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Abstract: Tropical cyclones (TCs) are one of the most destructive natural hazards to impact on
Australia’s population, infrastructure, and the environment. To examine potential TC impacts, it is
important to understand which assets are exposed to the hazard and of these, which are vulnerable
to damage. The aim of this study is to improve TC risk assessments through developing an exposure–
vulnerability index, utilising a case study for the six Local Government Areas (LGAs) impacted by
the landfall of TC Debbie in 2017: Burdekin Shire, Charters Towers Region, Isaac Region, Mackay
Region, City of Townsville, and Whitsunday Region. This study utilised a natural hazard risk
assessment methodology, linking exposure and vulnerability indicators related to social factors,
infrastructure, and the environment. The two LGAs with the most extreme exposure–vulnerability
values were the coastal regions of Mackay Region and the City of Townsville. This is consistent
with urbanisation and city development trends, with these LGAs having more people (social) and
infrastructure exposed, while the environmental domain was more exposed and vulnerable to TC
impacts in rural LGAs. Therefore, further resilience protocols and mitigation strategies are required,
particularly for Mackay Region and the City of Townsville, to reduce the damage and ultimate loss of
lives and livelihoods from TC impacts. This study serves as a framework for developing a TC risk
index based on hazard, exposure, and vulnerability indices, and insight into the improved mitigation
strategies for communities to implement in order to build resilience to the impacts of future TCs.

Keywords: tropical cyclone; risk assessment; exposure; vulnerability; Tropical Cyclone Debbie;
natural hazard

1. Introduction

Natural hazards are environmental phenomena that have the potential to produce
negative impacts on society and the natural environment, resulting in the loss of life, injury,
damage, or degradation [1]. Described as one of the most pertinent and devastating natural
hazards facing Australia [2], tropical cyclones (TCs) are severe, multi-hazard weather
phenomena, generating destructive winds, heavy rainfall, and coastal storm surges, which
all contribute to destructive impacts on population, infrastructure, and the environment [3].

The impacts of TCs in the Pacific region exhibit a wide range of effects that are both
diverse and disastrous [4]. Whether it be for small island developing states with fragile
economies or for developed Pacific island countries like Australia, impacts manifest differ-
ently and are modulated by the socio-environmental conditions of the region they make
landfall on [5,6]. Although TCs are most harmful to small islands and fragile economies,
they have made a large imprint in Australia [7]. Long-term records demonstrate that on
average eleven TCs occur in the Australian region each year [8]. The total cost of TCs

Climate 2023, 11, 235. https://doi.org/10.3390/cli11120235 https://www.mdpi.com/journal/climate

https://doi.org/10.3390/cli11120235
https://doi.org/10.3390/cli11120235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/climate
https://www.mdpi.com
https://doi.org/10.3390/cli11120235
https://www.mdpi.com/journal/climate
https://www.mdpi.com/article/10.3390/cli11120235?type=check_update&version=2


Climate 2023, 11, 235 2 of 32

in Australia has amassed to AUD 23 billion since 1967 [9] and resulted in the loss of an
estimated 206 lives from 1970–2017 within Australia directly from TC impacts [10].

Climate change increases the range of impacts from natural hazards, including their
socio-ecological interactions, scale, location, timing, and frequency [11]. The projected
increasing intensity of TCs due to anthropogenic climate change will have profound
implications for the sustainability of societies, ecosystems, and biodiversity, and so must be
addressed systematically and comprehensively [2,12–14].

Through TCs’ potential devastation in Australia, there is a bolstered ambition within
the scientific landscape to develop mechanisms to assess natural hazard risks [13,15]. Cor-
rectly defining natural hazard risk terminology is critical due to its contribution to informing
stakeholders and decision makers on TC risk reduction procedures. The definitions of risk
terminology vary amongst the literature. In this study, the definitions from the Intergovern-
mental Panel on Climate Change (IPCC) have been adopted [13]. Natural hazard risk is
defined by the IPCC as “the possibility for adverse implications for human or ecological
systems from natural hazards” [13]. To combat the rising concern over natural hazard risks,
there has been an emphasis on the application of a natural hazard risk assessment (NHRA)
to ultimately inform decision makers and critical stakeholders when developing mitigation
and adaptation strategies for exposed and vulnerable communities [16]. Thus, decision
makers and stakeholders can identify at-risk regions in advance and develop appropriate
measures to reduce mortality, damages, and economic losses from potential TC impacts in
the future [17].

With the anthropogenic influence of climate change, an NHRA enables an effective
approach to generate evaluation techniques for local study areas [13]. This allows for
long-term socio-economic adaptation and response mechanisms, improving the possible
disaster resilience of a community in both the short-term and long-term [13,18].

Additionally, the escalating chance of societal, infrastructural, and environmental
impacts from TCs demands further investigation into early warning systems and mitigation
strategies, including TC risk assessments [19]. Risk assessments are paramount due to the
multi-hazard implications associated with TCs within Australia’s coastal regions, requiring
further attention and risk management [20].

Natural hazard risk is typically conceptualised as a risk triangle [21]. It explains risk
as the product of three components presented in Equation (1):

Risk = Hazard × Exposure × Vulnerability (1)

where hazard is defined as “the potential occurrence of a natural hazard event that may
cause loss of life, injury, or other health impacts, as well as damage and loss to property
infrastructure, livelihoods, and service provision” [13]. Exposure is defined as “the pres-
ence of people; livelihoods; species or ecosystems; environmental functions, services and
resources; infrastructure; or economic, social or cultural assets in place and settings that
could be adversely affected [by a natural hazard]” [13]. Vulnerability is defined as “the
propensity or predisposition to be adversely affected [by a natural hazard] and encom-
passes a variety of concepts and elements, including sensitivity or susceptibility to harm
and lack of capacity to cope and adapt” [13].

Although NHRA can be conducted using a variety of methods and environments,
it is found to be most effective and useful when tailored to a specific spatial context,
including resolutions of Local Government Areas (LGAs) [22]. This allows research to
arrive at evidence-based conclusions and recommendations for local decision makers and
stakeholders in disaster risk reduction strategies [22–25].

For Australia-based TC risk, the exposed assets that are most susceptible to damage
tend to be critical infrastructure including hospitals and residential housing, and environ-
ment landscapes including cropland and coral reefs [26].

To evaluate the contribution of specific characteristics of exposure and vulnerability to
the risk of a natural hazard, an index can be used to quantify the impact. Multi-Criteria
Decision-Making techniques, referred to as indices within this study [27], provide weighting
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to key criteria to posit comparative information for decision-making analyses. Several TC
exposure and vulnerability indices can then be paired with TC hazard indices to calculate
the overall TC risk. With indices being composed of community-focused indicators, maps
can be generated and analysed to highlight the most at-risk areas.

The aim of this study is to improve TC risk assessments through developing an
exposure–vulnerability index. Listed below are the research gaps of this study. First, in
earlier studies, when doing a cross-comparison between exposure and vulnerability for
TC risk assessments, when exposure and vulnerability indices are paired, the indicators
are incongruous [28]. An example of this is seen in the TCs’ risk assessment by Do and
Kuleshov [28], who links coral density and unemployment rate in the same index. Linking
uncorrelated indicators ultimately reduces the value of the exposure–vulnerability index
for decision makers, as they may have information on how exposed a particular asset is,
but not on how vulnerable this asset is to damage. Vulnerability indicators mostly focus on
socially oriented themes, including unemployment rate and socio-economic disadvantage,
whilst exposure is often composed of social, physical, and environmental indicators [28–33].
However, by linking the exposure indicators with related vulnerability indicators, stake-
holders have greater insight into specific resilience structures and mitigation strategies
moving forward.

