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Abstract: We analyze the variability and changes in mean temperature, annual precipitation, and
snow water equivalent (SWE) in the Desaguadero-Salado-Chadileuvú-Curacó (DSCC) basin, observed
in a recent period, and their projected future values. The current climate and observed changes
are studied based on the scarce observation records available in the region. Simulations from the
High-Resolution Model Intercomparison Project (HighResMIP v1.0) are used for the analysis of
future climate projections. The mean annual temperature presents a major rise between 1 and 2 ◦C
throughout the region in the 1961–2020 period. The annual precipitation has nonlinear positive trends
of varied importance. The SWE has decreased noticeably since 2010. Interannual variability also
plays a key role, with dominant cycles between 2.8 and 4 years and between 7.5 and 10 years. The
projected changes, computed as the difference between the 1985–2014 and 2021–2050 averages, reveal
a rise in mean annual temperature in the entire basin, with an eastward magnitude increase from
1 to more than 2 ◦C. The annual precipitation is projected to increase up to 10% over most of the
basin, except in the Andes, where it will decrease. The maximum annual SWE will also continue to
decrease, in agreement with the trend observed in recent years.

Keywords: climate change; precipitation; temperature; snow; Desaguadero-Salado-Chadileuvú-
Curacó basin

1. Introduction

The observed climate changes on a global scale in recent decades show the need
to understand the regional-scale impacts of those changes, mainly those associated with
increased or decreased water availability. Water availability depends on precipitation,
which presents increasingly extreme deficits and excesses. In South America, the lack of
precipitation in some regions has caused long-lasting and persistent droughts [1,2], while
other regions present frequent floods caused by extreme precipitation events [3,4]. For
example, a continuous rainfall decline has been recorded in central Chile from 2010 to the
present [5,6]. On the other hand, increased heavy precipitation events favored frequent
floods in southeastern South America during the 2000s [7–9].

In arid to semiarid regions of the world, water availability is facing more recurrent
reductions [10,11]. In particular, central-western Argentina has undergone a sustained
increase in the annual mean temperature, an increase in annual precipitation and in the
frequency of extreme precipitation events towards the eastern lowlands of the region, and a
sustained precipitation decline over the Andes [11–13]. This declining precipitation favors
decreases in snow accumulation and, consequently, streamflow droughts [14,15]. Since the
snowmelt feeds the main rivers in the central-western Argentina region, this reduction in
snow volume causes severe difficulties for the management of scarce water resources [11].
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Future projections indicate that the Andes region is expected to experience more marked
temperature increases [16,17]. Furthermore, the observed decline in precipitation since
the last century is projected to persist, leading to an increased frequency of drought con-
ditions [13,18,19]. The combination of reduced precipitation and increasing temperatures
will contribute to glacier mass balance losses and trigger premature snowpack melting,
which poses significant challenges for water management [17,20].

There are several forcing factors associated with the changes and variability in the
water cycle over central-western Argentina [21]. For example, the long-term reduction
in winter precipitation, mainly over the Andes, was favored by a poleward expansion of
the Hadley circulation that led to a southward displacement of the semipermanent South
Pacific anticyclone [22]. This expansion was attributed mainly to increased greenhouse gas
emissions, ozone depletion effects, and internal climate variability [23,24]. One of the main
climatic forces that modulates interannual hydroclimate variability is the El Niño–Southern
Oscillation (ENSO) [13,25,26]. Precipitation and streamflow present positive anomalies
during El Niño years, while La Niña years favor reduced snowfall and potential streamflow
drought conditions [26,27].

In particular, the Desaguadero-Salado-Chadileuvú-Curacó basin, located in central-
western Argentina, presents high vulnerability to climate variability and climate change
due to (1) the complex system of water resources on which all socioeconomic activities in
the region depend, (2) the changes in the hydrological cycle that have occurred in recent
decades [13,16], and (3) the large population that the basin encompasses (approximately
3.5 million inhabitants) [28]. According to [28], the main critical situations that occur in the
basin are associated with floods and droughts of various origins, as well as processes of
salinization, erosion, and environmental contamination favored by anthropic processes. For
this reason, an in-depth analysis of the climate variability and change that affect regional
hydrological processes is required in the entire basin in order to specify water policies and
strategic interventions to favor an integrated management of the complex water system.

In this study, we analyze the mean characteristics, variability, and changes in temper-
ature, precipitation, and snow precipitation (by means of the snow water equivalent) in
the Desaguadero-Salado-Chadileuvú-Curacó basin over a historical period, and provide
projections for the future climate. Section 2 describes the data and methodology. The results
are presented in Section 3, and the discussion and conclusions are presented in Section 4.

2. Data and Methods
2.1. Study Region

The study region includes the Desaguadero-Salado-Chadileuvú-Curacó (DSCC) basin,
which stretches across the central Andes and part of the central region of Argentina and dis-
charges towards southern Buenos Aires (Figure 1a). The DSCC system covers 360,000 km2

and constitutes the set of basins and hydric regions with the largest area fully developed
within Argentina [28]. The basin runs from north to south along an arid and semiarid strip
of 1000 km in length in a complex hydrographic system, with a very complex topography
(Figure 1b). The system develops from the Andes, with elevations above 5000 m, and
drains into the Atlantic Ocean, crossing the central plain of Argentina through the Colorado
River. The Desaguadero river, the river that drains most of the basin area in central-western
Argentina, receives its main tributaries that originate from the melting of the Andes. For
this reason, and due to the scarce precipitation registered in the extensive territory that it
covers, its maximum streamflow occurs at the end of spring [28].
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Figure 1. (a) Location of the Desaguadero-Salado-Chadileuvú-Curacó basin in Argentina. (b) To-
pography map of the study region along with the main rivers. The solid black lines highlight the
main sub-basins. (c) Spatial distribution of stations with long records of high-quality datasets of
observed precipitation and temperature (red points) and snow water equivalent (blue points). See
station characteristics in Table 1.

