors occur when the model does not predict
rain, but it does rain. Correct rejections are identified for observations where the model
predicts no rain, and it does not rain [61]. A perfect model would obtain all the values
between the correct hits and rejections, leaving the other values at zero. Table 3 provides
an example of the contingency tables used in this case study.

Table 3. Contingency table used to evaluate precipitation as a categorical event.

Event Forecast
Event Observed

Yes No Marginal Total

Yes Hit False Alarm Fc Yes
No Miss Correct Rejection Fc No
Marginal Total Obs Yes Obs No Sum Total

Contingency tables are an effective way to evaluate the quality of a model’s forecast.
These tables can be used to calculate various verification measures for the categorical
forecast performance’s probability of detection (POD) or sensitivity, the false alarm ratio
(FAR), and other measures. These measures provide valuable insight into the model’s
performance and can help identify areas for improvement.

The PC is a measure that indicates the percentage of forecasted events that the model
correctly predicted. It is calculated by dividing the total number of correct event forecasts
(hits) by the total number of events observed for the model. The POD, also known as
the sensitivity, is the percentage of correct forecasts. It is computed by dividing the total
number of correct forecasts (hits + correct rejections) by the total number of forecasts.

On the other hand, the FAR is the ratio of false alarms to the total number of event
forecasts. The best possible FAR is zero, which means no false alarms, while the worst is
one, indicating that all forecasts were false alarms.

3. Results

The results were focused on the temperature, surface pressure, and precipitation due
to the importance of these variables for aircraft. Pressure influences the lift of the aircraft
through density and is the basis for various flight instruments such as the altimeter, the
anemometer, and the variometer.

Figure 3 illustrates the assimilated data within the forecast window W1. Each point
in Figure 3a–d represents a location where METAR, radio soundings, SYNOP, and radar
data were retrieved, respectively. The number on the right side indicates the quantity of
data utilized in the 3DVAR process. Additionally, Figure 3e,f depicts the radiances and
brightness temperature retrieved from GOES-16, respectively. It can be observed from
Figure 3a–d that the availability of data was relatively low in the lower part (Amazonian
and Orinoquia regions). A similar pattern was observed for the window W2.
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Figure 3. Observation used in the simulation of window W1. (a) METAR, (b) radio soundings,
(c) SYNOP, (d) radar, (e) radiances from GOES-16, and (f) brightness temperature.

3.1. Evaluation of Surface Temperature and Pressure

This section discusses the results of the 3DVAR and CTRL model implementation
for the surface temperature and pressure in the locations corresponding to the Cali and
Rionegro international airports. The data used for analysis corresponded to the available
METAR data for the operational forecast windows of the experiment, W1 and W2. It is
important to note that the selected aerodromes were located in areas with unique weather
conditions because of their proximity to large bodies of water or mountain ranges.

Figures 4 and 5 present the temporal series of the surface temperature and pressure
for the aerodromes in Barranqilla, Bogotá, Cali, and Rionegro (Colombia) in the operational
forecast window W1. The intention was to see the adjustment of the actual data with the
model output (3DVAR and CTRL). The observed pattern can be attributed to the accuracy
of the measurement (data report is only integers).

As noted in Figures 4 and 5, there was a substantial similarity between the temporal
behavior of the surface temperature and the pressure for the 3DVAR and CTRL run during
the forecast window. Sometimes, it was impossible to discern differences between the two
implementations. Similar results were observed for the forecast window W2 (not shown).

The previous observation suggests that the 3DVAR did not significantly improve the
model’s forecast capabilities for these variables, at least for the studied periods.

