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Abstract: Monitoring rainfall in the Brazilian Legal Amazon (BLA), which comprises most of the
largest tropical rainforest and largest river basin on the planet, is extremely important but challenging.
The size of the area and land cover alone impose difficulties on the operation of a rain gauge network.
Given this, we aimed to evaluate the performance of nine databases that estimate rainfall in the
BLA, four from gridded analyses based on pluviometry (Xavier, CPC, GPCC and CRU), four based
on remote sensing (CHIRPS, IMERG, CMORPH and PERSIANN-CDR), and one from reanalysis
(ERA5Land). We found that all the bases are efficient in characterizing the average annual cycle of
accumulated precipitation in the BLA, but with a predominantly negative bias. Parameters such as
Pearson’s correlation (r), root-mean-square error (RMSE) and Taylor diagrams (SDE), applied in a
spatial analysis for the entire BLA as well as for six pluviometrically homogeneous regions, showed
that, based on a skill ranking, the data from Xavier’s grid analysis, CHIRPS, GPCC and ERA5Land
best represent precipitation in the BLA at monthly, seasonal and annual levels. The PERSIANN-CDR
data showed intermediate performance, while the IMERG, CMORPH, CRU and CPC data showed
the lowest correlations and highest errors, characteristics also captured in the Taylor diagrams. It is
hoped that this demonstration of hierarchy based on skill will subsidize climate studies in this region
of great relevance in terms of biodiversity, water resources and as an important climate regulator.

Keywords: precipitation products; performance evaluation; gridded analysis; dataset reanalysis;
satellite rainfall

1. Introduction

The Amazon is the largest and most biodiverse tropical forest in the world, located
inside the largest watershed on the planet, the Amazon basin, which comprises eight South
American countries: Brazil, Bolivia, Colombia, Guyana, French Guiana, Peru, Suriname and
Venezuela [1,2]. Bordered to the northeast by the warm waters of the Atlantic Ocean and as
the gateway for the moisture-laden trade winds [3,4] and limited winds to the west due
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to the Andes mountain range [5,6], the Amazon forest acts as an important global climate
regulator [7,8] and, more precisely, is local, with forest evapotranspiration contributing to
the redistribution of moisture to other areas of South America, such as the southeastern and
southern regions of Brazil [9]. Approximately 60% of the total area of the Amazon biome is
in the Brazilian territory, comprising nine states called the Brazilian Legal Amazon (BLA).

Despite its extreme importance, it is not a trivial task to maintain a robust measurement
network in the BLA area due to limitations imposed by the territory itself, with large areas
demarcated for permanent preservation, including indigenous lands, and difficult access
due to the low density of highways. Additionally, there is difficulty in maintaining surface
weather stations. Two federal agencies in Brazil maintain most of the measurements in the
BLA: The National Institute of Meteorology (INMET), with conventional and automatic
surface weather stations and the National Water Agency (ANA), which measures rainfall
mainly in the BLA.

However, although there are still insufficient numbers to adequately monitor the
weather conditions in the BLA, in recent decades, in addition to precarious operation, the
permanent closure of stations has been observed [10,11]. The maintenance of a rainfall
network with quality and consistent measurements is of fundamental importance for the
BLA, as in any region where cycles of floods and droughts are naturally observed. The
precariousness of measurements prevents detailed climate analyses, which serve for both
monitoring and application to more accurate weather and climate forecasts, whether of a
seasonal nature or even more reliable future climate projections [12–15].

To overcome the problem of interruption of the time series and its spatial distribution,
especially for observed rainfall, methods have been proposed to create gridded precipitation
products, overcoming obstacles related to the sparse and nonuniform coverage of rainfall
stations. These precipitation datasets are known as grids and reanalysis. Grid analyses are
typically based on the maximum use of surface observations [16–19]; others combine data
with rainfall estimates from remote sensing or remote sensing alone [20–27]. The reanalysis
is a synthetic database reconstructed by calibrating a climate model for observed historical
conditions, also in grid format, whose basic statistics, such as means and variances, are
similar to those obtained from surface observations, which usually comprise the reanalysis
into a field to correct for reanalysis biases [25,28,29].

Being aware of the difficulties in maintaining and operating a surface observation
network that satisfactorily, flawlessly and continuously covers precipitation in the BLA, the
focus of this study is to evaluate the performance of different precipitation datasets derived
from gridded analyses, reanalysis and remote sensing. For this purpose, a robust database
of surface observations composed of 480 points in the BLA is used to compare point-to-
point precipitation, with this estimated by nine different precipitation databases in the last
40 years between 1981 and 2020. The evaluation of the performance of each data source
was based on the accumulation of precipitation at monthly, seasonal and annual levels.

We highlight the pioneering nature of this study in terms of evaluating a large number
of different databases constructed in three different ways: based solely on observed data
interpolation techniques, known as gridded analyses, as well as based mostly on satellite
estimates, and finally using a database based on the most recent reanalysis by the European
Centre for Medium-Range Weather Forecasts (ECMWF). This type of analysis could become
fundamental for directing climatological studies in such an important region of the planet,
given the recent trend of discontinuity of measurements at weather stations.

2. Materials and Methods
2.1. Study Area

Figure 1 shows the topography and the nine Brazilian states that comprise the BLA,
with seven states in the North: Amazonas (AM), Acre (AC), Roraima (RR), Rondônia (RO),
Amapá (AP), Pará (PA) and Tocantins (TO); one state in the Northeast region, Maranhão
(MA); and one state in the central—west region, Mato Grosso (MT). Notably, the Amazon
biome occupies only parts of some of these states, such as the western portions of MA
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and TO. The total area of the states that comprise the BLA is more than 5 million km2, or
59% of the Brazilian territory, with 44% of its protected area (including conservation units
and indigenous lands), as part of a strategy of the Brazilian government to preserve the
region [30]. The Amazon River, the main river of the BLA, discharges 12.5 million cubic
meters per minute into the Atlantic Ocean, the highest average flow of a freshwater river
on the planet [31].
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Figure 1. Geographic location of the BLA in South America, with an emphasis on its topography
with the respective abbreviations of each state.

2.2. Observed Rainfall Data

Daily rainfall data were obtained from 1076 rain gauges of the ANA hydroweb sys-
tem, a tool of the National Water Resources Information System (SNIRH). As an initial
criterion to work with viable time series in the period of 1981–2020, it was possible to select
480 series from this set, excluding the others mainly because they contain very short series.
We applied the quality control system and a method of filling in gaps described in [32] to
these daily data, for an average percentage of failures of approximately 9.86% observed in
these series. Then, the monthly, seasonal and annual accumulated data of these series were
obtained and distributed in the BLA, according to Figure 2.
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can be seen in Figure 1.

2.3. Precipitation Obtained from Gridded Analyses

Grid analyses are station data interpolated into a regular latitude x longitude grid
under a given spatial resolution. For this study, the data from the gridded analysis were
provided by Brazilian daily gridded data (XAV) [33], the CPC (Climate Prediction Center),
the GPCC (Global Precipitation Climatology Center) and the CRU (Climatic Research Unit).

XAV provides daily surface data for all of Brazil from 1961 to 2020 with a spatial
resolution of 0.1◦ × 0.1◦, with precipitation being the variable that had the largest number
of surface observations for the construction of the grid, interpolated by the inverse distance
weighting method (IDW). This grid is updated from its previous version [19] and has been
used in several studies as a reliable basis for surface observation [31,34–38].

The CPC provides daily rainfall data with 0.5◦ × 0.5◦ spatial resolution over the
entire global domain from 1979 to the present using the modified Cressman scheme as an
interpolation method [39–43].