Table 1. Stations with temperature, precipitation, and snow data. The percentage of missing data
indicates the number of months without data in the 1961–2020 and 1995–2014 periods. The stations
included in this study are shaded in grey. Color shading highlights stations with less than 10%
missing data in the 1961–2020 period for temperature (light blue) and for precipitation (green).

# Station Lat Lon masl
Missing Values
1961–2020 (%)

Missing Values
1995–2014 (%)

Tmean PP Tmean PP Snow
1 Tinogasta −28.07 −67.57 1201 4.3 10.3 0.0 0.0
2 Chilecito Aero −29.24 −67.43 945 64.4 40.8 84.6 0.0
3 La Rioja Aero −29.38 −66.82 429 3.8 0.6 0.0 0.0
4 Jáchal −30.23 −68.75 1175 4.7 11.9 0.0 0.0
5 San Juan Aero −31.58 −68.42 598 3.5 3.6 0.0 0.0
6 Uspallata −32.62 −69.33 1891 27.9 57.1 12.9 29.2
7 San Carlos −33.78 −69.03 940 8.8 54.2 0.0 ---
8 San Martín −33.09 −68.42 653 1.4 1.0 0.0 0.0
9 Mendoza Aero −32.84 −68.78 704 3.5 0.0 0.0 0.0
10 Mendoza Obs −32.89 −68.85 827 5.3 0.3 0.0 0.0
11 San Luis Aero −33.28 −66.35 713 1.9 0.8 0.0 0.0
12 Chacras de Coria −32.99 −68.87 921 6.0 14.3 0.0 8.0
13 Malargüe Aero −35.51 −69.58 1425 4.4 0.4 0.0 0.0
14 San Rafael Aero −34.59 −68.40 748 0.6 0.1 0.0 0.0
15 Victorica −36.22 −65.43 312 30.8 35.4 16.7 21.3
16 Chepes −31.34 −66.58 658 29.7 19.3 42.9 25.8
17 La Consulta −33.74 −69.12 940 0.4 0.0
18 Pocito −31.37 −68.32 618 0.4 0.0
19 La Llave −34.38 −68.00 555 25.8 16.7
20 Las Paredes −34.31 −68.25 813 21.3 17.1
21 Capitán Montoya −34.34 −68.27 791 --- 0.0

Stations with snow data
22 Toscas −33.16 −69.89 3000 31.4
23 Laguna Diamante −34.2 −69.70 3301 10.7
24 Laguna Atuel −34.51 −70.05 3423 12.9
25 Paso Pehuenche −35.14 −70.20 2253 33.6
26 Valle Hermoso −35.98 −70.39 2555 11.4
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The precipitation seasonality is markedly different in the Andes mountains and in the
lowlands, situated east of the Andes [13]. The Andes region experiences a Mediterranean
regime, characterized by a wet and cold season from April to September, followed by a dry
and warm season from October to March [29]. In contrast, the lowlands region exhibits a
monsoonal precipitation regime. In the western part of the lowlands, where the seasonality
is more pronounced, an arid to semiarid climate prevails [30]. On the other hand, the
eastern portion of the lowlands has a subhumid climate [31].

2.2. Observed Data

Figure 1c shows the meteorological stations located in the study region as well as
the areas lacking observations, which are located mainly the southernmost portion of the
basin. The spatial observation coverage is limited. The variables analyzed were maximum,
minimum, and mean daily temperature; daily precipitation; and the snow water equivalent
(SWE). The mean daily temperature was calculated as the average between the minimum
and maximum daily values. SWE represents the water column that would result from
melting the entire snow layer instantaneously.

Data quality was tested using quality control techniques, including overall control,
fixed range, temporal continuity, and spatial consistency. We identified the stations with
the longest records of temperature and precipitation (Table 1). The period common to these
stations extends from 1961 to 2020. As shown in Table 1, although several stations have
a long observation period, they present numerous data gaps. The monthly temperature
and precipitation series with longest records used in this study are those presenting less
than 10% missing data. Table 1 shows the completed series; color shading indicates stations
meeting the mentioned criterion (light blue: 12 stations for temperature; green: 8 stations
for precipitation).

The data gaps in the selected time series were then filled. The months presenting more
than 20% missing days were excluded from the analysis. Missing monthly values were
filled with the average of the corresponding month [32], here calculated using 5 consecutive
years centered on the year of the missing month. This method guarantees minimum impact
on long-term trends [32]. When missing values corresponded to the two first or last years
in the series, the average was calculated with the first or last five years, respectively. This
method worked correctly, as missing data corresponded to separate years.

The period common to the three variables of interest is 1995–2014. The analysis
included the stations with at least 80% of monthly data in this time period. For the
climatological analysis, we incorporated additional stations to those previously selected.
Additional stations were La Llave and Las Paredes, which fail to meet the temperature
criterion by only a small percentage, and San Carlos and Capitán Montoya, which only
have temperature and precipitation observations, respectively. The stations included in
the analysis are shaded in grey in Table 1. Although Mendoza Observatorio station has a
complete set of observations, it is not included in the analysis because we used data from
Mendoza Aero, which is very close to it.

Table 1 also shows the five available stations located in the higher elevations of the
Andes used for the SWE analysis (Figure 1b,c). SWE is measured directly by “weighing”
snowfall using snow pillows. This measurement is more accurate than the product of the
depth of the snow cover and its density. Snow depth can vary greatly from hour to hour,
due to settlement and compaction, but the amount of water contained within the snow
remains constant. Although the data quality was verified by the General Department of
Irrigation of Mendoza province (Argentina), [33] reported that several issues, including
budget limitations or difficulty in accessing the sites, have affected the frequency and time
of snow measurements.
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2.3. Simulated Data

This study used five high-resolution models from the High-Resolution Model Inter-
comparison Project (HighResMIP v1.0; [34]) from the Coupled Model Intercomparison
Project Phase 6 (CMIP6; [35]) (Table 2). The models were selected because they are the
only ones that have both historical and future simulations available. We used the coupled
historic runs for the period 1950–2014 (hist-1950) and coupled scenario simulations for
2015–2050 (highres-future), the latter of which are effectively a continuation of the historic
simulation into the future [34]. The analyzed variables included monthly mean temper-
ature, monthly precipitation, and monthly SWE. Model resolution ranges between 0.23◦

and 0.5◦ latitude and longitude and allows a more accurate definition of the study region’s
complex topography. These high-resolution models provide improved representation
compared with that of the original low-spatial-resolution models.