Furthermore, Figures 4 and 5 highlight the differences between the observations and
the simulations for both variables. This indicates that there may be significant errors in
the model predictions, particularly for localized weather conditions such as those found at
aerodromes. Accordingly, the observations may have an impact locally and close to the
ground, which may fade immediately when the model forecast starts.
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(a) Barranquilla

(b) Bogotá

(c) Cali

(d) Rionegro

Figure 4. Representation of the temperature for the METAR data, 3DVAR, and CTRL in W1 for
(a) Barranquilla, (b) Bogotá, (c) Cali, and (d) Rionegro for the forecast window W1.

In general, while Figures 4 and 5 suggest that there may be few differences between
the 3DVAR and CTRL model implementations, they also highlight the need for the further
analysis and evaluation of the model’s performance. For this reason, the statistics such as
the MFB, RMSE, and CF, as defined in Section 2.5 were introduced too. These statistics can
provide valuable insights into the accuracy and reliability of the model’s predictions and
can be used to compare the model implementations.

Continuing with the previous discussion, Tables 4 and 5 present the statistical per-
formance metrics for the surface temperature and pressure variables in the aerodromes
of Barranquilla, Bogotá, Cali, and Rionegro. The tables compare the performance of the
3DVAR implementation with the CTRL simulation during the selected operational forecast
windows, W1 and W2.
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(a) Barranquilla

(b) Bogotá

(c) Cali

(d) Rionegro

Figure 5. Representation of the surface pressure for the METAR data, 3DVAR, and CTRL in W1 for
(a) Barranquilla, (b) Bogotá, (c) Cali, and (d) Rionegro for the forecast window W1.

Table 4. The RMSE, MFB, and CF metrics for the temperature and pressure in the forecast window
W1.

Variable City 3DVAR CTRL
MFB RMSE CF MFB RMSE CF

Temperature (°C)

Barranquilla 0.047 2.835 0.617 0.0489 2.817 0.619
Bogotá 0.140 2.343 0.942 0.154 2.473 0.937
Cali −0.004 1.687 0.836 −0.009 1.622 0.851
Rionegro −0.006 3.119 0.548 −0.004 3.183 0.542

Pressure (hPa)

Barranquilla 0.445 113 0.714 0.419 108 0.726
Bogotá −0.475 98.95 0.787 −0.549 100 0.781
Cali 0.294 125 0.798 0.313 122 0.817
Rionegro 0.866 192 0.066 0.434 192 0.066
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Table 5. The RMSE, MFB and CF metrics for the temperature and pressure in the forecast window
W2.

Variable City 3DVAR CTRL
MFB RMSE CF MFB RMSE CF

Temperature (°C)

Barranquilla −0.026 1.535 0.810 −0.028 1.589 0.800
Bogotá 0.032 2.088 0.870 0.028 2.040 0.876
Cali −0.029 3.577 0.733 −0.033 3.596 0.730
Rionegro −0.039 3.669 0.584 −0.039 3.591 0.604

Pressure (hPa)

Barranquilla 0.518 91.672 0.878 0.4732 89.316 0.877
Bogotá −1.145 84.516 0.882 −0.621 83.177 0.884
Cali 0.313 106.192 −0.156 0.342 106.202 −0.158
Rionegro −1.219 183.950 0.111 −0.907 1.839 0.1178

In accordance with Tables 4 and 5, it was impossible to generalize the behavior of
the model for the locations analyzed. However, the results suggest that, on average, there
was either an underestimation or overestimation of the temperature variables depending
on where they were observed. However, for the temperature, the MFB showed a better
estimation. The results for both variables indicated that the model representation was
similar for the two forecast windows studied.

Additionally, Tables 4 and 5 indicate that except for the pressure and the Cali location
in the window W2, the model results had a high linear correlation for both the evaluated
variables (temperature and pressure) and the simulation windows studied. However, the
RMSE for the temperature suggested, on average, a lower model bias than for the pressure
concerning the observations used.