In this study, we link exposure and vulnerability indicators following the method of
Peduzzi, et al. [34]. Each vulnerability indicator will be directly linked to the exposure
indicator to ensure appropriateness in the index alignment between the three domains
of social, physical, and environmental. An example of this could include pairing the
exposure indicator of population density with the vulnerability indicator of unemployment
rate, between which there is a known relationship [35]. Indices will be created for all of
the three domains of social, infrastructure, and environment, and then for a complete
exposure–vulnerability index. The suitability of linking exposure indicators with related
vulnerability indicators is confirmed by the effectiveness of the risk assessment generated by
Peduzzi et al. [34], who utilised this methodology, and in the work by Do and Kuleshov [28],
who explain that the lack of linking between indicators is a limitation of their study.
Additionally, each index of exposure and vulnerability will both have indicators for all
social, infrastructure, and environment factors.

Second, Multi-Criteria Decision-Making technique studies have seldom been con-
ducted in Australia, despite international use in recent years [36–39]. Additionally, the TC
risk assessments conducted in Australia are not community-specific—being nationwide
rather than examining smaller regions in depth. By analysing community-specific TC
risk assessments, this study provides decision makers with insight into what community-
specific assets are exposed and also vulnerable to damage, and thus increasing their ability
to implement more community-focused resilience structures and mitigation strategies. In
this study, a community-specific exposure–vulnerability index will be developed for the
eastern coast of Australia, with the study area localised to the six surrounding LGAs where
TC Debbie made landfall in 2017. All indicators will be related to the impacts and settings
of these six LGAs.

Third, there has historically been an equal weighting of indicators, rather than having
them weighted based on their contextual significance [28,40]. By weighing them based on
their influence, this spotlights the most critical assets that are exposed and vulnerable to
damage, inspiring an improved ability to implement mitigation strategies that will save the
most lives and livelihoods. This study will use a weighting approach through a Principal
Component Analysis (PCA), explained further in Section 2.8.

Ultimately, this study adopts an approach to TC risk assessments through linking
exposure and vulnerability indicators together within the three domains of social, infras-
tructure, and environment, which have been weighted by impact, to generate a single
index, and performing this in a specific location within the eastern coast of Australia.
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2. Materials and Methods
2.1. Study Area

TC Debbie made landfall on the 28 March 2017 [41]. Causing AUD 3.5 billion in
damage and fourteen deaths primarily through extreme riverine and coastal flooding,
this event has gained a reputation as one of the most destructive TC events in Australian
recorded history [41–43]. With TC Debbie making landfall by Airlie Beach, Queensland,
and progressing southward to New South Wales, this TC event covered an extensive
geographical scale. To ensure that this study is specific to the TC Debbie event, Figure 1
displays the six LGAs surrounding landfall that will be utilised as the study area, including
Burdekin Shire, Charters Towers Region, Isaac Region, Mackay Region, City of Townsville,
and Whitsunday Region.
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The exposure–vulnerability index developed in this study prioritises indicators that
directly impact human health and livelihoods, in accordance with the exposure and vul-
nerability definitions adopted by the IPCC. To the best of our knowledge, this is the first
exposure–vulnerability assessment to make use of this study area, which is of particular
importance being a highly TC-prone region in Australia.

2.2. Selecting Tropical Cyclone Indicators

Indicators for both exposure and vulnerability were identified for the three domains
of social, infrastructure, and environment. The selection of the indicators was contingent
on the impacts experienced by the LGAs within the study area, as well as the data available.
Table 1 provides a summary of the indicators, while a full definition of the indicators is
provided in Sections 2.3 and 2.4.

The two domains of social and infrastructure, seen in Table 1, were evaluated because
of their historical prevalence in risk assessments [3,22,29]. The third domain, environment,
is less prevalent in the literature, yet, in combination with social and infrastructural factors,
it provides a holistic assessment of the exposure and vulnerability within society [28].

Table 2 displays where the indicators were sourced, alongside the datasets’ resolution
and year of release.
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Table 1. Exposure and vulnerability indicators utilised within the three domains of social, infrastruc-
ture, and environment.

Domain Exposure Vulnerability

Social Population Density

Index of Relative Socio-economic Disadvantage (IRSD)

Vulnerable Age Groups

Core Assistance

Hospital Travel Difficulty

Infrastructure
Residential Housing

Hospitals
Residential Housing Building Codes (pre-1980 construction)

Topographic Position Index (TPI) < −24 and Critical Infrastructure

Environment Land Use Land Cover (LULC)

Soil Moisture

TPI < −24 and Animal Agriculture and Cropping

TPI < −24 and Nature Conservation and Forestry

Table 2. The datasets, sources, resolution, and year of release for each indicator within the two risk
groups of exposure and vulnerability.

Risk Groups Indicator Dataset Source Resolution Year

Exposure

Population Density 2021 Census of Population
and Housing

Australian Bureau of
Statistics

Local Government
Area 2021

Residential Housing
Cadastral

Data—Queensland—by
Area of Interest

Queensland
Government Open

Data Portal

Scales Ranged from
Standard 1:2500 to

1:250,000
2023

Hospitals Hospital and Health
Services Map

Queensland
Government Health

Local Government
Area 2021

Land Use Land
Cover

Land Use Mapping—1999
to 2013—Southeast
Queensland NRM

Queensland Spatial
Catalogue

Nominal Scale of
1:50,000 2014

Vulnerability

Index of Relative
Socio-economic
Disadvantage

Socio-Economic Indexes for
Areas (SEIFA) 2016

Australian Bureau of
Statistics

Statistical Area
2 (SA2) 2016

Vulnerable Age
Groups

2021 Census of Population
and Housing

Australian Bureau
of Statistics

Local Government
Area 2021

Core Assistance 2021 Census of Population
and Housing

Australian Bureau
of Statistics

Local Government
Area 2021

Hospital Travel
Difficulty

Hospital and Health
Service Maps

Queensland
Government—Health

Scales Ranged from
Standard 1:2500 to

1:250,000
2023

Residential Housing
Building Codes

(pre-1980
construction)

ABS Australian Statistical
Geography Standard SA1

2016 Dataset

National Exposure
Information System

(NEXIS)
100 Square Metres 2016

Soil Moisture Australian Water Outlook,
Historical, Root Zone Bureau of Meteorology 5 km 2017

TPI < −24–Critical
Infrastructure

GEODATA 9 Second DEM
and D8 Flow Direction Grid

2008 Version 3.0
Geoscience Australia 9 s (250 m) 2008

TPI < −24–Animal
Agriculture and

Cropping

GEODATA 9 Second DEM
and D8 Flow Direction Grid

2008 Version 3.0
Geoscience Australia 9 s (250 m) 2008

TPI < −24–Nature
Conservation and

Forestry

GEODATA 9 Second DEM
and D8 Flow Geoscience Australia 9 s (250 m) 2008
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2.3. Exposure
2.3.1. Population Density

Population density is a common social exposure indicator for community exposure
during a natural hazard including TC events [3,40,44]. This indicator can be calculated by
dividing the estimated resident population by the land area, and so measures the number
of people living in a designated region that could be negatively impacted by a TC event.
There is a positive correlation between population density and TC exposure where an
increase in population density results in greater TC exposure. Increased TC exposure leads
to a larger number of people that can be affected by TC damage, causing a loss of lives
and livelihoods.

2.3.2. Hospitals

Hospitals are utilised as an infrastructural exposure indicator within this study. Hos-
pitals are used for TC risk assessments due to their important role in providing health-care
services and supporting emergency response efforts. Humans are frequently injured from
TC events, particularly from moving debris and in some cases infrastructural collapse,
and thus need medical attention [45,46]. There is a positive correlation between hospital
numbers and exposure; LGAs with more hospitals are more exposed. An extreme level
of exposure for this indicator demonstrates high levels of hospitals that can be exposed to
TC impacts.

The locations of private and public hospitals were downloaded as a CSV file to then
be imported into QGIS with their geographical coordinates.