Table 2. High-resolution general circulation models from the HighResMIP v1.0 used in this study,
their institutions, and their atmospheric resolutions.

Model Institution, Country Atmospheric Resolution
(◦lon × ◦lat)

1 EC-Earth3P-HR * EC-Earth Consortium 0.35 × 0.35
2 CNRM-CM6-1-HR * CNRM-CERFACS, France 0.5 × 0.5
3 HadGEM3-GC31-HM MOHC, UK 0.35 × 0.235
4 CMCC-CM2-VHR4 CMCC, Italy 0.31 × 0.23
5 HiRAM-SIT-HR AS-RCEC, Taiwan 0.23 × 0.23

* indicates models with snow water equivalent data.

The spatial distribution of the changes in mean annual temperature and annual
precipitation between the 2021–2050 and 1985–2014 periods was determined. These changes
were calculated for each model in its original spatial resolution and for the multi-model
ensemble with a resolution interpolated to 0.5◦ of latitude and longitude, for which the
bilinear interpolation method was used (as in [22] and [36]).

2.4. Singular Spectrum Analysis

Singular spectrum analysis (SSA; [37,38]) was applied to detect long-term changes
as well as variability at multiple scales (from interannual to decadal) in the time series of
mean annual temperature and annual precipitation. SSA determines the spatiotemporal
structures of trends and oscillatory modes in the series. The SSA method performs an eigen-
value decomposition into temporal-empirical orthogonal functions (T-EOFs, eigenvectors)
and temporal-principal components (T-PCs). Each T-PC denotes a filtered version of the
original time series, explaining a portion of its variance associated with its corresponding
eigenvalue. A cycle can be found when two consecutive eigenvalues are close to equal and
their related T-PCs are in quadrature. A nonlinear trend is found when the estimation error
of a leading eigenvalue, computed following [39], does not overlap with other eigenvalues
and its corresponding T-PC is slowly varying and uncorrelated with other T-PCs [38,40].

The choice of the window length M is critical; it limits the longer periods that the
SSA can resolve. In this study, we used a window length of M = 10 years that represents
interannual variability within the spectrum between 2 and 10 years. Our analysis thus
focuses on nonlinear trends and interannual variability modes.

Finally, a Monte Carlo method [41] was used to test mode significance at the 95%
confidence level against a red noise null hypothesis with an ensemble of 1000 independent
realizations. In this study, SSA was applied to the longest and most complete time series
over the 1961–2020 period. We did not apply SSA to SWE time series because they have
short time periods, beginning in the early 1990s.
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2.5. Evaluation and Bias-Correction Methods

The ability of the GCMs to represent temperature, precipitation, and SWE was assessed
by means of statistical evaluation metrics, such as the root-mean-square error (RMSE), the
mean bias error (MBE), and the Pearson’s correlation coefficient (r) (see [42] for definitions).
Statistical evaluation metrics were calculated for each variable at the stations with long-
term records. The periods analyzed are the longest available at each station. We present the
results of individual models and multi-model ensembles. The ensembles include all the
models used.

We applied a scaling method [43] to correct systematic errors of the GCMs and to fit
simulated variables to the observed time series. This method uses the ratio between the
observed and simulated mean variables for the period estimated in the historical scenario
as a scaling factor (Equation (1)). Thus, the corrected variable yp

i at time i is represented by
the modeled variable xp

mod,i at time i, scaled with the ratio of the mean observed variable
yp

obs and the mean modeled variable xp
mod.

yp
i = xp

mod,i
yp

obs

xp
mod

(1)

The scaling method was applied to both historical and future simulations. Historical
simulations were corrected using the observed data as yp

obs, such that the MBE of the
bias-corrected time series became zero. Future simulations were corrected using the same
scaling factor used for historical simulations:

y f
i = x f

mod,i
yp

obs

xp
mod

(2)

where f indicates the future and p means the past.

3. Results
3.1. Climatology

Figure 2 shows the mean annual temperature (Figure 2a) and annual precipitation
(Figure 2b) in the 1995–2014 period at the stations shaded in light blue in Table 1. The mean
annual temperature varies from 12–14 ◦C towards the southwest to 20–22 ◦C towards the
northeast. Note that some stations are beyond the basin, but they are the only observational
references in that region. Annual precipitation ranges from 90–100 mm in the arid center of
the basin (the San Juan Aero and Pocito stations) to 300–400 mm towards the south (e.g.,
Malargüe Aero), yet it reaches 687 mm at San Luis Aero. Although the latter station is
located beyond the basin, it is very close to its east boundaries. Thus, the precipitation
regime is arid to semiarid towards the west of the DSCC basin and the east of the Andes,
and subhumid towards the east of the basin. Annual precipitation presents a large spa-
tiotemporal variability, which is conditioned by not only geographic, but also topographic
characteristics, such as elevation, slope, and aspect.

Figure 2c,d present the annual mean and maximum SWE, respectively, over the
1995–2014 period. The lowest climatological values are observed at the stations towards
the north—Toscas and Laguna Diamante—with 284 mm and 354 mm, respectively. The
climatological peak occurs at Laguna Atuel with 902 mm. Farther to the south, the Paso
Pehuenche and Valle Hermoso stations have climatological SWEs of 736 mm and 624 mm,
respectively. The averages of the annual peaks of SWE in the study period have the same
spatial distribution as the mean annual SWE, although with slightly higher values. The
annual maximum SWE ranges between 353 mm and 1101 mm.
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Figure 2. Climatological values over the 1995–2014 period of (a) annual mean temperature, (b) annual
precipitation, (c) annual mean SWE, and (d) annual maximum SWE.