The GPCC has the support of the World Meteorological Organization (WMO) to
monitor, analysis and research global precipitation. It provides daily and monthly rainfall
products with different spatial resolutions, with a finer grid of 0.25◦ × 0.25◦. The density of
stations used to construct the grids is a strong point, where it is high, and a weak point,
where information is scarce and where discontinuities of historical series are limiting the
quality of the grid analysis [44,45].

CRU provides monthly precipitation data at 0.5◦ × 0.5◦ resolution from more than
4000 records from weather stations worldwide, using the angular distance weight (ADW) in-
terpolation method from a mixture of homogenized data with nonhomogenized products [46].
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2.4. Precipitation Obtained from Reanalysis

Reanalyses provide a synthetic database for retrograde periods from the calibration
of climate models fed with meteorological observations. In this study, we evaluated the
precipitation of the most recent version of the reanalysis of the ECMWF (European Center
for Medium-Range Weather Forecasts) for terrestrial areas, ERA5Land, which replaced the
previous reanalysis datasets ERA-Interim [47,48] and ERA-40 [49]. This reanalysis provides
hourly and monthly data from 1950 to the present in a 9 km spatial resolution grid [50].
Ref. [51] found a 10% increase in the global mean precipitation correlation compared to the
GPCP data.

2.5. Precipitation Obtained from Remote Sensing

We analyzed, along with the other precipitation data sources, four from remote sensing:
CHIRPS (Climate Hazards group Infrared Precipitation with Stations), IMERG (Integrated
MultisatellitE Retrievals for GPM), CMORPH (CPC MORPHing technique) and PERSIANN-
CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks—Climate Data Record).

CHIRPS estimates rainfall from satellite observations in the infrared band of the duration
of cold clouds (CCD-Cloud Cold Duration), with a spatial resolution of 0.05◦ × 0.05◦, from
1981 to the present. CHIRPS combines precipitation estimated by the product TMPA-
3B42.v7 with surface observations from the WMO global telecommunications system to
correct and validate estimates of surface precipitation and thus includes regions of the
planet with low or no density of surface observations [26,52–55].

IMERG provides precipitation estimates with a time scale of up to 30 min at a spatial
resolution of 0.1◦ × 0.1◦. This precipitation product uses the estimates from the TRMM
satellite from 2000 to 2015, with the most recent estimates collected by the GPM (Global
Precipitation Measurement) satellite, which merges and interpolates all the precipitation
estimates obtained in the infrared band calibrated by microwaves, facilitating the detection
of light and solid precipitation [56–61].

CMORPH only uses estimated precipitation via microwaves from satellites in low or-
bits, in addition to spatial propagation data obtained from infrared data from geostationary
satellites, which are corrected and reprocessed using the CPC Morphing technique. Its grid
has a spatial resolution of 8 km by 8 km and a temporal resolution of every 30 min, hourly,
daily and monthly, from January 1998 to the present [23,62–66].

The PERSIANN-CDR uses artificial neural networks to estimate daily rainfall data
from geostationary satellites in the infrared range of the Gridded satellite infrared (GridSat-
B1) dataset, with a monthly bias correction using GPCP data [67–73]. Table 1 summarizes
the characteristics of the data sources evaluated in this study.

2.6. Cluster Analysis

With the distribution of stations shown in Figure 2, we used the multivariate statistical
technique known as cluster analysis to identify homogeneous areas based on the monthly
distribution of rainfall in the BLA. The use of this technique is common for this purpose in
climate sciences, defining groups that involve seasons with similar characteristics [34,74–76].
The similarity structure of the elements of each group was obtained using the Euclidean
distance method [77], expressed in Equation (1) as follows:

de =

[
n

∑
j=1

(
Pp,j − Pk,j

)2
]0.5

(1)

where de is the Euclidean distance, and Pp,j and Pk,j are the stations to be compared;
Pp 6= Pk = 1, . . ., n (total number of the sample) of the jth variable of each station in the
sample; and n represents the number of variables.

For clustering, we used the Ward method [78], which identifies the smallest variation
between clusters [79], joining elements whose sum of squares or sum of errors is minimal.
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The sum of squares within each group was verified from the square of the Euclidean
distance of each element to each group, according to [34] Equation (2):

W =
G

∑
g=1

ng

∑
i=1

∥∥∥xi −
=
xg

∥∥∥2
=

G

∑
g=1

ng

∑
i=1

K

∑
k=1

(
xi,k −

=
xg,k

)2
(2)

where W represents the Ward binding function, given by the sum of squares within each
group (Gi) (measure of homogeneity); G is the number of elements of group Gi in step k of
the clustering process; Xi,k is the vector of observations of the k-th element belonging to the
i-th group; and Xg is the centroid of group Gi.

Table 1. Characteristics of the rainfall datasets.

Precipitation
Product Category Spatial

Coverage
Temporal
Coverage

Spatial
Resolution

Temporal
Resolution Reference

XAV Gauge-based
products Brazil 1961–2020 0.1◦ × 0.1◦ Daily [33]

CPC Gauge-based
products Global 1979–Near

Present 0.5◦ × 0.5◦ Daily [42]

GPCC Gauge-based
products Global 1981–Near

Present 0.25◦ × 0.25◦ Daily [45]

CRU Gauge-based
products Global 1901–Near

Present 0.5◦ × 0.5◦ Monthly [46]

ERA5Land Reanalysis
products Global 1950–Near

Present 0.1◦ × 0.1◦ Hourly [50]

CHIRPS Satellite-based
Products Quasi-global 1981–Near

Present 0.05◦ × 0.05◦ Daily [26]

PERSIANN-CDR Satellite-based
Products Quasi-global 1983–Near

Present 0.25◦ × 0.25◦ Daily [70]

CMORPH Satellite-based
Products Quasi-global 1998–Near

Present 0.5◦ × 0.5◦ Daily [23]

IMERG Satellite-based
Products Global 2000–Near

Present 0.1◦ × 0.1◦ Daily [60]

One of the advantages of identifying homogeneous rainfall regions made up of dif-
ferent weather stations is that a single time series is obtained for each region, based on
the average of all its stations, making it easier to compare them and calculate statistical
parameters, whether descriptive or for comparing the performance of different databases.

2.7. Performance of Gridded Data Compared to In Situ Measurements of Monthly Rainfall

As all the databases provide their precipitation products on regular grids with different
spatial resolutions, we extracted time series from each of them for the same geographical
coordinates as the observed data, using the simple bilinear interpolation method [80],
which assigns different weights to the regular grid points according to their proximity in
a straight line to the observation coordinates [16,35,81]. This methodology was applied
using scripts developed in R language version 4.0.3.

The first qualitative verification is performed by comparing the monthly/seasonal/annual
averages of rainfall observed in the BLA with those obtained from each database to high-
light the basic premise that a given estimate derived from a gridded analysis/reanalysis
should basically represent the normal climatological cycle of any surface variable to be
studied [31].

Next, a quantitative verification was performed using five statistical metrics to evaluate
the quality of the data sources. We used Pearson’s correlation coefficient (r), Equation (3),
which is a scale for the strength of the linear relationship between the values of the rain
gauge and the values based on each database, ranging from −1 for an inverse linear rela-
tionship to 1 for a perfect linear relationship. To ensure that the value of r really expresses
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the agreement between the observations and the estimates of the data sources, the paramet-
ric t-Student test was used to check the statistical significance of the correlations at a 95%
confidence interval (p-value < 0.05), which according to the size of the samples, indicates a
critical correlation coefficient of approximately 0.4, a value for which the statistical hypoth-
esis that there is a correlation between the estimated and observed data can be accepted. It
should be noted, however, that this test only shows whether r is significant, and does not
necessarily mean that observations and estimates are similar in order of magnitude, since a
bias, described below, can be large and still not affect a high correlation value, for example.