2.3.3. Residential Housing

To quantify the impact of a TC on the physical environment, another prominent
infrastructure asset is the dwelling areas of the people within that region. In the study
area, the most common dwelling area is residential housing, and so this is a pertinent
indicator for infrastructural exposure. There is a positive relationship between residential
housing and exposure, where an increase in residential housing increases the number of
assets exposed to the potential harms of TCs. Residential housing was obtained through
a Digital Cadastre dataset, providing a spatial representation of each current parcel of
land within the study area. This dataset is considered a point of verity for the graphical
representation of property boundaries. Obtained on 1 May 2023, this dataset is updated
weekly on each Sunday from the Lands Address Location Framework database [47]. This
foundational dataset contains the number, street, locality, and coordination referee(s) for
property addresses in the study area.

2.3.4. Land Use Land Cover (LULC)

LULC is a common natural hazard environmental exposure indicator, also typically
found in TC studies [27]. LULC posits the different land types which exist in a given
area based on their use. Mapped by the Australian Land Use and Management Classifica-
tion, the Queensland Government maps and assesses the land use patterns and changes
across regions.

The LULC indicator was created using QGIS version 3.30.1’s Hertogenbosch software.
The Land Use of Australia 2010–2011 to 2015–2016, 250 m dataset, based on the 2021 census,
is a product of the Australian Collaborative Land Use and Management Program. To
correlate LULC with community exposure, each LULC has been attributed with a weight
classification depending on their value in the context of TC exposure, where higher values
indicate more community value and hence greater TC exposure. Thematic layers of land
use were compartmentalised into eight classifications, seen in Table 3. Thereafter, each
classification was assigned a value for the potential impact that exposed assets in this LULC
indicator can be afflicted by a TC event.



Climate 2023, 11, 235 7 of 32

Table 3. Reclassified LULC, with respective values and ratings, for the LULC indicator.

Classification Value (Weight Assigned) Rating

Critical Infrastructure 0.9 Very High

Residential 0.9 Very High

Animal Agriculture 0.7 High

Cropping 0.7 High

Nature Conservation 0.5 Moderate

Forestry 0.5 Moderate

Water Bodies 0.1 Very Low

Other 0.1 Very Low

Whilst sometimes open to subjectivity, this reclassification and valuing system is
prevalent throughout the literature and is an effective way to quantitatively categorise
qualitative land use classes [27,40,48,49]. Additionally, this method has been conducted
based on a comprehensive understanding and informed decisions about LULCs within this
study scope. Thus, this method is suitable for such a study. There is a positive relationship
between LULC and exposure; as the LULC weighted value increases, the greater the
exposure of the asset to the harms of TC events.

2.4. Vulnerability
2.4.1. Index of Relative Socio-economic Disadvantage (IRSD)

The IRSD, a component of the Socio-Economic Indexes for Areas (SEIFA), is a com-
prehensive index created by the Australian Bureau of Statistics (ABS). This index differs
from other indices in that it solely describes the factors of relative disadvantage, which
effectively captures the non-TC conditions that render the community highly vulnerable.
The adoption of the IRSD as a social vulnerability indicator is advantageous as the variables
included are multifaceted. Described in Appendix A, the IRSD encompasses important
domains of vulnerability of both economic and social dimensions.

IRSD scores are presented using quintiles (the scores are ranked and distributed into
five groups, with each group representing 20% of the distribution), whereby the lowest
scoring 20% of areas are assigned a quintile number of 1, up to the highest 20% of areas,
which are ascribed a quintile number of 5. Low IRSD scores indicate that an area has a
relatively greater socio-economic disadvantage overall. The ABS recommends that IRSD
data be used when investigating broad measures of disadvantage, rather than specific
measures. This is applicable to this study since a broader scope is more appropriate for
assessing the data’s contribution to TC vulnerability.

The IRSD data were downloaded as an Excel dataset from the ABS website for each
LGA, normalised using a logarithmic min–max approach, and then imported into the QGIS
3.30 software.

2.4.2. Vulnerable Age Groups

Defined by people aged below 15 and over 65, vulnerable age groups have seldom
been used in academic literature as a social indicator to assess the vulnerability of a
community to TC impact. However, through the impacts and the responses from the six
LGAs identified as the study area in this study, it is clear that these categorised age groups
were disproportionately affected by TC Debbie [50]. There is a positive correlation between
vulnerable age groups and vulnerability, where the higher the proportion of population
that fall into these two categories, the more vulnerable that population is to damage. These
data were normalised on a scale of 0–1 using the logarithmic min–max method.
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2.4.3. Core Assistance

Core Activity Need for Assistance (CANA) is being utilised as a social indicator for
vulnerability. This indicator records the number of people with a profound or severe
core activity limitation, who thus require daily assistance in one or more of the three core
activities of self-care, mobility, and communication. Contributing factors, as included in the
2021 census, include long-term health conditions that have lasted for more than 6 months,
a disability of over 6 months, and old age. There is a positive relationship between CANA
and vulnerability, where the more people that require core assistance for daily activities, the
greater the vulnerability of that population to TC impacts. These data were then normalised
on a scale of 0–1 using a logarithmic min–max approach.

2.4.4. Travel to Hospital Difficulty

In a TC event, humans could be injured through collapsing buildings and moving
debris, and thus require hospital services [45,46]. To measure the accessibility of health
services for people in need during TC events, the social indicator for vulnerability of
hospital travel difficulty can be utilised. In this study, the method for estimating travel
difficulty is through the shortest distance from residential housing to hospital locations,
utilising a Euclidean ‘crow flight’ approach. This approach is the shortest single, straight
journey from the initial point to the final point. The residential housing dataset is found
through Queensland Local Government, and in some instances, private developers. The
hospital location is found through Queensland Health. The distances from residential
housing to hospitals were averaged for each LGA, and normalised using a logarithmic
min–max approach.

There is a positive correlation between travel to hospital difficulty and vulnerability.
If the difficulty increases, indicating a longer distance, then these individuals are more
vulnerable to the negative impacts from TCs.

2.4.5. Residential Housing Building Codes

The destructive winds and storm surges from TCs exert huge forces on houses with
pressure pushing on the windward wall and applying high suction pressures on the roof
(trying to lift the house out of the ground) [51,52]. Additionally, if a sudden opening occurs,
for example, a broken window or a failed door, the windward wall pressure can suddenly
enter the house and exacerbate the stress on the roof structure. Evidence suggests that this
is a key failure in older homes [51].

In Queensland, residential houses built before the late 1980s were more susceptible
to TC damage through weak building codes [51]. Since the building code reform in
the late 1980s within Queensland, measures were implemented to enhance the strength
and structural integrity of homes, including retrofitting the roof structure, protecting the
windows, and strengthening the doors. Thus, the age of residential housing, whether it
was constructed prior to or proceeding the 1980s’ building code reform, has been utilised
as an infrastructure indicator for vulnerability. There is a positive correlation between
homes built before 1981 and TC vulnerability, where the houses built before 1981 are more
vulnerable to damage from TC events. Within the vicinity of these houses with outdated
building codes, vulnerability also increases through flying debris damage [46].

To map this indicator, the National Exposure Information System (NEXIS) Residential
Building Exposure (SA1) 2020 dataset was utilised, found through Geoscience Australia.
Equation (2) was used to calculate the building resilience γ through building codes:

γ = x/(x + y) (2)

where x is the number of built buildings before 1981 and y is the number of built buildings
after 1981. Through Equation (2), if the value of γ is greater than 0.5, then more buildings
were built before 1981 than those built after 1981. Therefore, with a range from 0–1, as
the value of γ increased, the lower the resilience of the buildings in that area. All of the
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Statistical Area 1 (SA1) values within each LGA were averaged to generate a single value
for each LGA.