The results in Tables 4 and 5 suggest that both scenarios exhibited comparable sta-
tistical measures for the variables examined and the operational forecasts, W1 and W2,
indicating that the performance of the 3DVAR implementation is similar to the CTRL
simulation in terms of precision and precision for the operational forecast and the variables
evaluated. However, it is essential to note that this observation was based on the specific
experimental setup (and station spot measurements) and may not necessarily hold for other
scenarios or variables. Therefore, further analysis and evaluation are required to generalize
the model’s performance for other applications and scenarios.

3.2. Evaluation of Precipitation

After analyzing the statistical metrics presented in Tables 4 and 5, it is challenging to
determine which implementation, 3DVAR or CTRL, performed better in terms of matching
the observations or metrics due to the similarity or the minor differences in both the
scenarios and the variables.

This section focuses on a composite variable, precipitation, which is influenced by
various factors, including the temperature, pressure, and humidity.

Figure 6 illustrates the average accumulated precipitation over time and space for
each domain throughout the 73-hour simulation. Additionally, it showcases the difference
between the 3DVAR and CTRL simulations for the selected operational windows, W1
and W2. This comparison helps assess the possible impact of DA on the model’s forecast
outcomes in the operational forecast selected.

Interestingly, on average, Figure 6 shows that the differences between the periods were
similar temporally for domain D01. However, more spatial differences existed between the
CTRL and 3DVAR implementation for the forecast window W2. These spatial differences
may be related to incorporating additional data through DA and may impact the temporal
differences in the forecast window W2 in the domain D02.
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(a) W1 (b) W2

Figure 6. Spatiotemporal differences between the 3DVAR and CTRL for the two forecast windows
(a) W1 and (b) W2 for the accumulated precipitation (accum. ppt) in D01 and D02.

Figure 7 displays the differences between the original ICs and those updated by the
3DVAR for precipitation near the first time step for W2 (see Section 2.2). In particular,
the impact was more significant in areas with more ground-based stations and other data
sources.

(a) PPT Initial (b) Acc. PPT (c) Temporal series accum. PPT

Figure 7. Differences between the CTRL and 3DVAR implementation in W2, D01. (a) Difference in
the precipitation (PPT) near the start of the simulation, (b) difference in the accumulated precipitation,
(c) hourly precipitation (continuous), and accumulated precipitation (dotted lines).

Figure 7a shows that the most significant differences occurred in the Andean and
Amazonian regions. Furthermore, Figure 7c shows that the differences between the 3DVAR
and CTRL occurred throughout most of the forecast simulation window but became smaller
at the end of the window, as we hoped, because the boundary conditions were the same
for both simulations, and the forecast horizon was so long. Consequently, the effect of the
updated ICs through the DA process vanished.

An evaluation of the IMERG database against the CTRL and 3DVAR implementations
revealed that the 3DVAR implementation, on average, produced an IC closer to the database
(see Figure 8d). However, Figure 8b,c demonstrates that the CTRL and 3DVAR results
overestimated the precipitation across most of the domain, with the largest overestimations
observed in the Amazonian and Andean regions.
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(a) IMERG (b) CTRL (c) 3DVAR

(d) Percent bias

Figure 8. Comparison between the observed precipitation in the IMERG database and the CTRL and
3DVAR output. (a) Accumulated precipitation from the IMERG data, (b) accumulated precipitation
from the CTRL output, (c) accumulated precipitation from the 3DVAR output, and (d) percent bias
precipitation for the 3DVAR and CTRL cases. The fields in (a–c) are the accumulated precipitation
over the entire forecast window.

Figure 9 shows the differences between the IMERG database and the 3DVAR (Figure 9a)
and the CTRL (Figure 9b) run. It also presents the MFB results (Figure 9c for the entire do-
main at each time step to evaluate the total accumulated precipitation of the whole domain.

(a) 3DVAR-IMERG (b) CTRL-IMERG (c) MFB

Figure 9. (a) Differences between the IMERG and 3DVAR, (b) differences between the IMERG and
CTRL, and (c) the MFB for the CTRL and 3DVAR implementations with respect to the IMERG.