Figure 3 exhibits the annual cycles of mean monthly temperature (blue lines) and
monthly precipitation (green bars) in the 1995–2014 period. The mean temperature has a
regular cycle in all the observation stations, with the hottest months during austral summer
(December to February) and the coldest months during austral winter (June to August).
The summer (winter) mean monthly temperature ranges from 20.1 ◦C (5.1 ◦C) towards
the south (Malargüe station) to 28.3 ◦C (12 ◦C) towards the north (La Rioja Aero station).
The temperature amplitude between summer and winter is relatively small. The smallest
amplitude (15.1 ◦C) was registered at Malargüe station, and the greatest at San Juan Aero
station (18.7 ◦C).

The annual cycles of precipitation (Figure 3) concentrate peak values in the warm
months and the lowest values in the cold months. The exception is the southwesternmost
station with available data (Malargüe Aero), where precipitation peaks in autumn and
winter, and reaches its lowest values in spring and summer. The annual cycle amplitude at
Malargüe Aero is smaller than at the other stations and barely reaches 7% of the annual
precipitation. In general, the annual cycle amplitude is below 20% of the total annual
precipitation, except at Jachal, where it reaches 27%.
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Figure 3. Annual cycles of mean monthly temperature (blue lines) and monthly precipitation (green
bars). The map in the center shows the location of the stations. The temperature scale is the same in
all panels (0–35 ◦C, left axis). The precipitation scale reaches 70 mm, except at La Rioja Aero, where it
reaches 80 mm, and San Luis Aero, where it reaches 140 mm (right axis).

Monthly precipitation summer peaks vary markedly according to station location:
they are smaller at the northwestern stations (Tinogasta, Jachal, San Juan Aero, and Pocito),
and greater at the easternmost stations (e.g., La Rioja Aero and San Luis Aero). As discussed
above, at the latter, precipitation amounts are well above those recorded at the remaining
stations. Precipitation in Argentina is characterized by a westward decreasing gradient.
San Luis Aero is located in a transition region, where precipitation decreases more rapidly
towards the west. Therefore, all the stations located west of it present considerably lower
values. On the other hand, the minimum monthly precipitation in winter amounts to a few
millimeters; only La Consulta and Malargüe Aero have relatively higher values, close to
10 mm.

Figure 4 presents the annual cycles of the average SWE in the 1995–2014 period. SWE
values begin to rise in winter and reach their peaks during the early spring, and then begin
to decrease due to the temperature increase. Thus, as noted above, the precipitation (mainly
in snow form) in the region presents a Mediterranean regime [29], with precipitation
concentrated mostly during the cold season (April to October) and a dry warm season
(November to March). The stations located in the north (Toscas and Laguna Diamante)
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reach SWE peaks between 200 and 400 mm at the end of the winter. The stations located in
the south (between –34.5◦S and –6◦S latitude) have SWE peaks between 800 and 1000 mm,
also by the end of the winter. This snow is essential for water resource management in
the central-western region of Argentina. Most of the rivers in the region are supplied by
snowmelt in spring, the flow of which is used for irrigation and human consumption [11].

Figure 4. Annual cycles of SWE (mm) averaged over 1995–2014. The map shows the locations of
the stations.

3.2. Variability and Changes
3.2.1. Temperature

Figure 5 shows the nonlinear trends at the nine selected stations for temperature.
Those trends represent a major fraction of the total variance in the mean temperature series
(between 56% and 20%; see Table A1). This result shows the relevance of long-period
changes over interannual variability in the most recent decades. Consistent with world
and regional warming [12,44], a noticeable increase in mean temperature is observed at
most stations in the study region. At some stations, trends are more marked (Tinogasta,
Mendoza Aero, San Carlos, Malargüe Aero, CA, USA), with sustained warming since 1961.
The temperature rise is at least 1 ◦C from 1961 to 2020, and reaches 2 ◦C in Tinogasta,
in the north of the study region, and in San Carlos, in the center-west. Other stations
(Jachal, La Rioja Aero, San Juan Aero, San Luis Aero, Spain) do not show a clear signal
of sustained warming according to the nonlinear trend patterns, but they are affected by
decadal variability. However, in the most recent decades, trends are positive at all the
stations. These results suggest that the region has experienced major positive changes in
mean temperature, with great spatial variability in the distribution of those changes.

Regarding temporal interannual variability, Table A1 shows dominant modes with
frequencies of 8.5 years and close to 3 years. These two variability bands account for
important rates of mean temperature interannual variability. Our results indicate that
besides the shift to warmer conditions in recent decades, mean temperature is greatly
affected by interannual variability in different timescales.



Climate 2023, 11, 135 10 of 27

Figure 5. Mean annual temperature time series and their nonlinear trends. The map shows the
locations of the stations. The temperature scale ranges between 14 and 20 ◦C, except at La Rioja Aero,
where it reaches 22 ◦C, and at San Carlos and Malargüe, where it varies between 10 and 16 ◦C.

3.2.2. Precipitation

Annual precipitation in the study region presents nonlinear trends of varied rele-
vance (see Figure 6 and Table A2). In general, these trends show positive changes with
annual precipitation rises in recent decades, although the positive trends are not main-
tained throughout the period. The nonlinearity of the trends makes it possible to assume
significant influence from decadal variability. The greatest changes were recorded at San
Martín, in the center of the study region, where annual precipitation increased from mean
values close to 180 mm in the period of 1961–1990 to 264 mm in 1991–2020. A similar
temporal evolution is shown at Mendoza station (Figure 6). Consistently, the trends at
Mendoza Aero and San Martín stations are the dominating modes associated with the first
T-PC (Table A2). The trends at the other stations, including the La Rioja Aero, San Juan
Aero, Malargüe, and San Rafael stations, show significant nonlinearities, although they
also present an increase at the beginning of the study period that stabilizes from the 1970s.

Figure 6 also shows the relevance of interannual precipitation variability. At all sta-
tions, interannual modes explain large percentages of the time series variance (Table A2).
This feature is frequently observed for precipitation, as it presents a more marked temporal
variability than temperature. In this case, the dominant modes present their main frequen-
cies in two variability bands: from 7.5 to 10 years, close to decadal variability, and between
2.8 and 4 years. Thus, our results indicate that the increase in precipitation is consistent in
the entire region, although precipitation is greatly affected by interannual variability.
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Figure 6. Annual precipitation time series at the six selected stations and their nonlinear trends. The
map shows the locations of the stations. The precipitation scale reaches 500 mm at the drier stations
(left column) and 700 at the wetter stations (right column).