2.4.6. Topographic Position Index—Critical Infrastructure

The Topographic Position Index (TPI) is a topographic attribute that plays a crucial
role in shaping the direction and velocity of water flow during TC events [53]. TPI is
calculated by subtracting the elevation and relative position of a specific pixel from the
average of its neighbouring pixels. The radius of each pixel is contingent on the resolution
of the elevation dataset. In this study, the elevation data were acquired through Geoscience
Australia in the format of a Digital Elevation Model (DEM) raster layer. Utilising a 9 s
resolution (250 m) raster dataset, this was imported into QGIS and was then clipped to the
study area.

TPI is normalised from the ranges of −100 to 100, where a positive TPI value indicates
a hilltop, whereas a negative TPI value indicates a valley. In positions of low-lying TPI, the
regions are more susceptible to water-based damages as water travels from higher to lower
elevation, heightening the propensity of flooding, landslides, and increased runoff.

TPI is not a commonly used infrastructural indicator within TC risk assessments to
assess the vulnerability of a region to very localised or flash flooding. Therefore, this
approach provides new insight into the vulnerability of a community and the validity of
TPI as a vulnerability indicator.

A negative TPI value indicates that the elevation of a specific location is lower than the
average elevation of its surrounding points within a defined radius. For this indicator, this
study has quantified the number of locations in which the TPI was below −24 that intersects
with critical infrastructure. TPI below −24 falls within the lowest two TPI classifications,
denoting a higher propensity to infrastructural vulnerability.

After inserting the DEM raster layer, this was then converted to a TPI raster layer
using the QGIS software. The LULC raster layer was then added into QGIS, where a
new layer was created of only the critical infrastructure LULC. Using the Raster Boolean
AND processing tool, a final layer was created to find the intersections between these two
aforementioned raster layers. From there, this final layer was graduated for each LGA to
classify the average count of TPI of less than −24 intersecting the specific land use to then
generate a vulnerability map.

Critical Infrastructure in the Land Use of Australia 2010–2011 to 2015–2016, 250 metre
dataset produced by the ABARES includes all hospitals, health-care services, factories,
storage properties, oil refineries, urban residential area, and rural residential area with and
without agriculture, remote communities, and farm buildings.

2.4.7. Soil Moisture

Soil moisture (SM), the water content of the soil expressed in a volume, has been
selected as an environmental vulnerability indicator. This indicator is utilising root zone
(1 m surface depth) SM, and the absolute root zone SM in percent, commonly found to
be the most impactful to the vulnerability of the environment [54]. There is a positive
correlation between root level SM and community vulnerability, where with an increase in
soil moisture, the vulnerability of an impacted area increases due to wetter soil making the
environment more susceptible to flooding.

The root zone SM used in this study is from the 22 March 2017, the week prior to
TC Debbie landfall. With the SM being assessed and updated daily by the Bureau of
Meteorology, this information was mapped before the event. SM data were averaged
within each LGA.

2.4.8. Topographic Position Index—Nature Conservation and Forestry

TPI was again used for environmental vulnerability. In this indicator, the count of TPI
less than −24 intersecting natural environments and forestry was performed. Points of
low TPI within these LULCs signify a heightened propensity for runoff, landslides, and
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flooding, all of which can severely degrade the natural environment [55]. The higher the
count of TPI less than −24 intersecting this land use, the higher the predisposition for
environmental vulnerability. The method for generating this TPI vulnerability map was
the same as found in Section 2.4.6.

2.4.9. Topographic Position Index—Animal Agriculture and Cropping

In this environmental vulnerability indicator, the count of TPI less than −24 inter-
secting animal agriculture and cropping landscapes was performed. All environmental
concerns that come with low TPI can severely degrade crop land and pose harm to the
livestock. The higher the count of TPI less than −24 intersecting this land use, the higher
the predisposition for environmental vulnerability. It must be noted that the density of
crops or animals was not considered within this indicator. Additionally, the environmental
assessment of crop vulnerability was considered to be the same throughout the year, despite
some crops only being grown in specific periods of the year. The method for generating
this TPI vulnerability map was the same as found in Section 2.4.6.

2.5. Social, Environment, Infrastructure Indices’ Calculation and Mapping

With each indicator’s data converted into a single value for each LGA, the data between
the LGAs were then normalised through a logarithmic min–max process, creating a scale
from 0 to 1. To then create the social, infrastructure, and environment exposure indices, all
normalised exposure indicator datasets within each domain were summed and then again
normalised through a logarithmic min–max process to produce a scaled set of values for
the indices of social, infrastructure, and environment exposure. An example of this is an
exposure dataset within the social domain. This same methodology was performed for
vulnerability. From there, the sum of the exposure and vulnerability values within each
domain was calculated, and then subjected to another logarithmic min–max calculation to
generate a final index for each domain. An example of this is an exposure–vulnerability
dataset for the social domain.

This process is visualised in Figure 2, which includes the weighting schemes, the
datasets created, and the normalisation techniques applied at each process for the exposure
indicators. The same process was utilised for the vulnerability indicators. The blocks
representing the steps for the weighting and normalisation columns have been placed
between the blocks representing the datasets to explain the weighting and normalisation
method used to create the following dataset throughout the methodology.

In turn, maps of each indicator, maps of exposure and vulnerability within each
domain, and the final exposure–vulnerability index for each domain were produced.

Within each of the social, environment, and infrastructure indices, the equal weighting
approach was applied. In this way, each indicator within the indices is seen to be equally
critical in the exposure and vulnerability of a region. This approach is commonly used
in TC exposure and vulnerability assessments, and although less robust than a PCA, it
still provides useful and reliable results. This approach was applied because exposure
has two indicators, population density and residential housing, that are highly correlated.
When datasets are highly correlated, it implies that they share a substantial amount of in-
formation. PCA seeks to maximise the variance in the data, which may result in discarding
valuable information that could be crucial for understanding the relationship between the
variables when they are highly correlated [56]. By applying PCA, there is a risk of losing
valuable information that is present in the original datasets. To ensure that both sides of the
exposure and vulnerability indices are methodologically consistent, equal weighting was
applied in creating these indices. In summary, the datasets within each domain utilised
equal weighting methods, and the overall exposure–vulnerability index links exposure
indicators with related vulnerability indicators via PCA. This approach is further explained
in Section 2.8.
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Charted in Table 4, to assess and map each index, the symbology of the data was
graduated into five risk classes: ‘very low’, ‘low’, ‘moderate’, ‘severe’, and ‘extreme’. An
equal interval classification mode is most useful when there are only a few data points,
so with this study including only six LGAs, this graduation method is appropriate [57].
This method provides an evenly distributed classification scheme, which is effective in
displaying and identifying patterns in the data. Furthermore, this mode ensures that each
class represents a consistent range of values. Thus, if values for one indicator are all high
between the LGAs, this method ensures that these values are all represented through high
classes, rather than allocating them into lower classes due to relative comparability. This
mode therefore avoids misleading information on comparative values.

Table 4. Equal Weighting risk classes assigned to values for the overall tropical cyclone exposure–
vulnerability index map.

Class Very Low Low Moderate Severe Extreme

Value 0–0.20 0.21–0.40 0.41–0.60 0.61–0.80 0.81–1

2.6. Exposure–Vulnerability Index

Succeeding the normalisation process and the generation of the social, infrastructure,
and environment indices, to prepare the maps for the generation of the overall exposure–
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vulnerability index, the data were then analysed using a PCA in order to identify the
eigenvectors. PCA can be used in this calculation because no two domains are highly corre-
lated. From there, the dataset values were multiplied with their corresponding eigenvalues
for each LGA. This provided a table of 3 vector columns, consistent with the 3 domains,
for each LGA. Each LGA column was then added before the values were subjected to the
logarithmic min–max normalisation process.