Figure 9a,b shows the similarity between the 3DVAR and CTRL runs; however, more
bias was observed close to the Orinoquia and the Amazonian regions. Furthermore,
Figure 9c shows that the 3DVAR had, on average, a more significant underestimate than
the CTRL at the beginning of the simulation, similar to Figure 8, where the cumulative total
precipitation domain led to a decrease in the error.

When considering the overestimation of precipitation, it is necessary to acknowledge
that this discrepancy could stem from various factors. These include the inherent com-
plexity of the model, the representation of the atmospheric processes, the influence of the
topography, and the persistent uncertainties in the input data and the IC/BC. Figure 10
presents a division of Colombia into five distinct regions: the Caribbean, Andean, Pacific,
Orinoquia, and the Amazonian. These regions are delineated based on heterogeneous
characteristics, considering factors such as topographic variations, climate patterns, and
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vegetation throughout the country. Previous research has indicated that the model’s perfor-
mance can vary across these different regions.

(a) W1 (b) W2

Figure 10. Comparison of the percentages of the success of the model to detect precipitation according
to the regions in the operational windows. (a) Results in forecast window W1. (b) Results for forecast
window W2.

Additionally, Figure 10 displays the success percentage of the operational implementa-
tion and CTRL models for the precipitation during the two operational windows selected,
W1 and W2. Figure 10a,b presents the information for W1 and W2, respectively.

Figure 10 displays that the success percentages for the operational forecast windows
were similar in the two simulation scenarios (3DVAR and CTRL). However, a slight advan-
tage of the operational implementation was evident for W1 concerning the CTRL run in
the domain D01. In contrast, for the domain D02, the CTRL outperformed the operational
implementation. In W2, as illustrated in Figure 10b, the CTRL model performed better in
both domains.

Figure 10 shows that the model successfully identified the precipitation with per-
centages exceeding 50% in all regions, except the Andean and Amazonian regions during
August and the Pacific region for September. The Andean, Amazonian, and Pacific regions
have unique weather patterns and topography, which could have influenced the accuracy
of the model in identifying the precipitation. These results suggest the need to account for
regional variations in climatic conditions when developing precipitation models, as these
can significantly impact the model’s accuracy and performance.

Figure 11 compares the IMERG observations with the implementations of the 3DVAR
and CTRL for W2 in the Caribbean, Pacific, Andean, Orinoquia, and Amazonian regions,
as defined in Figure 10. The comparison is made in terms of the MFB.

Figure 11 shows significant differences between the model output and the observations
for all regions and that the overestimation of the 3DVAR under the initial conditions was
more critical in the Amazonian region. In contrast, in other areas, there were less significant
differences. This indicates that both model runs tended to overestimate the precipitation in
both studied operational forecast windows, W1 and W2. This observation was consistent
with the temporal series in Figures 4 and 5 and the statistical measures presented in
Tables 4 and 5, which showed that the CTRL and 3DVAR had similar performances in
terms of the MFB and RMSE, but the correlation factor was relatively low.

The results in Figure 11 suggest that the CTRL and 3DVAR implementations were
limited in accurately representing the precipitation in the studied regions for the operational
forecast windows used, particularly in the Orinoquia and Amazonian regions. The limited
availability of the observation data, shown in Figure 3, may have contributed to the model’s
inaccuracies. The benchmark used in processing GOES-16 data and radar in the data
assimilation process can also contribute to the observed errors.

Further research may be necessary to improve the model’s representation of precipita-
tion in these regions.
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(a) Caribbean

(b) Pacific

(c) Andean

(d) Orinoquia

(e) Amazonian

Figure 11. The MFB for the September period in the different regions of Colombia, (a) Caribbean
(b) Pacific, (c) Andean, (d) Orinoquean, (e) Amazonian.