3.2.3. Snow Water Equivalent

The available SWE data cover the 1990–2019 period, except at Paso Pehuenche station,
where data are available between 1999 and 2019 (Table 1). Figure 7 presents the maximum
annual SWE at each station. The interannual variability at all stations is large, and even
more marked at some stations, such as Laguna Atuel. A marked decrease in SWE values is
observed at all stations during the 2010s, while the previous decade includes years with
high SWE at the five stations analyzed. The deficit in snowpacks impacted the main source
of water for the rivers. Thus, the decreased snow propagated through the hydrological
cycle components, leading to hydrological drought conditions in the adjacent foothills east
of the Andes [11].

Figure 7. Annual maximum SWE (mm) in the 1990–2019 period.
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3.3. Ability of the Models to Represent the Observed Variables
3.3.1. Temperature

Figure 8 presents Pearson´s correlations calculated between the monthly time series
from the stations with long-term observations and the GCM ensemble and individual
GCMs. Temperature is considerably well simulated in the study region, with correlation
values between 0.90 and 0.98. Correlations differ slightly among the models and at each
of the stations analyzed. The ensemble yields the best correlations—between 0.96 and
0.98—at most stations. The individual models HadGEM3-GC31-HM and CMCC-CM2-
VHR4 (Figure 8d,e) have higher correlation values at most stations compared with EC-
Earth3P-HR, CNRM-CM6-1-HR, and HiRAM-SIT-HR (Figure 8b,c,f). No marked spatial
correlation pattern is observed in the study region.

Figure 8. Pearson´s correlations between mean monthly temperature time series at the stations with
long-term observations, and (a) GCM ensemble and (b–f) individual GCMs.

Figure 9 shows the mean bias error (MBE) of the monthly time series from the stations
with long-term observations, the GCM ensemble, and the individual GCMs. In general, the
models underestimate temperature observations at most stations, although the MBE varies
according to the model and station. Some models only overestimate temperature at several
stations (Figure 9e,f). On the other hand, although the ensemble presents underestimated
values at all stations, MBE values are smaller in the ensemble than in individual models
(Figure 9a).

The root-mean-square error (RMSE) is shown in Figure 10 for the stations with long-
term monthly observation, the GCM ensemble, and individual GCMs. The smallest RMSE
at all the stations was obtained for the CMCC-CM2-VHR4 model (Figure 10e), followed by
HiRAM-SIT-HR (Figure 10f) and the ensemble (Figure 10a). Note that the RMSE values
at most of the stations range from 1–2 to 3–4 ◦C, which are very low error values for
temperature. In general, the greatest RMSE occurs at the stations located in the north of the
basin (6–7 ◦C), except for EC-Earth3P-HR (Figure 10b).
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Figure 9. Mean bias error (MBE) values between mean monthly temperature time series from the
stations with long-term observations and (a) GCM ensemble and (b–f) individual GCMs.

Figure 10. Root-mean-square error (RMSE) values between the mean monthly temperature time
series at the stations with long-term records and (a) GCM ensemble and (b–f) individual GCMs.
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3.3.2. Precipitation

Figure 11 presents Pearson´s correlations between the time series of monthly precip-
itation with long records of observations and the GCM ensemble and individual GCMs.
For the study region, the correlations are positive in all the models (Figure 11b–f) and
the ensemble (Figure 11a); i.e., there is a direct relationship between the simulations and
observations in most of the cases. Nevertheless, the correlations are smaller (close to 0) at
Malargüe Aero for the majority of the models. These features might be caused by the poor
ability of the models to represent weather conditions in regions with complex topography
or with singularities in the annual cycle (see Section 3.1). The ensemble (Figure 11a) presents
the best correlations, with the highest values in the north (between 0.5 and 0.7). Again, the
uncertainty in the model ensemble is smaller than those in the individual models, thus
strengthening the efficiency of the simulations.

Figure 11. Pearson’s correlation between the time series of monthly precipitation from stations with
long-term records of observations and (a) the GCM ensemble and (b–f) individual GCMs.

Figure 12 shows the MBE values between the time series of monthly precipitation
from stations with long-term records and the GCM ensemble and individual GCMs. The
models are observed to overestimate precipitation at most of the stations under analysis,
although the MBE values vary depending on the model and station (Figure 12b–f), which
is also reflected in the values for the ensemble (Figure 12a). Some models, such as EC-
Earth3P-HR and CNRM-CM6-1-HR (Figure 12b,c), overestimate the observations by over
100 mm, as observed at the San Carlos station. This overestimation is reflected in the
ensemble (Figure 12a). However, the overestimations are smaller (0–20 mm) at certain
stations. In particular, this range predominates at the stations simulated using HiRAM-
SIT-HR (Figure 12f), which achieves the best fitting in terms of systematic errors, and even
underestimates the observed precipitation by 0–20 mm at some stations in the south of the
study region.
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Figure 12. Mean bias error (MBE) values between monthly precipitation time series from stations
with long-term observations and (a) the GCM ensemble and (b–f) individual GCMs.

Figure 13 presents the RMSE values between the monthly precipitation time series
from stations with long-term observations and the GCM ensemble and individual GCMs.
Given the poor ability of GCMs to represent regional precipitation at single stations, RMSE
values are high for most of the models and the ensemble (Figure 13a). Lower RMSE values
are obtained for the HiRAM-SIT-HR (Figure 13f) at most of the stations, except for those
located in the north of the study region.