These values ranging from 0 to 1 were then inputted into QGIS to create a final
exposure–vulnerability index, visualised as a map of the extent and propensity of the assets
being exposed and vulnerable to TC damage for each LGA within the study area.

The graduating scheme and symbology applied in the overall exposure–vulnerability
index are the same as outlined in Section 2.5.

2.7. Normalisation Technique

The datasets for each indicator were normalised to provide datasets with the same
range from 0 to 1, to allow for cross-comparison. The methodology for normalisation
includes the logarithmic min–max approach, following Equation (3):

x’ = (Log10(x) − Log10(min(x)))/(Log10(max(x)) − Log10(min(x))) (3)

where x is the original data value, x’ is the new normalised value, min(x) is the minimum
value in the dataset, and max(x) is the maximum value in the dataset—of which all values
must be positive. This approach was utilised because it can rescale the data to the specific
range of 0–1 for interpretation and visualisation purposes, and is less sensitive to outliers in
the dataset compared to the general min–max normalisation method. With each indicator’s
values sharing the same range, cross-comparison and manipulation of the data are simple
and feasible, which is of particular interest when indicators come in differing initial scales
and values, including numerical versus categorical data. Moreover, this technique is
commonly used in risk assessment studies that perform normalisation processes for the
dataset [58–60].

2.8. Indicator Weighting

In this study, two approaches for weighting the significance of indicators for the
indices were utilised. The first approach is equal weighting. Equal weighting is a common
tool that ranks each indicator equally in importance for that study area, for example being
utilised in this study [61]. Although research has found this assessment to be reductive and
simplifying, a systematic review found that 40% of the papers they reviewed, the largest
portion for multi-criteria processing, used this method, primarily due to its methodological
simplicity [27].

The second approach is the multivariate technique of PCA, an efficient method for
quantifying exposure and vulnerability indicators [32,44,62–65]. PCA analyses several
quantitatively dependent variables to extract important information to identify patterns
of similarity between the observations and the variables [66,67]. PCA is a dimensionality
reduction technique that transforms a dataset by projecting it onto a new set of orthogonal
axes, which are called principal components (PCs). These components are then ordered by
the amount of variance they capture in the data. Each indicator influences the creation of
the PCs based on the covariance with other indicators, and so indicators exhibiting high
variability or correlations with other indicators increase in the propensity to have a larger
contribution on the PCs.

3. Results

The five risk classifications for each indicator, outlined in Table 4, have been nor-
malised, making each LGA value relative to the values of the other LGAs within the study
area. Thus, an LGA that has been allocated to a lower class does not imply that the exposure
or vulnerability is low, but instead that it is low relative to the values in the other LGAs
being analysed in this study.
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Maps of all four exposure indicators in the designated study area, seen in Figure 3,
demonstrate a trend of the most exposed LGAs being the coastal regions, particularly the
City of Townsville and Mackay Region, displaying an ‘extreme’ ranking for three of the
four indicators. Mackay Region and the City of Townsville only showed a ‘moderate’ and
‘low’ ranking, respectively, for the environmental exposure indicator of LULC.
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Figure 3. Maps of tropical cyclone exposure indicators in the six LGAs surrounding TC Debbie
landfall, after logarithmic min–max normalisation, with 1 = Charters Towers Region, 2 = City of
Townsville, 3 = Burdekin Shire, 4 = Whitsunday Region, 5 = Mackay Region, 6 = Isaac Region (QGIS
3.30 software).

Maps of all nine vulnerability indicators in the designated study area, seen in Figure 4,
demonstrate a large variability in the regions with high rankings. The inland LGAs of Isaac
Region and Charters Towers Region show trends of high vulnerability, particularly for the
infrastructural and environmental vulnerability indicators of residential housing building
codes, TPI for critical infrastructure, root zone SM, TPI of nature conservation and forestry,
and TPI for animal agriculture and cropping. There is no clear trend in Figure 4a–d, maps
of the social vulnerability indicators, with coastal LGAs showing high vulnerability in the
core assistance indicator, showing medium vulnerability in the vulnerable age and IRSD
indicators, and then showing low vulnerability in the hospital travel difficulty indicator.

Figure 5 combines all social indicators together from exposure and vulnerability to
create a map of the social exposure–vulnerability in the designated study area. Figure 5
demonstrates that Mackay Region and the city of Townsville are the most exposed and
vulnerable to TC impacts, falling under the ‘extreme’ classification with a normalised value
of 1.00 and 0.953, respectively. Whitsunday Region displays a social exposure–vulnerability
rating of ‘very low’, showing a value of 0.00. The remaining coastal LGA within the City
of Townsville, as well as the inland LGAs of Charters Towers Region and Isaac Region,
exhibit a ‘low’ rating. Specifically, the coastal LGA has a value of 0.299, while Charters
Towers Region and Isaac Region have values of 0.346 and 0.213, respectively. Overall, the
exposure–vulnerability was greater in coastal regions.
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Combining all infrastructure indicators together from exposure and vulnerability,
Figure 6 displays a map of infrastructure exposure–vulnerability for the designated study
area. Contrasting Figure 5, Isaac Region is the only LGA that has an ‘extreme’ infrastructure
exposure–vulnerability ranking (1.00). The City of Townsville and Mackay Region both
assume rankings of ‘severe’, with values 0.740 and 0.700, respectively. Unlike other maps
where coastal/inland contrast is prevalent, no visible patterns for exposure–vulnerability
are displayed within this map. Charters Towers Region and Whitsunday Region both share
rankings of ‘low’ exposure–vulnerability, and Burdekin Shire has a ranking of ‘very low’,
with a relative exposure–vulnerability of 0.00.
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Combining all environmental indicators together from exposure and vulnerability,
a map of environmental exposure–vulnerability for the designated study area, Figure 7,
demonstrates contrasting patterns to that of the social and infrastructural maps seen in
Figures 5 and 6. Here, a pattern has been identified where the coastal regions are less
exposed and vulnerable to TC damage in this study area than the inland areas. The coastal
LGAs of Mackay Region, the City of Townsville, and Burdekin Shire all assume ‘very low’
rankings (0.101, 0.121, and 0.000, respectively). The other coastal LGA of Whitsunday
Region receives a ranking and value of ‘moderate’ and 0.542. The more inland LGAs
of Charters Towers Region and Isaac Region have ‘extreme’ environmental exposure–
vulnerability ratings. Despite some coastal regions within Isaac Region, the large majority
of its land mass is inland.

To combine the social, infrastructure, and environment exposure–vulnerability maps to
produce the overall map, the values within each map must be multiplied by the eigenvalues
generated through PCA. The eigenvalues are found in Table 5. The percentage of variance
explained from the first PC in the social domain is 45.28%. This is calculated by summing
the total eigenvalues and then dividing the eigenvalue by the total sum. An example for
the social domain within Vector 1 is (0.7376/(0.7376 + 0.2744 + 0.6169) × 100%. The vector
that explains the most variance is called the first PC. Thus, for the social domain, Vector 1
is the first PC, Vector 3 is the second PC, and Vector 2 is the third PC. For the infrastructure
domain, Vector 2 is the first PC representing 58% of the variance in the infrastructure
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dataset. For the environment domain, Vector 1 is the first PC and explains 39% of the
variance in the dataset.
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Table 5. Eigenvalues generated through a PCA, to then be multiplied by the social, infrastructure,
and environment values to create the overall exposure–vulnerability map.