The bias, Equation (4), is a metric that measures the average difference between ob-
served and estimated values of a variable, indicating whether the estimate is systematically
overestimated (positive bias) or underestimated (negative bias). The ideal value of the bias
should be close to zero, but care should be taken when analyzing this metric because errors
with opposite signs and similar magnitudes can cancel each other out.

The root-mean-square error (RMSE) was used to measure the quantitative error be-
tween the precipitation from each source and the observed precipitation (Equation (5))
in the same unit of the variable (mm). This verification of the actual observation with
series extracted from the grid points was used in many studies, which attested to its
effectiveness [82–84].

We also compared the performance of the databases for each homogeneous region
identified in the BLA, defined according to the methodology described in Section 2.6. For
that, we used Taylor diagrams and the probability density function (PDF). The Taylor
diagram is a polar diagram in which the correlation is the angular coordinate and the
standard deviation of the database is the radius. The standard deviation of the observations
is indicated as an open circle on the X axis. The “perfect estimate” has a correlation of 1
and the same standard deviation as the observations. Thus, one of the greatest advantages
of Taylor diagrams is that they graphically summarize how close the observed data are
to the estimates from each database, with the similarity between patterns quantified in
terms of the correlation and the amplitude of their variations, represented by the standard
deviations [85], satisfying the relationship in Equation (6). Probability density functions
were also applied to each homogeneous group to help verify how well each database
represents the annual cycle of monthly rainfall [31].

r =
∑N

i=1

(
si −

=
s
)
×
(

xi −
=
x
)

√
∑N

i=1

(
si −

=
s
)2
×
√

∑N
i=1

(
xi −

=
x
)2

(3)

bias =
1
N

N

∑
i=1

(si − xi) (4)

RMSE =

√√√√ 1
N

N

∑
i=1

(si − xi)
2 (5)

SDE2 = σ2
S + σ2

x − 2σSσxr (6)

where N is the total number of elements in the series, si is the variable extracted from
each data source time series at each time i, xi is the time series of the observations
at each time i, $overset=s and $overset=x are the respective average values, and σ is
the standard deviation.

3. Results
3.1. Description of the Current Climatology

Figure 3 shows the seasonal climatology for the period 1981–2020, for the quarters
December–January–February (DJF, Figure 3a), March–April–May (MAM, Figure 3b), June–
July–August (JJA, Figure 3c) and September–October–November (SON, Figure 3d). It can
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be seen that the BLA does not have a homogeneous rainfall regime: although it shows little
seasonality in the far west, there is strong seasonality in the southern sector. The average
annual rainfall in the BLA as a whole is around 2000 mm, ranging from 1500 mm/year in
the eastern sector to 3500 mm/year in the northwest [1,86].
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Figure 3. Climatology (mm) of precipitation (1981–2010) in the BLA for the quarters:
(a) December–January–February (DJF); (b) March–April–May (MAM); (c) June–July–August (JJA);
and (d) September–October–November (SON). The states corresponding to the acronyms can be seen
in Figure 1.

The BLA has almost permanent convection coupled to an equatorial low-pressure zone,
which is more pronounced during DJF. In this quarter, there is a well-defined high-level
anticyclone centered in Bolivia, the “Bolivian High”, which favors convection in the south–
central part of the BLA and which, together with the South Atlantic Convergence Zone
(SACZ), a wide and long area of mass convergence with a northwest–southeast orientation
that extends from the BLA to the South Atlantic Ocean, causes significant accumulations of
precipitation [87].

In MAM, convection is regulated by large-scale atmospheric circulations, including
the Hadley circulation and the Intertropical Convergence Zone (ITCZ), which is responsible
for most of the rainfall in the center–north of the BLA in this quarter, due to its more
southerly position.

The ITCZ migrates northwards in the JJA quarter, resulting in rainfall concentrated in
the far north of the BLA, benefiting the state of Roraima in particular. The center–south of
the BLA experiences its driest period during this quarter [5,86,88–93].

In SON, at the height of spring in the southern hemisphere, the center–south of the
BLA experiences the transition from the dry period in JJA to the rainy period in DJF, when
convective activity begins and reaches its maximum in summer (DJF).

The modes of variability that most strongly influence the dynamics of Amazon rainfall
are El Niño–Southern Oscillation and the sea surface temperature gradient over the tropical
Atlantic, including the Caribbean Sea area [86,94–98].
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Figure 4 comparatively shows the average annual rainfall observed in the BLA
(Figure 4a) and in each database (Figure 4b–j). The western BLA is the area with the
greatest accumulation of precipitation, especially in the state of Amazonas, with average
accumulations that can exceed 4000 mm (Figure 4a). The lowest values are observed in the
area between the states of Maranhão, most of the state of Pará, Tocantins, south–central
Mato Grosso, north of Roraima and Rondônia, with annual rainfall ranging from 1000 mm
to 2500 mm. This spatial feature is well captured by all data sources, and some sources
have difficulty estimating the highest rainfall volume in western Amazonia, especially CPC
(Figure 4e) and CRU (Figure 4f). Another area with a voluminous accumulation of annual
rainfall is observed in the northern Amazon between the states of Amapá and Pará. In this
area, CMOPRH (Figure 4d) and ERA5Land (Figure 4g) underestimated the observations.
In general, the less rainy part of the BLA was best estimated by all data sources between
the states of Maranhão and Tocantins. In the seasonal analysis, all data sources present
climatologies with a spatial distribution similar to that of the observations. Figures S1–S4
in the Supplementary Material (a—Description of current climatology: seasonal analysis)
show the accumulated precipitation from each data source, at the seasonal level, for the
DJF, MAM, JJA and SON quarters, accompanied by a description of these results.
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Figure 4. Mean annual accumulated precipitation (mm) in the BLA: (a) observed data, (b) PERSIANN-
CDR, (c) CHIRPS, (d) CMORPH, (e) CPC, (f) CRU, (g) ERA5Land, (h) GPCC, (i) IMERGE and
(j) Xavier. The states corresponding to the acronyms can be seen in Figure 1.

3.2. Cluster Analysis

The cluster analysis was performed with the observed monthly data, providing the
division of the BLA into homogeneous precipitation regions. Six homogeneous groups
were identified when the sum of squares remained approximately constant (Figure 5a).
This number of groups is ideal for the subdivision of the BLA because with only six groups,
it is possible to identify a very peculiar region located in the extreme north of the BLA,
situated between the state of RR and the extreme northwest of the MA. This result agrees
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with that of [99], who tested 1 to 6 groups and only identified this homogeneous region
when they subdivided the BLA into six clusters, which exceeds the BLA limits towards
Venezuela according to [100].

Climate 2023, 11, x FOR PEER REVIEW 10 of 29 
 

 

region when they subdivided the BLA into six clusters, which exceeds the BLA limits 
towards Venezuela according to [100]. 

 
Figure 5. Cluster number (a) and dendrogram (b) for the six groups based on the monthly rainfall 
of the cluster analysis, considering the Euclidean distance and the Ward connection method for the 
BLA. The red line is the cut-off line that delimits the number of groups. 