Figure 13. Root-mean-square error (RMSE) values between monthly precipitation time series from
stations with long-term observations and (a) the GCM ensemble and (b–f) individual GCMs.
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3.3.3. Snow Water Equivalent

The available data from five stations (the ones used in Section 3.2) have an acceptable
length (1990–2019) for comparison with modeled data. The statistical metrics presented in
Table 3 indicate that GCMs perform regularly in representing single SWE data, with low
correlations and considerable mean bias errors (here presented as percentages). This was
to be expected, given the great difficulty in modeling snow processes (even more than in
the case of rainfall). In any case, the models are capable of recognizing the annual cycle
of SWE, and although with systematic errors, they also recognize the monthly values at
some stations (e.g., Valle Hermoso or Laguna Diamante). Better correlations are obtained
from EC-Earth3P-HR than from CNRM-CM6-1-HR at all stations; the fit is also good with
low MBE and RMSE values (except at Toscas station). Table 3 shows that EC-Earth3P-HR
underestimates the SWE with MBE values between −12% and −2% (except at Toscas
station). Consequently, with bias correction, the model is able to represent the SWE in the
study region.

Table 3. SWE statistical metrics for the CNRM-CM6-1-HR and EC-Earth3P-HR models. MBE%
indicates the percent mean bias error (see also Déqué 2010).

CNRM-CM6-1-HR

# Station MBE MBE% RMSE r

1 Toscas 8008.5 8207.2 9557.3 0.049
2 Laguna Diamante 358.5 199.1 523.9 0.493
3 Laguna Atuel 7168.7 1581.4 7667.3 0.290
4 Paso Pehuenche 2850.9 936.1 3880.3 0.241
5 Valle Hermoso 734.0 287.1 1075.1 0.585

EC-Earth3P-HR

# Station MBE MBE% RMSE r

1 Toscas 156.2 160.1 360.9 0.120
2 Laguna Diamante −4.5 −2.5 223.9 0.537
3 Laguna Atuel −54.5 −12.0 508.9 0.477
4 Paso Pehuenche −8.4 −2.8 288.1 0.578
5 Valle Hermoso −32.5 −12.7 254.0 0.710

As an example, Figure 14 shows that the mean annual cycle and the monthly time
series of SWE at Valle Hermoso station are poorly simulated by the CNRM-CM6-1-HR
model, which overestimates the observed values with a high MBE (see also Table 3). After
correcting this systematic error, the fits improve significantly and make it possible to obtain
an annual cycle (Figure 14a) and a time series (Figure 14b) close to the observations (similar
examples are shown for temperature and precipitation in Appendix B, Figures A1 and A2).
A better fit is obtained for the bias-corrected simulations from the EC-Earth-3P-HR model
than those from the CNRM-CM6-1-HR model, with values very similar to the observations.
These results are also obtained for the other stations, except at Toscas station. Consequently,
only the EC-Earth-3P-HR model is used for the analysis of future projections.

3.4. Projected Changes
3.4.1. Temperature

Figure 15 presents the spatial distribution of the changes in mean annual temper-
ature (◦C) projected by the multi-model ensemble (Figure 15a) and individual models
(Figure 15b–f). The ensemble has the advantage of reducing the uncertainty in both the
internal variability in the climate system and in the models themselves [45], and its projec-
tions are more reliable. In this particular case, the ensemble projects a mean temperature
rise over the entire region following an east–west gradient. In the center and the east of
the study region, the warming is expected to be 1–1.5 ◦C in the 2021–2050 period. In the
west, over the highest area of the Andes, the projected rise is between 1.5 and 2 ◦C. Finally,
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in the northernmost part of the study region, the warming might exceed 2◦C. The spatial
patterns of the individual models (Figure 15b–f), although with different variation ranges,
are consistent with the spatial pattern of the ensemble, which reinforces the reliability of
the projections.

Figure 14. (a) Annual cycle (1995–2014) and (b) monthly time series (1990–2014) of SWE values (mm)
observed at Valle Hermoso station and simulated by the models with and without bias correction.

Figure 15. Spatial distribution of changes in mean annual temperature (◦C) projected by (a) the
multi-model ensemble (b–f) and individual models. Changes are computed between the 2021–2050
and 1985–2014 periods.
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As an example, Figure 16 shows the temporal evolution of the observed mean annual
temperature, the bias-corrected ensemble simulation of the historical period 1961–2014,
and the bias-corrected ensemble simulation of the future period 2014–2050, with their
respective intermodel ranges. In the historical period, the ensemble adequately reproduces
observations, including the interannual variability and an upward temperature trend in
recent decades. The trend remains positive in future decades, with an increase in annual
temperature of up to 2◦ C in 2050 with respect to observation averaged over 1985–2014.
The intermodel ranges are low and close to the ensemble simulations, which makes the
projections of the mean temperature at La Rioja Aero have good certainty. Note also that
the bias-correction method significantly improves the fit to the observations and enhances
the overall reliability of the projections (see Appendix B).

Figure 16. Observed simulation and bias-corrected ensemble projection of annual mean temperature
(◦C) at La Rioja Aero. Intermodel ranges of historical and future scenarios.

3.4.2. Precipitation

Figure 17 presents the spatial distribution of projected changes in annual precipitation
according to the multi-model ensemble (Figure 17a) and the percentage above the mean
values of the historical period (Figure 17b), and the individual models (Figure 17c–g). As is
the case with temperature, the changes in precipitation also present an east–west gradient.
In this case, the multi-model ensemble (Figure 17a) simulates an increase of up to 50 mm
in the center-east of the study region. This change represents an increase of 0–5% in the
center of the region and 5–10% in the east (Figure 17b). On the other hand, the simulations
indicate a decrease in precipitation of 0–5% in the 2021–2050 period in the highest area
in the Andes (the westernmost part of the study region). The greatest drop in annual
precipitation would occur in the high mountains in the south of Mendoza (100 mm or
more; Figure 17a). Unlike the changes in temperature, the spatial change patterns of the
individual models (Figure 17c–g) are not consistent, although in general, they show a
precipitation decrease in the east–west direction, as shown in the multi-model ensemble.