Domain Vector 1 Vector 2 Vector 3

Social 0.7376 0.2744 0.6169
Infrastructure 0.1105 0.8523 −0.5112
Environment −0.6661 0.4452 0.5984

Combining the social, infrastructure, and environment exposure–vulnerability maps
produces an overall exposure–vulnerability map, seen in Figure 8. The LGAs with an
‘extreme’ rating of exposure–vulnerability from TC impacts are Mackay Region and the
City of Townsville, valued at 1.00 and 0.980, respectively. The two inland LGAs of Isaac
Region and Charters Towers Region demonstrate a ‘severe’ exposure–vulnerability rating,
with values of 0.706 and 0.626, respectively. The other two coastal LGAs, Burdekin Shire
and Whitsunday Region, have rankings and values of ‘moderate’ and ‘very low’, 0.217
and 0.000, respectively. In this final map, there is no clear pattern between coastal and
inland LGAs. The track map of TC Debbie, displayed in Figure 8, is seen to have made
landfall near Airlie Beach within the Whitsunday Region LGA. Despite this, the overall
exposure–vulnerability map displays that this LGA has the lowest ranking of exposure and
vulnerability from TC impact.
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4. Discussion

This study aimed to quantify TC exposure–vulnerability through the use of an indicator-
based multi-criteria analysis approach, by considering indices that explore societal, infras-
tructural, and environmental factors associated with exposure and vulnerability. The
question driving this investigation asks whether an index-based approach was effective
in the assessment of TCs within the eastern coast of Australia. Furthermore, this study
has attempted to provide actionable risk data to local decision makers so that specific
resilience structures and mitigation strategies can be implemented. The following sections
will discuss the findings and reasonings from this study.

4.1. Social Exposure–Vulnerability

In each indicator within this study, the LGA values are relative to the values of the
other LGAs within the study area. Thus, given that the methodology has each indicator
normalised, LGAs with high exposure or vulnerability might be allocated to a lower class
if it is comparatively low compared to the surrounding LGA values.

This study adds value to a field of risk assessment research as it comes from linking
exposure indicators with related vulnerability indicators within each domain of social,
infrastructure, and environment. This is an improvement from previous literature, includ-
ing Do and Kuleshov [28], who have also assessed exposure and vulnerability together
within the Queensland region, but did so at a lower resolution, did not utilise community-
specific indicators, and did not link the indicators together. Through these risk assessment
improvements, this study provides more community-specific results that can be used by
policy makers to implement specific and contextual mitigation strategies for exposed assets
that are also vulnerable to damages from TCs. By using datasets and indicators related
to the specific case study of TC Debbie, including the date of impact, this study provides
insights through the results being contextual to an event, which can thus be further com-
pared to real damage data from this event to analyse the index’s efficacy. Additionally,
including a weighting system for each indicator based on impact improves risk assessment
methodology compared to previous studies [28,40] that typically utilised equal weighting
mechanisms for indicators.

The social exposure indicator utilised in creating the social exposure–vulnerability
index, Figure 5, included population density, and the vulnerability indicators used were
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IRSD, core assistance, vulnerable ages, and hospital travel difficulty. The map of social
exposure (Appendix B) is the same map as the population density exposure indicator map
seen in Figure 3a, as this is the only social exposure indicator within this study. This map
demonstrates that most populations along the coast have higher TC exposure. Both the
City of Townsville and Mackay Region have ‘extreme’ population density exposure, and
Whitsunday Region has ‘moderate’ TC exposure. This trend is consistent with Queensland’s
urban growth, being in proximity to the central city areas and coastal regions. With
urbanisation comes increased development and its associated population growth, and thus
higher population exposure in the presence of TC events [68].

The correlation between rapid urban growth and increasing coastal natural hazard
risk is well established in the literature [69]. Rapid urban growth and its associated high
population density levels within coastal regions is a product of rural–urban migration and
environmental urban fertility [69–71]. However, rapid urbanisation puts pressure upon
water resources, increases deforestation, and degrades coastal environments, all of which
combine to increase natural hazard risk [72]. The process of deforestation undertaken
for urban development purposes produces extensive water runoff and can obstruct city
drainage systems, resulting in storm water flooding [73]. However, these compounding
factors can be avoided through better land and infrastructure management [73].

It is important to note that this study utilised population density as a social exposure
indicator as opposed to alternative methods such as absolute resident population because
population density can normalise between differently sized study regions. Population
density data were taken from the Statistical Area 2 (SA2) scale, similar in size to suburbs,
and then averaged into the LGA scale. Thus, data might have been lost in the process of
rescaling, which could have reduced the reliability of the results. Nevertheless, this method
was most appropriate for the scale and methodology of this study, and population density
at an LGA scale still provided suitable results to draw upon.

The exposure indicator of population density is directly linked to the social vulnera-
bility indicators. The inland LGA of Charters Towers Region has an ‘extreme’ ranking for
two of the four social vulnerability indicators: vulnerable age and hospital travel difficulty.
Thus, the population density exposure map in Figure 4a contrasts the social indicator TC
vulnerability maps (Figure 4c,d), which demonstrates high levels of social vulnerability
within the inland LGA of Charters Towers Region. This can be further explained through
Appendix C to demonstrate the social TC vulnerability of this LGA. Hence, the ability to
travel to a hospital, compounding the population density of people aged below 15 or above
65, makes this inland region highly vulnerable to social damages from TC impacts, such as
flooding or severe winds.

It should also be noted that hospital travel difficulty measures the crow’s flight distance.
A more expansive analysis would make use of the road network and population density as
a consideration when measuring distance from residential housing to hospitals. This would
require finding the shortest route within the road network from each residential house to
each hospital within the constraints of the LGAs, and then averaging these values across
the region. Through the crow’s flight method, travel difficulty was heavily influenced by
land mass and the number of hospitals in each LGA, rather than taking into account the
road network, population density, and infrastructure available to access health facilities.
Resultantly, as seen in Figure 4d, the LGAs with the greatest travel difficulty were seen as
the two largest LGAs, with ‘extreme’ and ‘severe’ rankings for Charters Towers Region and
Isaac Region, respectively.

This limitation is of particular importance in circumstances where roads are impacted
by fallen power lines or trees. In these cases, vulnerability can be greatly increased when
there is a single road in and out of a community when reaching a hospital, as the accessibility
of these critical services can be severely reduced [74]. Therefore, for this reason, it is crucial
to know whether various options exist to travel to the hospital, and the fastest route
of transportation.
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Despite this indicators’ limitation, crow’s flight distance can be a useful proxy for
road-based distances and this result is consistent with the health-care access data in the
literature [75]. This is particularly true in areas where road data are unavailable, or where
road conditions are poor and undergoing constant maintenance. Additionally, during TC
events, heavy rainfall may make dirt roads impassable. In these circumstances, the data
are not truly reflective of the actual road conditions, making the crow’s flight method a
judicious approach [76,77].

Additionally, this result is supported regarding that access to health-care services in
rural settings is limited [75]. Typically, the proximity to hospitals and number of hospitals
within rural settings are minimal in comparison to coastal, urbanised areas. Through
urbanisation, population density and associated development has been heightened in
coastal LGAs. Thus, consistent with the results found in Figure 4d, the number of hospitals
and the proximity of residential houses to the hospitals are greater in the coastal LGAs
where the difficulty of hospital travel is least extreme, ranging from ‘moderate’ to ‘very low’.

Although no clear trends can be made within Figure 4c, the vulnerable age group
indicator contributes to shaping Charters Towers Region’s vulnerability and so is crucial in
determining the overall vulnerability of its population. People found within the two age
groups of below 15 or above 65 have heightened vulnerability through their limited mobility
and cognitive ability, impeding on their capacity to respond and cope with the impacts of
a TC [78]. Children below the age of 15 may be unable to effectively communicate their
needs or comprehend the severity of the event [79]. Simultaneously, individuals who are
aged 65 or older may experience greater difficulties with regards to evacuation procedures,
accessing medications, or accessing vital emergency services [80]. Furthermore, these age
groups are more vulnerable to physical impacts from TCs through their multi-hazards of
storm surges, destructive winds, infrastructure collapses, and heavy rainfall.