The centroids of the points of each homogeneous region were grouped and 
demonstrated through a dendrogram (Figure 5b), with the respective cut-out (red line) 
used to divide the number of groups according to the Euclidean distance method and the 
hierarchical grouping by the Ward’s binding technique. The number of points belonging 
to each subregion is shown in Table 2. 

Table 2. Absolute and relative frequency of the number of stations belonging to the homogeneous 
subregions determined according to the monthly rainfall for the BLA. 

Groups Station Numbers Relative Frequency Average Annual Precipitation (mm) 
1 147 30.63 1843 
2 53 11,04 3055 
3 115 23.96 1704 
4 67 13.96 2630 
5 88 18.33 2477 
6 10 2.08 1899 

Group 1 has the largest number of stations (Table 2) and covers the entire southern 
BLA, from the southern end of Maranhão, south-central Tocantins, part of the 
southeastern end of Pará, and almost all points in the Mato Grosso and Rondônia, 
including rain gauges in southern Acre (Figure 6a). Group 6 is the smallest group, with 
only 10 rainfall stations located in Roraima. The average annual rainfall observed between 
the stations ranges from 1704 mm (Group 3, in east–central BLA) to 3055 mm (Group 2, in 
west–central Amazonas). 

Figure 5. Cluster number (a) and dendrogram (b) for the six groups based on the monthly rainfall of
the cluster analysis, considering the Euclidean distance and the Ward connection method for the BLA.
The red line is the cut-off line that delimits the number of groups.

The centroids of the points of each homogeneous region were grouped and demon-
strated through a dendrogram (Figure 5b), with the respective cut-out (red line) used to
divide the number of groups according to the Euclidean distance method and the hierarchi-
cal grouping by the Ward’s binding technique. The number of points belonging to each
subregion is shown in Table 2.

Table 2. Absolute and relative frequency of the number of stations belonging to the homogeneous
subregions determined according to the monthly rainfall for the BLA.

Groups Station Numbers Relative Frequency Average Annual
Precipitation (mm)

1 147 30.63 1843
2 53 11,04 3055
3 115 23.96 1704
4 67 13.96 2630
5 88 18.33 2477
6 10 2.08 1899

Group 1 has the largest number of stations (Table 2) and covers the entire southern
BLA, from the southern end of Maranhão, south-central Tocantins, part of the southeastern
end of Pará, and almost all points in the Mato Grosso and Rondônia, including rain gauges
in southern Acre (Figure 6a). Group 6 is the smallest group, with only 10 rainfall stations
located in Roraima. The average annual rainfall observed between the stations ranges from
1704 mm (Group 3, in east–central BLA) to 3055 mm (Group 2, in west–central Amazonas).

There are marked differences in the annual cycle of each group, with strong seasonality
(Figure 6b). In Group 1, rainfall is concentrated between SON and DJF, with the driest
season between the groups from May to September. The Group 2 has its own characteristic
among the groups, which is the short and mild dry season with an apex occurring in
August, although with an accumulated average higher than 150 mm, in addition to having
a monthly average higher than 250 mm from December to May. Group 3 and Group 4
have behavior similar to Group 1, with a dry season in winter and rainy season in spring–
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summer, although they differed in the monthly accumulated values, which are higher
in Group 4 compared to Group 3, exceeding 350 mm monthly between December and
March, while in Group 3 these values range from 150 mm to just over 300 mm in March,
the wettest month. The dry period of Group 5 was shifted relative to Group 1, Group 2,
Group 3 and Group 4 for the winter–spring months, with the rainy season concentrated
in the summer–autumn, with monthly average values greater than 400 mm in March and
April. The Group 6 differs from all groups, with its rainy season between late autumn and
early spring, from April to September, with a peak from May to July, with average monthly
rainfall above 300 mm, and a strong dry season in summer.
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3.3. Intercomparison between Databases and Observations in BLA—Regional Analysis

In this section, we present spatial maps of three skill indices obtained from the com-
parison between monthly observations and estimates: bias, RMSE and correlation.

Each of these indices, individually, cannot serve as a parameter to define the main
characteristics of each database and infer which of them has the best performance in BLA,
so they must be analyzed together. Bias, for example, which can also be called systematic
error, may not be decisive in showing such errors if positive and negative differences tend
to cancel each other out.

On the other hand, high and positive correlations can be a false indicator of data
quality, since considerable biases may not affect it, since it is enough for the estimated
series to behave similarly to the observed one for there to be a high correlation, even with a
high bias.

While the RMSE has the advantage of estimating the error of the estimate in the same
unit as the variable and giving greater weight to the larger errors, due to the squared
exponent that the error assumes, this metric is very sensitive to outliers (discrepant values)
and, if there are many significant errors in its analysis, this metric could be extrapolated.
The following subtopics, therefore, present the analysis of bias, RMSE and correlation in
order to see how each result can help in the individualized assessment of the performance
of each database.

3.3.1. Skill Assessment Using Bias

Figure 7 shows the consolidated monthly bias, reflecting the balance of areas with
positive and negative biases observed during the seasons (see Supplementary Material),
where it can be seen that on average, more regions have a predominance of underestimated
precipitation, which can reach 200 mm/month in many areas of the BLA. The databases that
stand out as having the most significant areas with a positive bias are the PERSIANN-CDR,
CMORPH, ERA5Land and IMERGE databases (Figure 7a,c,f,h). Among all the maps, there
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are more areas in the BLA with slight deviations between −50 mm and 50 mm/month for
CHIRPS, GPCC and Xavier (Figures 7b, 7g and 7i, respectively).
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Figure 7. Monthly bias (mm) estimated by each database compared to observations: (a) PERSIANN-
CDR, (b) CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h) IMERGE and
(i) Xavier.

Figures S5–S8 in the Supplementary Material (b—Skill assessment using bias: seasonal
analysis) show bias between accumulated precipitation from each data source and the
respective observations for the DJF, MAM, JJA and SON quarters, accompanied by a
description of these results.

3.3.2. Skill Assessment Using RMSE

In studies that involve comparisons between actual and estimated data, it is advisable
to also analyze the RMSE, since it has the advantage of penalizing errors of greater magni-
tude, i.e., as the differences between observation and estimate increase, RMSE increases.
This is useful for identifying spatial patterns that reveal where an estimate truly tends to
be inaccurate.

Figure 8 shows the results of the monthly RMSE between the databases and the
observation. This index has the advantage of penalizing errors of greater magnitude; i.e.,
as the differences between the observation and the estimate increase, the RMSE increases.
This is useful for identifying spatial patterns that reveal where an estimate really tends to
be inaccurate. In monthly terms, the smallest errors in shades of brown (ranging from 20
to 125 mm), for all data sources, are observed in the east of the BLA, between the states
of Maranhão, Tocantins, central–eastern Pará and large portions of Mato Grosso with the
exception of its southernmost tip, and in Roraima and Amapá in the extreme north of the
BLA. In the west of the BLA, mainly between the states of Amazonas, southwest Pará
and portions of Acre and Mato Grosso, there are the nuclei with the highest RMSE values,
from 125 to 300 mm. In absolute average values, Xavier (Figure 8i) with a global average
of 90 mm is the database with the lowest RMSE values, and at the other extreme is CRU
(Figure 8e) with 117 mm.
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Figure 8. Monthly RMSE (mm) of each database compared to the observations: (a) PERSIANN-CDR,
(b) CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h) IMERGE and (i) Xavier.

Figures S9–S12 in the Supplementary Material (c—Skill assessment using RMSE:
seasonal analysis) show RMSE between accumulated precipitation from each data source
and the respective observations for the DJF, MAM, JJA and SON quarters, accompanied by
a description of these results.