Figure 18 shows the temporal evolution in annual precipitation, observed in the his-
torical 1961–2014 period and simulated with the bias-corrected ensemble for the 2014–2050
period at La Rioja Aero. The ensemble reproduces the mean values of historical precip-
itation adequately, but it fails to reproduce the temporal variability. The bias-correction
method allows a correct fitting to historical observations and the intermodel range is
low, which indicates coherence among the simulations. No significant changes in annual
precipitation are projected for this station.
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Figure 17. Spatial distribution of projected changes in annual precipitation (mm) according to (a)
the multi-model ensemble, (b) the percentage exceeding mean values of the historical period, and
(c–g) individual models.

Figure 18. Observed and bias-corrected ensemble-simulated annual precipitation (mm) at La Rioja
Aero. Historical and future intermodel ranges (shading).



Climate 2023, 11, 135 20 of 27

3.4.3. Snow Water Equivalent

Figure 19 presents the spatial distribution of the mean annual and maximum annual
SWE changes simulated with the high-resolution model that provides the best fit to the
observations, namely the EC-Earth3p-HR model. The EC-Earth3p-HR model shows a
projected decrease in mean annual and maximum annual SWE in the Andean regions,
particularly in Mendoza between latitudes −34◦ S and −36◦ S, where most of the observa-
tions were registered. For that area, the model indicates that the maximum annual SWE
decreases by between 100 and 150 mm in the 2021–2050 period (note that the model under-
estimates the observations by 10%), with peaks between 150 and 250 mm on the border
with Chile (Figure 19b). The analysis of these results is limited by the uncertainty caused
by the magnitude of the errors shown in Section 3.3.3 and by the fact that the simulations
come from only one model. In any case, this decreasing trend has been noticed in previous
years (as discussed in Section 3.2.3 and in [13]). Therefore, the projected decrease in SWE is
consistent with the observations.

Figure 19. Spatial distribution of projected changes (mm) in (a) mean annual and (b) maximum
annual SWE according to the model that best fits the observations (EC-Earth3p-HR) with respect to
the values of the historical period (without bias correction).

To illustrate this statement, Figure 20 shows the monthly SWE observations at Valle
Hermoso station and the monthly SWE simulated by the EC-Earth3p-HR model (with bias
correction). In the case of the future simulations, the model shows a 27% reduction in
SWE values for the 2021–2050 period. Figure 20 also shows that the temporal variability
would remain, although there would be a considerable decrease in the frequency of winters
with heavy snow, particularly after 2030. It is worth highlighting, as was pointed out
previously, that the analysis of the results should take into account the limitations of models
in representing snow processes, and the fact that we are using only one available model.
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Figure 20. Observed and modeled monthly SWE time series at Valle Hermoso station. The model
used is the one that best fits the observations (EC-Earth3p-HR), with bias corrections in the historical
(1990–2014) and future (2015–2050) simulations.

4. Discussion and Conclusions

This study analyzes the mean conditions, the variability, and the changes in mean tem-
perature, precipitation, and snow water equivalent in the Desaguadero-Salado-Chadileuvú-
Curacó basin. The analysis covers a historical period (1961–2020) and a future period
(2021–2050). In this study, we used a combination of observations, state-of-the-art high-
resolution models to represent the regional climate, specifically the HighResMIP V1.0
simulations from the CMIP6 dataset, and robust statistical methods. The robustness of the
results depends on the availability of enough high-quality observations, particularly when
dealing with complex-topography regions as is the case with the Andes. The analysis of the
present climate and the changes observed in a recent historical period was performed using
the scarce observation series available in the region; therefore, our results are conditioned
by the few existing observations.

The main hydrological processes in the DSCC basin are complex, mainly influenced
by geographic and topographic factors, such as the altitude, slope, and aspect of the
terrain. The mean temperature is around 12.5 ◦C in the higher areas in the west and 21 ◦C
in the east and north of the basin. Annual rainfall decreases from east to west, with a
large spatiotemporal variability. The annual cycle of rainfall presents a marked amplitude
between the summer peaks and winter minima of a few millimeters towards the east of the
Andes. The seasonality is more noticeable near the Andean foothills (see also [30]). Summer
precipitation is dominated by convective rainfalls associated with moisture fluxes from the
Amazon and Atlantic basins [46,47]. The snow water equivalent over the Andes begins to
rise in winter, reaches its maximum value at the end of the winter and early spring (when
the streamflow of the main river peaks), and decreases in summer, when it can equal zero.
According to [15], the dry warm season from October to March responds to the seasonal
displacement of the Southeastern Pacific High.

The study region has undergone a major warming in mean temperature, with increases
of between 1 and 2 ◦C in recent decades. These temperature changes present large spatial
variability. Annual precipitation has nonlinear trends of differing importance, which are
generally positive. These results suggest there is increasing precipitation over the lowlands,
east of the Andes. After 2005, the snow water equivalent decreased markedly in the Andes
mountains in the province of Mendoza, which is where observations are available. In
addition, the mean temperature and precipitation present significant interannual variability
modes, within two dominant variability bands: one between 7.5 and 10 years, and the other
one, of higher frequency, between 2.8 and 4 years. The latter higher frequency cycles have
been linked to El Niño–Southern Oscillation (ENSO)-like frequencies. The extreme phases
of the ENSO phenomenon favor positive snow and rainfall anomalies (El Niño events) or
may lead to water deficits (La Niña events) [26,48].

The studied HighResMIP models correctly simulated the mean temperature, reaching
correlations in the range of 0.90–0.98. The multi-model ensemble improves the performance
of the individual GCMs. The multi-model ensemble reaches correlations higher than 0.96.
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Regional precipitation features are reproduced with diverse degrees of success. Again, the
multi-model ensemble achieves the best evaluation metrics, with correlations higher than
0.5 at most stations and lower MBE and RMSE values when compared with individual
models. The SWE is simulated using high-resolution models with great difficulty. How-
ever, the applied bias-correction method substantially improves the historical simulation,
favoring especially the analysis of snow and precipitation features over the study region.