Interestingly, the IRSD indicator shows an ‘extreme’ classification for Isaac Region
(Figure 4a). Areas with low IRSD scores indicate a high percentage of people with a state
household income between AUD 1 and AUD 25,999 per year, or a high percentage of people
in the labour force being unemployed. Hence, Isaac Region’s high IRSD value indicates
a large social disadvantage. This contrasts the social exposure–vulnerability TC map in
Figure 5 where Isaac Region has a ‘low’ ranking, which can be explained by its lower
rankings in population density, core assistance, and vulnerable age.

A typical social vulnerability indicator for TC risk assessments is the unemployment
rate [3]. However, one of the variables in IRSD is the percentage of people unemployed
in the labour force (Appendix A). To avoid doubling of indicators and skewing the data,
the individual unemployment indicator has been omitted from this study and was instead
utilised as a variable within the IRSD indicator.

Seen in Figure 4b, a substantial impact causing the vulnerability of the City of
Townsville is its ‘extreme’ ranking from the core assistance indicator. The relationship
between increased core assistance and increased vulnerability is credited to the mobility
impairment, which is critical in evacuation protocols during an emergency. Additionally,
the medical needs of people within the CANA group during a TC event may necessi-
tate access to critical resources such as medication, electricity, and specialised equipment.
Failure to meet these needs can result in life-threatening consequences, augmenting their
vulnerability in such events [81].

Figure 5 combines all social indicators to generate a social TC exposure–vulnerability
map, where the coastal LGAs of Mackay Region and the City of Townsville have an
‘extreme’ classification. This indicates that for the assets that are exposed to a TC, they are
also extremely vulnerable to damage. This is in alignment with the population density of
the LGAs, with the City of Townsville having the highest population density, followed by
Mackay Region. Both coastal regions being ranked as ‘extreme’ for overall social exposure–
vulnerability from TC gives insight that not enough efforts have been put in place to
improve their social resilience from natural hazard risks.
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Particularly being coastal, the exposed assets in combination with the vulnerability of
these assets are truly at risk of damage when triangulating the third risk factor of hazard.
TCs are strongest and pose the greatest risk to humans when they make landfall at the
coast, including the impacts of coastal hazards like storm surges [82]. So, LGAs closer to
the ocean have a greater propensity to damage.

Whitsunday Region had the lowest social exposure–vulnerability ranking of ‘very
low’ with a value of 0.00. This opposes the above findings and previous literature claiming
that coastal regions are the most exposed and vulnerable to water-based natural hazards.
However, this value is consistent with the results, where as seen in Figure 3a, Whitsunday
Region has a population density ranking of ‘very low’. Additionally, Figure 4a,b show
Whitsunday with a ‘low’ ranking for both IRSD and core assistance, and Figure 4c,d
show this LGA to have a ‘moderate’ ranking for both vulnerable age groups and hospital
travel difficulty.

Albeit, Whitsunday was the LGA in which TC Debbie made landfall and travelled
through before reaching Isaac Region. Whitsunday faced various challenges from this
TC; however, its social calamity was likely less severe through its low population density,
its strong population economic status, the health of the population, and their access to
health-care services [41]. It is therefore postulated that if TC Debbie made landfall in either
the City of Townsville or Mackay Region, the population within either LGA would have
faced more severe social challenges through the TCs’ damage.

With Mackay Region and the City of Townsville having the lowest social exposure–
vulnerability rankings, mitigation strategies should primarily be focused within these two
LGAs to reduce the risk of impacts from TCs. Examples of this could include improving
and expanding the social assistance mechanisms in place by local councils for people in
need of daily support. This would aid marginalised people to avoid harm from TC events.
Moreover, there should be a focus on providing public TC shelters, public temporary
housing, public evacuation options, and foodbanks. In the case where a rapid evacuation is
needed, the ability to safely house people is critical to the social resilience of the population.
Additionally, with high classes of IRSD for both LGAs, the government could instigate
more regimented governmental financial assistance and employment opportunities for
people living in a low socio-economic status. Through this, low-income people are more
likely to increase their financial stability, which can allow them to afford better resilience
infrastructure for their homes, improved modes of transport, and increased ability to
financially support medical assistance and disability aid.

4.2. Infrastructure Exposure–Vulnerability

The exposure indicators utilised in creating the infrastructure exposure–vulnerability
index included residential housing and hospital density, and the vulnerability indicators
were residential housing building codes and TPI for critical infrastructure. In the infras-
tructure domain, the exposure indicators were highly influential in the final index because
of the strong correlation between the two indicators. There is a strong link between the
number of residential housing and the number of hospitals that exist in the surrounding
geographical location [83]. There is typically a strong positive relationship, where with
more residential housing, indicative of a high population, the hospital density increases [3].
As a result, Figure 3b,c show similar trends where LGAs have a similar infrastructure
exposure ranking for both indicators. Both the City of Townsville and Mackay Region have
the highest ranking of ‘extreme’, and Charters Towers Region has the lowest ranking of
‘very low’.

The infrastructure vulnerability indicator of building codes relates directly to the
exposure indicator of residential housing, as the 1980s’ building code strictly addressed
residential housing [51]. The prospect of vulnerability from residential housing building
codes was highest for the LGAs of Isaac Region and Burdekin Shire with rankings of
‘extreme’ (Figure 4e). The two most populated and urbanised LGAs, Mackay Region and
the City of Townsville, both held rankings of ‘very low’, indicating that residential housing
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in these LGAs is least vulnerable to TC damage. Charters Towers Region, the other inland
LGA, had a ranking classification of ‘severe’.

This is consistent with the prospect that coastal, highly urbanised areas have increased
development, and larger economic bases and financial resources [84]. With that comes
financial liberty to invest in the construction of new homes with the updated building
codes, resulting in a higher proportion of building resilience. The three least urbanised
LGAs with the lowest population density have the highest proportion of residential houses
constructed prior to the 1980s. Thus, these LGAs are more vulnerable to impacts from TC
severe winds that can ultimately apply great sums of pressure to the roof, with the ability
to lift the house or its infrastructure from its foundation.

Additionally, urban areas tend to have better access to information and resources com-
pared to rural areas [85]. Thus, there is a likelihood that the information of the new building
codes and the importance it has on TC damage disseminated through the urbanised areas
faster. So, this could have motivated house owners, builders, and local authorities in urban
areas to prioritise compliance with the updated building codes.

Finally, coastal areas often face higher degrees of TC damage than inland areas [82].
Thus, there is a prioritisation of these coastal regions to invest in TC risk reduction, includ-
ing the construction of new housing. This increases resilience to the potential damages
from TCs with the updated building codes.

Unsurprisingly, the LGAs with the highest ranking for hospital density are again
the coastal regions of Mackay Region and the City of Townsville—consistent with the
relative population densities of the LGAs in this study area. There is a correlation between
population density and the number of critical infrastructure buildings, including hospitals,
within Queensland [28]. This correlation is commonly accepted as infrastructure is built
to address the needs of the population. Particularly, hospitals are placed to cater for a
relative portion of the region and their population, with hospitals housing four beds per
1000 citizens in Australia [86].

Linked directly to hospital density is the infrastructure vulnerability indicator of
TPI for critical infrastructure. Critical infrastructure in this indicator includes hospitals,
alongside other vital services including, but not limited to, health-care services, factories,
and residential housing. Seen in Figure 4f, the TPI for critical infrastructure is ‘extreme’
for the two inland LGAs of Isaac Region and Charters Towers Region, and ‘severe’ for
Whitsunday Region.

The vulnerability of critical infrastructure intersecting low TPI values can be explained
by the mountainous regions following the Great Dividing Range within eastern Australia.
The Great Dividing Range is a mountain terrain on the east coast of Australia, stretching
from Dauan Island in the Torres Strait to western Victoria, comprising a series of plateaus
and low mountain ranges. With mountainous terrain comes high TPI values through large
topographic dips and increases. Thus, the vulnerability of critical infrastructure within this
region will be higher, as exposed assets are more likely to experience flooding and damage
from TCs when in a low TPI classification.