3.3.3. Comparison Using Pearson Correlation

This result shows the influence that observations have on the construction of grids,
since a large part of the observed data from the ANA and INMET are used in the con-
struction of the grid analyzed by Xavier [33], while INMET observations are used in the
construction of the GPCC grid and to correct the bias of satellite estimates in CHIRPS. How-
ever, these observations are also used, for example, in the construction of the CPC and CRU
grids, the latter being the data source with the worst performance in terms of correlation
values in most seasons, respectively (see Supplementary Material). This performance is
reflected in the overall average correlations obtained for the BLA from the spatialized data
in Figure 9. Among the data sources, Xavier and GPCC (Figure 9i,g), have the highest
average correlations in the area with values of 0.83 and 0.80, respectively, while CRU and
ERA5Land have the lowest values, with 0.70 and 0.73, respectively.

An important feature that can be seen from the correlation fields is that the high
values observed in the far north, east and south of the BLA corroborate the fact that the
databases are efficient at correctly capturing seasonality, as these are the areas of the BLA
where seasonality is most prominent, as shown in Figure 3. On the other hand, the lowest
correlation values are observed in the area related to Group 2 (Figure 6), precisely where
seasonality is more pronounced in the BLA, and rainfall is more abundant throughout
the year.
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Figure 9. Global correlation between each database and observations: (a) PERSIANN-CDR,
(b) CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h) IMERGE and (i) Xavier.

Figures S13–S16 in the Supplementary Material (d—Comparison using Pearson’s
correlation: seasonal analysis) show correlations between accumulated precipitation from
each data source and the respective observations for the DJF, MAM, JJA and SON quarters,
accompanied by a description of these results.

To help verify which sources perform best, we analyzed these parameters, summarized
in Taylor diagrams below, as well as PDFs related to the homogeneous regions identified in
Section 3.2.

3.4. Intercomparison between Databases and Observations in BLA on a Monthly
Scale—Subregional Analysis

Figure 10 shows the Taylor diagrams for each homogeneous region, obtained from the
continuous monthly time series of each database and the observation (series of the average
of all the elements in each group). Although this procedure maximizes parameters such
as correlation, brings the standard deviations of the observations and data sources closer
together, and proportionally reduces error values, it makes it easier for us to distinguish
which databases perform better compared to the observations, which are our reference on
the X-axis, with SDE (Standard Deviation of the Error) = 0, r =1 and the respective standard
deviation of the observation series.

It can be seen that there is a predominance of lower standard deviations of the
databases compared to the observations for all groups. As σ is a measure of dispersion that
indicates the degree of variation of the data around the mean, data sources with σ lower
than the observation data indicate that their estimated data for the observation points of
each group show less variation than the latter, which allows us to infer that these sources
are less efficient at characterizing the upper extremes of their respective distributions.
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Figure 10. Taylor diagram for the six homogeneous precipitation groups of BLA: (a) Group 1,
(b) Group 2, (c) Group 3, (d) Group 4, (e) Group 5 and (f) Group 6. The diagram shows the perfor-
mance ranking of each database compared to the observation, with their respective abbreviations.
The red contours indicate the SDE values in relation to the observed central value, which is 0. The
standard deviation of the field estimated by the databases on the Y-axis is proportional to the radial
distance from the origin, also highlighted by dotted red lines. The transparent circle on the X-axis
represents the observations.
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The exception is the PERSIANN-CDR data in Group 1 (Figure 10a), ERA5Land in
Group 2 (Figure 10b), CHIRPS, ERA5Land, PERSIANN-CDR and IMERG in Group 3
(Figure 10c), ERA5Land in Group 5 (Figure 10e), and ERA5Land and CRU in Group 6
(Figure 10f). For Group 4 (Figure 10d), all the databases tend to have a lower variance than
the observations.

The dashed red lines inside the diagram in relation to the X-axis indicate the SDE
values, which represent the difference between the databases and the observations, on
the X-axis labeled “OBS”. Taking the distance to “OBS” as a reference for all the groups,
Xavier had the lowest SDE values: 11 mm/month for Group 1, 24 mm/month for Group
2, 8 mm/month for Group 3, 32 mm/month for Group 4, 17 mm/month for Group 5 and
21 mm/month for Group 6. At the other extreme, with the highest SDE values, there was
CMORPH with 32 mm/month for Group 1 and 54 mm/month for Group 2, CRU with
27 mm/month for Group 3, 42 mm/month for Group 5 and 52 mm/month for Group 6,
and CPC with 58 mm/month for Group 4.

However, measures such as correlation in the Taylor diagram do not take bias into
account. So to complement this information, we present relevant data from the three
main parameters used in this research to identify database performance, bias, r, RMSE
and the SDE obtained at seasonal and annual levels, shown in Tables 3 and 4, respectively.
These values were obtained from the average of these parameters for each homogeneous
group, in order to summarize this information in a single table. The higher values for some
parameters such as SDE, for example, at the seasonal and annual level, are compatible
with the higher accumulated values in these time intervals and, respectively, the greater
differences between observed and estimated average values for each group.

Table 3. For each database compared to the observation, bias, Pearson’s correlation (r), RMSE and
SDE obtained from the averages of the homogeneous groups in the DJF, MAM, JJA, SON quarters.

DJF Quarter MAM Quarter JJA Quarter SON Quarter

Database bias r RMSE SDE bias r RMSESDE bias r RMSESDE bias r RMSE SDE

Xavier −59 0.87 77 45 −49 0.90 65 40 −20 0.91 33 23 −46 0.84 62 40
CHIRPS −46 0.77 96 61 −33 0.87 72 52 −17 0.85 41 32 −31 0.83 58 43
GPCC −75 0.78 96 56 −73 0.71 100 67 −41 0.79 55 36 −56 0.78 73 45

ERA5Land 2 0.73 100 70 10 0.82 101 66 −24 0.73 59 44 −12 0.69 71 57
PERSIANN-CDR −1 0.65 106 79 −16 0.66 100 78 −16 0.81 49 38 −30 0.75 61 49

IMERG −14 0.56 114 89 −36 0.64 99 83 −21 0.65 60 51 3 0.64 69 58
CMORPH −110 0.61 140 77 −126 0.69 148 75 −126 0.67 132 46 39 0.74 76 51

CRU −46 0.42 130 92 −33 0.44 123 100 −9 0.60 67 51 −38 0.56 80 62
CPC −130 0.44 170 108 −133 0.51 169 106 −63 0.58 94 67 −82 0.48 110 72

Table 4. For each database compared to the observation, bias, Pearson’s correlation (r), RMSE and
SDE obtained from the averages of the homogeneous groups in the in the annual period.

Annual

Database bias r RMSE SDE

Xavier −166 0.85 213 118
CHIRPS −118 0.77 227 144
GPCC −237 0.67 295 163

ERA5Land −16 0.63 263 175
PERSIANN-CDR −55 0.52 268 202

IMERG −58 0.47 268 215
CMORPH −314 0.49 395 198

CRU −116 0.35 310 216
CPC −396 0.22 515 316
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On the other hand, the average values obtained for the BLA bias are more random.
In the seasonal analysis shown in Table 3, it is possible to identify some databases that
consistently underestimate the observed rainfall, with significant values in all quarters,
such as the CPC, which is the database that most underestimates the average annual
accumulated rainfall in the BLA (Table 4), followed by CMORPH, which underestimates
rainfall in DJF, MAM and JJA, but overestimates it in SON. From this parameter alone,
we could infer that the most accurate databases would be ERA5Land, PERSIANN-CDR
and IMERG. However, it is known that considerable differences between estimates and
observations can cancel each other out over a time series, which shows that this parameter,
which is important, needs to be analyzed together with the other indices used to assess the
performance of the databases.