Mean temperature is projected to rise in the entire study region, with growing values
towards the west of the DSCC basin. Increments in the center and east of the study region
are expected to be 1–1.5 ◦C in the period 2021–2050. The highest mountain area in the west
would undergo a mean temperature rise between 1.5 and 2 ◦C. Finally, in the northernmost
area of the study region, the increase might exceed 2 ◦C. The average annual precipitation
in 2021–2050 is projected to exceed the 1985–2014 average by up to 50 mm over most
of the basin, except in the westernmost area, where it is projected to decrease by 0–5%.
The projected increase is about 0–5% of the precipitation in the central area and 5–10% in
the east. A major drop would occur in the high mountains in the south of Mendoza. A
decrease is expected in the maximum annual SWE in the Andes in the period 2021–2050;
this decrease would be more marked towards the south of Mendoza. These results mark a
continuation of recent trends.

Our results, which are consistent with those previously reported by [11,13,22], suggest
that the management of scarce water resources in the basin should be made more efficient
in the coming decades. The basin is an area with complex access to water, which has
become even more complicated with the increase in temperatures and the lack of snow
in recent decades. Our results indicate that these changes will be exacerbated in the
next 30 years: temperatures will continue to rise and precipitation (rain and snow) will
continue to decrease in the Andes mountains, particularly in Mendoza. On the other hand,
the projected precipitation increases over the eastern portion of the DSCC basin will be
beneficial for the growing development of regional agriculture. In this region, the main
crops include grapes and olives on the plains near the Andes [49], while peanuts, maize,
soybeans, and cattle raising are more relevant in the eastern portion [13]. These future
scenarios raise the need to generate integrated water management plans that facilitate an
efficient use of the resource. The access to water will be more difficult towards the Andes
and, on the other hand, it will be favored by the increase in rainfall in the lowlands in the
coming decades.
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Appendix A

Table A1. Dominant modes identified with SSA for mean annual temperature time series.

Nº Station Components Trend or Dominant
Period (Years/Cycle)

Explained Variance
(%)

1 Tinogasta

T-PC1 Trend 55.5

T-PC2/T-PC3 8.5 14.8

T-PC4/T-PC5 2.8 12.53

T-PC3/T-PC4 2.6 28.2

2 La Rioja

T-PC1 Trend 25.6

T-PC2/T-PC3 8.5 30

T-PC4/T-PC5 2.8 16.6

3 Jachal

T-PC1 Trend 19.4

T-PC2/T-PC3 8.5 25.5

T-PC4/T-PC5 3.74 20.4

4 San Juan
Aero

T-PC1 Trend 33.7

T-PC2/T-PC3 2.85 18.2

T-PC4/T-PC5 4 16.14

5 San Carlos

T-PC1 Trend 59

T-PC2/T-PC3 8.5 19.5

T-PC4/T-PC5 2.8 9.35

6 Mendoza
Aero

T-PC1 Trend 37.3

T-PC2/T-PC3 8.5 20.7

T-PC4/T-PC5 2.8 16.4

7 San Luis
Aero

T-PC1 Trend 41.8

T-PC2/T-PC3 8.5 31.2

T-PC4/T-PC5 2.3 9.3

8 Malargüe

T-PC1 Trend 36.8

T-PC2/T-PC3 4 20.2

T-PC4/T-PC5 8.5 16.3

9 San Rafael

T-PC1 Trend 24

T-PC2/T-PC3 8.5 28.7

T-PC4/T-PC5 4 17.8
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Table A2. Dominant modes identified with SSA for annual precipitation time series.

Nº Station Components Trend or Dominant
Period (Years/Cycle)

Explained Variance
(%)

1 La Rioja
T-PC1 y T-PC2 8.5 35.5

T-PC3 Trend 12.6

2 San Juan
Aero

T-PC1 y T-PC2 3 34

T-PC3 y T-PC4 4.2 26.4

T-PC5 y T-PC6 6 19.5

T-PC9 Trend 3.5

3 San Martin

T-PC1 Trend 28.4

T-PC2 y T-PC3 7.5 32.3

T-PC4 y T-PC5 2.8 17.9

4 Mendoza
Aero

T-PC1 Trend 22.6

T-PC3 y T-PC4 3.3 24.3

5 Malargüe

T-PC1 y T-PC2 10 35.8

T-PC3 y T-PC4 3.5 24.2

T-PC8 Trend 7.3

6 San Rafael

T-PC1 y T-PC2 8.5 36.0

T-PC3 y T-PC4 2.6 25.8

T-PC5 Trend 11.2

Appendix B

Bias correction makes it possible to improve the results of simulations. As an example,
Figure A1 shows the annual cycle of the mean monthly temperature (Figure A1a) and
the mean annual temperature time series of the observed data and multi-model ensemble
with and without bias correction at La Rioja Aero (Figure A1b). Both figures show that
bias correction improves the simulation results considerably. The annual cycle, though
underestimated (MBE = −4.5 ◦C), is clearly well represented by the ensemble (Figure A1a).
The local scaling removes the MBE, favoring the fitting. The RMSE drops from 4.8 ◦C
to 1.2 ◦C. Therefore, the corrected ensemble has the ability to adequately represent the
observed mean monthly temperature. Moreover, the corrected ensemble is able to represent
the temporal evolution of the mean annual temperature and its interannual variability
(Figure A1b).

Figure A1. (a) Annual cycle of mean monthly temperature (◦C) and (b) time series of mean annual
temperature (◦C) observed at La Rioja Aero and simulated using the multi-model ensemble with and
without bias correction.
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Figure A2 presents the observed and bias-corrected and noncorrected ensemble simula-
tions of the annual cycle of monthly precipitation and annual precipitation at La Rioja Aero.
The model ensemble adequately reproduces the annual cycle, although it overestimates
precipitation amounts considerably (MBE = 41 mm). Bias correction introduces a significant
improvement to the fitting, reducing the RMSE from 59 mm to 32 mm and providing a
good fitting for the annual cycle (Figure A2a). The corrected ensemble simulation also
reproduces the temporal evolution of annual precipitation correctly, but fails to reproduce
interannual variability (Figure A2b).

Figure A2. Observed and ensemble simulations (with and without bias correction) at La Rioja Aero;
(a) annual cycle of monthly precipitation (mm) and (b) annual precipitation (mm).
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