Finally, in order to obtain more evidence of the quality of the model forecast to
represent the precipitation for the 3DVAR and CRTL implementation, contingency tables
for the accumulated precipitation were obtained for W1 and W2. Table 6 shows the POD
and FA.

Table 6. Results of the contingency tables for the 3DVAR and CTRL simulations in the two windows
of study, W1 and W2.

Window 3DVAR CTRL

POD FAR POD FAR

W1 0.154 0.852 0.154 0.846
W2 0.556 0.737 0.500 0.750

The results shown in Table 6 were similar between the CTRL and 3DVAR for each
window W1 and W2, suggesting an important opportunity to improve the operational
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implementation and control run because they indicate a high probability of false alarm and
a low rate of detection.

According to the previous results, the differences between the operational implemen-
tation and the CTRL were slight. The 3DVAR implementation offered an improvement in
the second period, reducing the FAR and increasing the POD. However, these differences
were lowest in the calculated statistics.

4. Discussion and Conclusions

This paper presented an exploratory case study of the 3DVAR-WRF used operationally
in SIMFAC.

The results of the 3DVAR are used for aircraft operations and are a significant under-
taking to provide weather information and improve air safety in the country. The study
used two operational forecasts in W1 and W2 and two CTRL simulations conducted for
this study in the same forecast windows, with identical parameterizations of the model
and input data but with the 3DVAR module turned off. The operational output (3DVAR)
and non-operational (CTRL) simulations were compared against observations from the
IDEAM and the IMERG databases.

The results indicated that the 3DVAR and CTRL implementations analyzed tended
to overestimate the METAR observations and precipitation, regardless of the locations or
operational forecast windows selected. The analysis also indicated that both implementa-
tions performed poorly regarding the POD and FAR for precipitation. Therefore, there are
suggestions that the implementation needs to be inspected.

In particular, the results for the operational forecast windows selected did not show
any significant improvement in the model with the 3DVAR implementation. At some
locations, the CTRL was slightly closer in terms of the precipitation to the observations.

In general, the 3DVAR implementation did not show significant differences compared
to the CTRL, possibly due to several aspects. One may be because, in practice, only some
of the information available in the model is being assimilated. It is also possible that there
are problems with the observational operators in variables such as the radar reflectivity
and the satellite brightness temperature, which generally involve nonlinear relationships
with the variables available in the model.

The evaluation represents a step forward in advancing our comprehension of the
3DVAR operational implementation’s capability to forecast weather patterns in Colombia.
Nevertheless, further research and in-depth evaluation are necessary to overcome the
remaining challenges and to comprehensively understand the model’s performance. This
will enable us to make any necessary adjustments to the implementation to enhance the
model’s accuracy. Such improvements are vital for supporting aviation decision makers,
ensuring reliable weather information for aircraft operations.

The limitation of the operational implementation in the forecast windows studied
may stem from several factors, such as the complexity of the model, which affect the
representation of atmospheric processes. There could also be uncertainties in the input data
and BC/IC. The overestimation of certain variables, including the surface temperature,
pressure, and precipitation, could be partly attributed to the model’s spatial resolution,
which may not capture small-scale atmospheric features that affect these variables. Further
studies could focus on refining the model’s parameterizations and improving the input
data quality, especially in remote areas like the Amazonian and Andean regions.

Another aspect that requires further analysis is the construction of the background
error covariance matrix, which is a crucial step in the assimilation process. It is necessary
to review how this matrix is estimated and whether it is the most appropriate method to
obtain it. It is possible that the selection of control variables could be more optimal or that
the assumption of the Gaussianity of the error needs to be met. Previous evaluations using
ensembles of operational implementation have shown that covariances vary depending
on the location, highlighting the need for further research. Concerning this, the authors
of [44] emphasized the importance of the background error covariance matrix B in the cost
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function (1) and the minimization process. This matrix B needs to be determined by the
user, but it is challenging to obtain or estimate due to the problem’s dimensionality.
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