The same time series used to generate and analyze the Taylor diagrams were used to
generate probability density graphs and compare them with those of the observation to
assess whether each source captures the basic characteristics of the observed distribution.
For Group 1, Figure 11 shows the observed PDF for each month, followed by the PDFs from
the other data sources. Especially in the driest months of the year, between May and August,
the PDF follows a normal distribution, a characteristic that is captured relatively well by
the data sources. However, in the wetter months, it is noticeable that this distribution often
has bimodal, trimodal or even more biased characteristics. The CRU (Figure 11g) clearly
underestimates the precipitation of the wettest months of the year. Xavier (Figure 11b)
maintains PDFs that are extremely similar to the observed PDFs, as do CHIRPS and GPCC,
which differ in their December bimodal distributions compared to the observed trimodal
distributions, in addition to the smoothing of the January PDF that does not capture the
observed trimodal behavior. ERA5Land, PERSIANN-CDR, CMORPH and IMERG differ
in their PDFs from those observed in the first two months of the year, with unimodal and
bimodal distributions more normalized than those observed.

Many of the characteristics described in the PDFs of Group 1 are observed for those
of the other groups, which are presented and described in the Supplementary Material
(Figures S17–S21) of the topic e—PDF analysis, of the other homogeneous groups (Group 2
to Group 6).
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Figure 11. For Group 1, probability density of monthly rainfall (mm) for (a) Observations, (b) Xavier,
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(j) IMERG.

4. Discussion

This study provides a comprehensive assessment of the estimated rainfall for the
BLA by nine different data sources classified into three categories: based solely on rainfall
(CPC, CRU, GPCC and Xavier), based on reanalysis (ERA5Land) and based on remote
sensing (CHIRPS, CMORPH, IMERG and PERSIANN-CDR), although some of these, such
as CHIRPS, undergo a process of bias correction using in situ observations. From a time
series of 480 observation points on the surface, duly controlled and without failures, we
compared the spatial characteristics and errors of each source at monthly, seasonal and
annual scales in a regional analysis, for the entire BLA, and sub-regionally, for six groups
with homogeneous rainfall.

All precipitation products represent the annual cycle of precipitation in the BLA, with
greater and lesser accumulation in the northwest and northeast portions. This characteristic
was observed by other authors, such as [86], who evaluated eight datasets based on
remote sensing versus a gridded analysis, known as HYBAM (HYdro-geochemistry of the
AMazonian Basin). An important difference between our study and that of [86] is related
to the observed data, in our case from 480 rainfall stations/stations that more reliably
represent extremes and areas of higher/lower accumulated rainfall, i.e., we followed an
inverse path, instead of comparing rainfall grids. For precipitation from satellites with a
grid constructed from observations, we extracted a specific time series for each observation
point from all gridded analyses using the simple bilinear interpolation method. This



Climate 2023, 11, 241 19 of 28

method allowed us to verify that despite the sources affecting the areas of highest/smallest
accumulations annually and seasonally, most databases underestimate precipitation in the
BLA area, with CPC and CMORPH being the sources with the highest bias precipitation
in the BLA in regard to the observations, −306 mm and −304 mm, respectively, and
ERA5Land and PERSIANN-CDR with the smallest differences, −125 mm and −104 mm,
respectively, while ERA5Land and PERSIANN-CDR alternate in having more areas in the
BLA with positive and negative biases.

The bias, as illustrated in Figure 7, is predominantly negative in several areas of
the BLA, with Xavier, CHIRPS, CRU, GPCC, CPC and CMORPH standing out and the
latter two databases showing the most intense negative values. Other data sources have
areas of positive bias, such as PERSIANN-CDR, ERA5Land and IMERG, characterizing
overestimation of precipitation. These details shown spatially are corroborated by the
results in Table 4 for the average annual bias values estimated by each database for the BLA
as a whole.

As illustrated in the figures for the RMSE, the largest errors are observed in central–
southern Amazonas, southwestern Pará, northern and southern Mato Grosso and, for
some databases such as CMORPH, in the far north in Pará and Amapá. This result was
also observed in [86]. When evaluating precipitation estimated by CHIRPS for a smaller
set of observations than those used in this study, Cavalcante et al. [101] found that in
addition to this source underestimating precipitation in the rainiest months, it consequently
underestimates extreme precipitation indices with a spatial distribution of errors similar
to those found in this and other studies [86,102]. These results are corroborated by the
spatial evaluation of correlations in the BLA. This parameter is fundamental for initially
identifying where the best rainfall estimates come from.

As shown in Figure 9, Xavier stands out among the data sources as the one with the
highest values of r, followed by GPCC and CHIRPS, while CRU and ERA5Land have
observably larger areas, with correlations lower than 0.4. These results are indicative, but
not yet decisive, when it comes to stating that certain databases are more efficient than
others. These results were generated according to the total time of data made available
by each source, i.e., for six of these we can count on 40 years, as shown in Table 1 (Xavier,
CHIRPS, CPC, CRU, GPCC and ERA5Land), while we have 38 years for PERSIANN-CDR,
23 years for CMORPH and 21 years of data for IMERG. So, a direct comparison between
the databases based on this spatial analysis will not be entirely honest.

Although the spatial analyses involving the entire BLA are useful in several aspects, it
was necessary to subdivide this large region into smaller areas according to homogeneous
groups of monthly accumulated precipitation to verify with better precision the data
sources that best represent the precipitation in each subarea of the BLA. The cluster analysis
showed that the BLA should be divided into six homogeneous groups called G1 to G6,
like [86,99,100,103], who also used only six groups. It is possible to identify a region with
climatic characteristics totally different from the others, located in the extreme north of the
BLA, with a rainy season centered in winter, between the state of Roraima and extreme
northwest of Amazonas (G6). Sapucci et al. [86] showed that all the remote sensing data
sources used in their study allowed the identification of the same homogeneous regions
as the grid analysis used as a reference, an indication that the sources represent the basic
spatiotemporal characteristics of accumulated precipitation well. In our study, we assumed
this premise, and for the six homogeneous groups obtained with the observations, we
constructed unique time series representative of each group to better identify which group
would be the most accurate in a skill ranking, based on Taylor diagrams, RMSE values, bias
and correlation.

Based on the ranking position of each group, we assigned decreasing points from 10 to
2 according to the position in this ranking; for example, as there were nine data sources, for
the source with greater skill in each group, it received a value score of 10, the second source
a score of 9, and so on, until the last source in the ranking, which in ninth position received
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a score of 2, according to Table 5 for Taylor diagrams, Table 6 for Pearson correlation, Table 7
for RMSE and Table 8 for bias.

Table 5. For each homogeneous group (Group 1 to Group 6), the skill ranking and respective score
are relative to the position in the ranking for each data source, based on Taylor diagrams (SDE).

Ranking Score Group 1 (G1) Group 2 (G2) Group 3 (G3) Group 4 (G4) Group 5 (G5) Group 6 (G6)

1 10 XAV XAV XAV XAV XAV XAV
2 9 GPC CHI CHI ERA CHI CHI
3 8 CHI ERA GPC CHI GPC GPC
4 7 ERA GPC PER GPC PER PER
5 6 PER PER ERA PER ERA IME
6 5 CRU CRU IME IME IME ERA
7 4 IME IME CMO CRU CPC CPC
8 3 CPC CPC CPC CMO CMO CMO
9 2 CMO CMO CRU CPC CRU CRU

Table 6. For each homogeneous group (Group 1 to Group 6), the skill ranking and respective score
are relative to the position in the ranking for each data source, based on Pearson correlation (r).

Ranking Score Group 1 (G1) Group 2 (G2) Group 3 (G3) Group 4 (G4) Group 5 (G5) Group 6 (G6)

1 10 XAV XAV XAV XAV CHI XAV
2 9 GPC CHI CHI CHI XAV GPC
3 8 CHI GPC GPC ERA ERA CHI
4 7 PER ERA CMO GPC GPC PER
5 6 ERA PER PER PER CMO CMO
6 5 CMO CMO ERA IME PER ERA
7 4 CRU IME IME CMO IME CRU
8 3 IME CRU CRU CPC CPC IME
9 2 CPC CPC CPC CRU CRU CPC

Table 7. For each homogeneous group (Group 1 to Group 6), the skill ranking and respective score
are relative to the position in the classification of each data source, based on the RMSE.

Ranking Score Group 1 (G1) Group 2 (G2) Group 3 (G3) Group 4 (G4) Group 5 (G5) Group 6 (G6)

1 10 XAV ERA XAV XAV CHI XAV
2 9 CHI IME GPC ERA XAV CHI
3 8 GPC PER CHI CHI GPC PER
4 7 CRU CHI CMO IME ERA IME
5 6 PER XAV CRU PER IME GPC
6 5 ERA GPC PER CMO PER CRU
7 4 IME CMO ERA CRU CRU ERA
8 3 CMO CRU IME GPC CPC CMO
9 2 CPC CPC CPC CPC CMO CPC

For the results based on Taylor diagrams in each homogeneous region, Xavier’s
gridded analysis was the source with the greatest ability to relate the observations, receiving
a score of 10 for all groups. CHIRPS can be considered the second best data source, with
the highest score behind Xavier in five groups (Group 2 to Group 6). GPCC had the
third best overall performance and ERA5Land the fourth. In an intermediate position is
PERSIANN-CDR, and occupying the last four positions in performance are IMERG, CRU,
CPC and CMORPH. This ranking is easily obtained by calculating the weighted average
of each source according to its score in each group. Let us look at the examples of Xavier
and CHIRPS. Xavier, for occupying the first position in all groups, received the following
average: Score—Xavier = (10 + 10 + 10 + 10 + 10 + 10)/6 = 10. For CHIRPS, it was the
following: Score—CHIRPS = (8 + 9 + 9+9 + 9+9)/6 = 8.8, and so on. By carrying out the
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same procedure for the other parameters, r, RMSE and bias, we have the re-result for each
parameter and the final consolidated result shown in Table 9, with the respective final
ranking of skill between the sources based on the average of the general scores obtained in
each parameter.

Table 8. For each homogeneous group (Group 1 to Group 6), the skill ranking and respective score
are relative to the position in the classification of each data source, based on the bias.

Ranking Score Group 1 (G1) Group 2 (G2) Group 3 (G3) Group 4 (G4) Group 5 (G5) Group 6 (G6)

1 10 CHI ERA XAV ERA CRU PER
2 9 CRU IME GPC XAV IME IME
3 8 PER PER CMO CMO CHI XAV
4 7 CMO CHI CRU CHI ERA CHI
5 6 ERA CMO CHI IME XAV CRU
6 5 XAV XAV ERA PER GPC GPC
7 4 IME GPC PER CRU PER CPC
8 3 GPC CRU IME GPC CPC ERA
9 2 CPC CPC CPC CPC CMO CMO

Table 9. Ranking of general skill among the different data sources for the BLA based on the position
and respective score of each homogeneous group. The first four are highlighted in blue, the middle
ones in black and the last four ones in red.

Taylor Diagrams (SDE) Pearson Correlation (r) RMSE bias Final Result

Data
Source

General
Score

Data
Source

General
Score

Data
Source

General
Score

Data
Source

General
Score

Data
Source

General
Score

Xavier 10.0 Xavier 9.8 Xavier 9.2 Xavier 7.2 Xavier 9.0
CHIRPS 8.7 CHIRPS 8.8 CHIRPS 8.5 CHIRPS 7.5 CHIRPS 8.4
GPCC 7.8 GPCC 8.0 GPCC 6.5 GPCC 4.8 GPCC 6.8

ERA5Land 6.8 ERA5Land 6.5 ERA5Land 6.5 ERA5Land 6.8 ERA5Land 6.7
PERSIANN 6.5 PERSIANN 6.2 PERSIANN 6.3 PERSIANN 6.5 PERSIANN 6.4

IMERG 4.8 CMORPH 5.5 IMERG 6.0 IMERG 6.7 IMERG 5.8
CRU 3.3 IMERG 3.8 CMORPH 4.0 CRU 6.5 CMORPH 4.4
CPC 3.2 CRU 3.0 CRU 4.8 CPC 2.5 CRU 3.4

CMORPH 2.8 CPC 2.3 CPC 2.2 CMORPH 5.5 CPC 3.2

The results summarized in Table 9 clearly show which sources tend to estimate the
accumulated average monthly rainfall most accurately in each homogeneous group, as
well as in the BLA.

We expected the grid-based analysis of [33] to occupy a prominent place among the
sources, because it uses a large part of the observational database we used, mainly the
ANA rainfall database.

The other data sources based on gridded analysis only use data from official INMET
stations that make up the Global Historical Climatology Network (GHCN) [104], as well as
sources based on remote sensing but which make bias corrections using the GHCN base,
such as CHIRPS and PERSIANN-CDR.

All the data sources used in this study have been the subject of studies worldwide that seek
to evaluate their performance, individually or intercomparably [2,6,56,59,65,86,102,105–111]. In
the Amazon basin, Paca et al. [98] used CHIRPS to study the variability in rainfall trends
from 1981 to 2017, showing different areas with increases and decreases in this period.
A similar analysis was performed by [110] for spatiotemporal rainfall trends from 1998
to 2015 in the BLA with data from the TRMM, which was integrated into the IMERG.
After validating the CHIRPS for station points in the BLA, Cavalcante et al. [101] used it
to investigate extreme rainfall indices, which agrees with our study in its finding that the
correlations between CHIRPS and observations were considerably lower in the northwest
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sector of the BLA (fact found for databases investigated in this study). Sapucci et al. [86]
showed that CHIRPS and PERSIANN-CDR were among the precipitation sources with the
best performance for studies on the intraseasonal time scale in the Amazon basin, a result
similar to those found in this study.

Unlike the study by [86], which evaluated only remote sensing sources as the main
data input for grid construction, we show that there is no hierarchy of skill between
gridded analyses based solely on surface observations, or coming from reanalysis or
involving remote sensing. Here, we show that among the four best databases, there are two
based solely on rainfall (Xavier and GPCC), one based on remote sensing but calibrated
with surface observations (CHIRPS) and one from reanalysis, ERA5Land. The remotely
sensed data source PERSIANN-CDR occupied an intermediate position in terms of skill
among the sources, while the last four places in terms of skill also mix, as for the first four,
two gridded analyses based on rainfall (CRU and CPC), one based on remote sensing
(IMERG) and one based on sensing with bias correction by observations (CMORPH).

A possible explanation for the low performance of IMERG and CMORPH for most
of the BLA was raised by [102], which could be attributed to the difficulty in estimating
precipitation from warm clouds in the BLA [112–114], whose cloud top temperatures are
higher than 0 ◦C, while the algorithms on board the sensors are calibrated to detect and
estimate precipitation more easily from the duration of cold clouds, whose cloud top
temperatures are lower than 0 ◦C.

As for CRU and CPC, we should investigate what could be behind the low performance
of these two gridded analyses. One assumption is that CPC assimilates precipitation data
from INMET’s automatic stations, which, when the precipitation accumulation counting
sensor malfunctions, report zeros that inflate the time series for long periods, until they are
detected and corrected, leading to underestimates and errors in the process of constructing
a gridded analysis.

The similar performance of CPC and CMORPH is understandable, as CMORPH corrects
its precipitation estimate using a probability density function based on daily CPC measure-
ments [23,63,115]. Likewise, as shown in [115], the PERSIANN-CDR, which uses an improved
version of precipitation estimation from infrared and passive microwave (PMW) satellite
images of the one used by CMORPH via artificial neural networks, has its estimates adjusted
by the product of the GPCC monthly rainfall to maintain its consistency and reduce bias while
preserving the high spatial resolution of the daily rainfall estimates [116,117]. This may be a de-
termining factor for the good performance that PERSIANN-CDR showed in the BLA, since
the GPCC obtained the third overall performance among the nine databases evaluated.

5. Conclusions

In this study, the performances of nine databases arranged in regular grids under
different spatial resolutions were evaluated compared to rainfall records from 480 stations
in the BLA. The main conclusions of this study are listed as follows:

(1) The main climatological characteristics of rainfall in the BLA are well represented by
the data sources. The spatial distribution and seasonality follow the observed pattern.
However, the heterogeneity of the observed patterns is not well captured, especially
compared to the observed nuclei of maximum accumulated rainfall, which in the data
sources tend to be smoothed out.

(2) The BLA should be divided into six pluviometrically homogeneous regions, which
facilitates the analysis of precipitation and the skill of different databases in this vast
region of the planet.

(3) There is a tendency to underestimate rainfall in the BLA.
(4) The largest errors between database estimates are concentrated in the northwestern

sector of the BLA, and the smallest in the northeastern sector.
(5) Skill rankings based on Taylor diagrams, Pearson’s correlation and RMSE made it

possible to better verify the hierarchy of skill between the different data sources
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compared to the observations for each homogeneous group, where it was possible to
observe the good performance, especially of Xavier and CHIRPS.

(6) Based on a skill ranking, we identified, in general, that Xavier, CHIRPS, GPCC and
ERA5Land are the four sources that best represent precipitation in the BLA, with CRU
and CPC in the last positions.

Although our results clearly show a degree of hierarchy based on the skill of each
database in the BLA, the choice of a data source must be correlated to the type of product
you want to obtain for the BLA, because there are advantages and disadvantages among
all the sources mentioned, without taking into account their position in the skill ranking.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cli11120241/s1, Figure S1. Average accumulated precipitation
(mm) in DJF in the BLA: (a) observed data, (b) PER-SIANN-CDR, (c) CHIRPS, (d) CMORPH, (e)
CPC, (f) CRU, (g) ERA5Land, (h) GPCC, (i) IMERGE and (j) Xavier; Figure S2. Average accumulated
precipitation (mm) in MAM in the BLA: (a) observed data, (b) PER-SIANN-CDR, (c) CHIRPS,
(d) CMORPH, (e) CPC, (f) CRU, (g) ERA5Land, (h) GPCC, (i) IMERGE and (j) Xavier; Figure S3.
Average accumulated precipitation (mm) in JJA in the BLA: (a) observed data, (b) PER-SIANN-
CDR, (c) CHIRPS, (d) CMORPH, (e) CPC, (f) CRU, (g) ERA5Land, (h) GPCC, (i) IMERGE and (j)
Xavier; Figure S4. Average accumulated precipitation (mm) in SON in the BLA: (a) observed data,
(b) PER-SIANN-CDR, (c) CHIRPS, (d) CMORPH, (e) CPC, (f) CRU, (g) ERA5Land, (h) GPCC, (i)
IMERGE and (j) Xavier; Figure S5. Precipitation bias (mm) estimated by each database compared
to the DJF observations: (a) PERSIANN-CDR, (b) CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f)
ERA5Land, (g) GPCC, (h) IMERGE and (i) Xavier; Figure S6. Precipitation bias (mm) estimated by
each database compared to the MAM observations: (a) PERSIANN-CDR, (b) CHIRPS, (c) CMORPH,
(d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h) IMERGE and (i) Xavier; Figure S7. Precipitation
bias (mm) estimated by each database compared to the JJA observations: (a) PERSIANN-CDR, (b)
CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h) IMERGE and (i) Xavier;
Figure S8. Precipitation bias (mm) estimated by each database compared to the SON observations:
(a) PERSIANN-CDR, (b) CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h)
IMERGE and (i) Xavier; Figure S9. DJF RMSE (mm) of each database compared to the observations:
(a) PERSIANN-CDR, (b) CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h)
IMERGE and (i) Xavier; Figure S10. MAM RMSE (mm) of each database compared to the observations:
(a) PERSIANN-CDR, (b) CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h)
IMERGE and (i) Xavier; Figure S11. JJA RMSE (mm) of each database compared to the observations:
(a) PERSIANN-CDR, (b) CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h)
IMERGE and (i) Xavier; Figure S12. SON RMSE (mm) of each database compared to the observations:
(a) PERSIANN-CDR, (b) CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h)
IMERGE and (i) Xavier; Figure S13. DJF correlation between each database and observations: (a)
PERSIANN-CDR, (b) CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h) IMERGE
and (i) Xavier; Figure S14. MAM correlation between each database and observations: (a) PERSIANN-
CDR, (b) CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h) IMERGE and
(i) Xavier; Figure S15. JJA correlation between each database and observations: (a) PERSIANN-
CDR, (b) CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h) IMERGE and (i)
Xavier; Figure S16. SON correlation between each database and observations: (a) PERSIANN-CDR,
(b) CHIRPS, (c) CMORPH, (d) CPC, (e) CRU, (f) ERA5Land, (g) GPCC, (h) IMERGE and (i) Xavier;
Figure S17. For Group 2, probability density of monthly rainfall (mm) for (a) Observations, (b)
Xavier, (c) CHIRPS, (d) CPC, (e) ERA5Land, (f) GPCC, (g) CRU, (h) PERSIANN-CDR, (i) CMORPH
and (j) IMERG; Figure S18. For Group 3, probability density of monthly rainfall (mm) for (a)
Observations, (b) Xavier, (c) CHIRPS, (d) CPC, (e) ERA5Land, (f) GPCC, (g) CRU, (h) PERSIANN-
CDR, (i) CMORPH and (j) IMERG; Figure S19. For Group 4, probability density of monthly rainfall
(mm) for (a) Observations, (b) Xavier, (c) CHIRPS, (d) CPC, (e) ERA5Land, (f) GPCC, (g) CRU, (h)
PERSIANN-CDR, (i) CMORPH and (j) IMERG; Figure S20. For Group 5, probability density of
monthly rainfall (mm) for (a) Observations, (b) Xavier, (c) CHIRPS, (d) CPC, (e) ERA5Land, (f) GPCC,
(g) CRU, (h) PERSIANN-CDR, (i) CMORPH and (j) IMERG; Figure S21. For Group 6, probability
density of monthly rainfall (mm) for (a) Observations, (b) Xavier, (c) CHIRPS, (d) CPC, (e) ERA5Land,
(f) GPCC, (g) CRU, (h) PERSIANN-CDR, (i) CMORPH and (j) IMERG.

https://www.mdpi.com/article/10.3390/cli11120241/s1
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