The TPI approach reveals more about the topographical vulnerability of a region than
elevation, a more common indicator within TC risk assessments [27,87]. Although elevation
might be low, which is typically indicative of high vulnerability, the surrounding elevation
might also be low, and so the impact on that specific region will be decreased. Therefore,
integrating the slope and elevation together in generating a TPI indicator serves as a more
reliable proxy for identifying areas of vulnerability.

An indicator that could be utilised in future studies includes an additional infrastruc-
ture vulnerability indicator that analyses the height of the first floor for critical infrastructure.
Although some hospitals might have a low TPI and thus a higher vulnerability to TC dam-
age, if their first floor has a high floor level above the ground, this would reduce the risk of
flooding and thus infrastructural damage.

When combining infrastructure exposure and vulnerability, seen in Figure 6, the only
LGA with a classification of ‘extreme’ is Isaac Region. The two coastal LGAs of Mackay
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and the City of Townsville have rankings of ‘severe’, and then both Charters Towers
Region and Whitsunday Region have rankings of ‘low’. Although Burdekin Shire had an
‘extreme’ ranking for residential housing building codes, its overall infrastructure exposure–
vulnerability ranking was ‘very low’ due to its ‘very low’ ranking for residential housing,
hospital density, and TPI in critical infrastructure (Figures 3b,c and 4f).

Thus, to improve the TC resilience for these regions, the number of hospitals and
health-care services could be increased within the inland LGAs and placed in population-
dense regions. This will secondarily improve the hospital travel feasibility in these regions.
Furthermore, local councils could encourage construction of residential housing that in-
corporates newer building codes to combat and withstand TC damage. Additionally, for
critical infrastructure assets in low-TPI settings, additional building codes could be imple-
mented to ensure that the height of the first floor is above a specific level to minimise TC
damage. These decisions would ultimately minimise the potential infrastructural damage
that comes with TC risk.

4.3. Environment Exposure–Vulnerability

The exposure indicator utilised in creating the environment exposure–vulnerability
index was LULC, and the vulnerability indicators were root zone SM, TPI for nature
conservation and forestry, and TPI for animal agriculture and cropping. LULCs were
apportioned into eight classifications (Table 3), and each classification was graduated based
on their relationship with prospective human-focused damage from TCs. Evaluating LULC
as an exposure indicator is critical because varying LULCs contribute to TC exposure to
different extents. Ultimately, the damage assumed by the community is contingent on what
LULCs are exposed to TCs.

The valuing system for each LULC can be deemed subjective. However, this valuing
system was conducted based on the literature surrounding TC events and an LULC’s perti-
nence in a community’s resilience to such events. As an example, cropping was weighted
as 0.7 because it is one of the most critically exposed and vulnerable environmental assets
to TC events. Notably, TC Debbie significantly impacted cropland, where Bowen, one of the
largest cropping regions in the eastern coast of Australia, had its vegetable industry dam-
aged by an estimated AUD 100 million [88]. Conversely, water bodies were weighted as
0.1 because, with direct relationships with human lives and livelihoods, this classification’s
exposure status is relatively unimportant in a TC event.

Seen in Appendix D, animal agriculture and cropping consumed the most geographical
space in the study area, of which they have a high weighted value for exposure. Given that
there is large human-based liability that comes with TC damage to cropland and livestock,
the risk of TC damage is heightened for regions with this LULC. In the LGAs of Isaac
Region, Charters Towers Region, and Whitsunday Region, animal agriculture and cropping
were vast in landmass, relative to the other LGAs in the study area. Seen in Figure 3d,
Isaac Region had an exposure LULC ranking of ‘extreme’. The next highest classification
was by Mackay Region with a ‘moderate’ ranking. Isaac Region has the highest amount of
environmental assets exposed to potential TC damage because it is majorly inland with
large portions of land designated to cropping and animal agriculture (Appendix D).

Linked directly to the LULCs’ exposure environment indicator are the vulnerability
indicators. Seen in Figure 4g, root zone SM was seen to be ‘extreme’ within Charters Towers
Region, and then ‘severe’ for Isaac Region, Whitsunday Region, and the City of Townsville.
Root zone SM followed a similar pattern to TPI for critical infrastructure, seen in Figure 4f.
SM has been shown, through current literature, to largely influence the vulnerability of
communities impacted by TCs [89–91]. Saturated soils cannot absorb additional rainfall
from the TC, generating more rapid and severe flooding [92]. As a result, the region
impacted is more likely to experience events including landslides through unstable soil.
Soil types with high infiltration consist of larger pore spaces [93]. The larger spacing within
the root soil creates deposits that readily accept water. The saturated hydraulic conductivity
of low-infiltration soil contains smaller pore spaces between soil aggregates, leaving less
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room for infiltration [16]. These soils are expected to absorb less water, resulting in runoff
remaining on the surface and an increased chance of environmental harm from TC-related
flood events.

Additionally, high soil moisture can impact the stability of trees through influencing
the depth and integrity of root systems. In conjunction with strong winds, TCs can uproot
trees in areas of high soil moisture due to the soil’s lack of stability and cohesion, whereas
in areas with dry soils, trees are less susceptible to wind damage [94].

Seen in Figure 4g, the root zone SM is larger in inland regions. Rural areas consist of
largely non-interfered soils compared to anthropogenically changed, urbanised areas [95].
As a result, the underdeveloped nature of the rural areas yields more pore space, increasing
organic matter and biomass. The biomass enters the ground, primarily through the root
systems, assisting in the aggregation of the soil and increasing pore space [16]. This is
consistent with the results produced in Figure 4g, with the inland LGA of Charters Towers
having ‘extreme’ root zone SM, and the heavily inland regions of Whitsunday Region and
Isaac Region displaying ‘severe’ rankings for this indicator.

Utilising TPI below −24, being the two lowest TPI classifications, finding areas of
TPI overlapping with nature conservation and forestry and with animal agriculture and
cropping shows similar patterns (Figure 4h,i). Both maps display Isaac Region and Charters
Towers Region with an ‘extreme’ ranking, and then Whitsunday Region with a ‘severe’
classification. The remaining coastal regions have ‘very low’ to ‘low’ rankings. This is
consistent with the aforementioned Great Dividing Range locations, where inland regions
are more mountainous and so experience larger slope extremities between a specific location
and its surrounding environment. Additionally, as seen through the LULCs’ map in
Appendix E, the inland regions consist of the most nature conservation and forestry areas,
and animal agriculture and cropping. This is due to the urbanisation trends seen in coastal
regions within Australia, removing these natural and agricultural environments to create
space for residential housing and city infrastructure. With increased amounts of nature
conservation, forestry, animal agriculture, and cropping, there is a greater propensity for
overlap between low TPI values and these areas.

Combining the environment exposure and vulnerability indicators together, a final
map is created, seen in Figure 7. Figure 7 denotes the inland regions of Isaac Region and
Charters Towers Region with ‘extreme’ environmental exposure–vulnerability, displaying
normalised values of 1.00 and 0.81, respectively. The three coastal regions of Mackay
Region, Burdekin Shire, and the City of Townsville are all ranked as ‘very low’, with values
of 0.10, 0.00, and 0.12, respectively. Whitsunday Region has a ‘moderate’ ranking with a
value of 0.54. Although Whitsunday Region is also coastal, a large portion of its land mass
is, in fact, inland. Thus, the ‘moderate’ ranking for this LGA is logical. The disparity in
environment exposure–vulnerability results holds true with regions that are least urbanised
being the most exposed and vulnerable to environmental harms from TCs.

To mitigate against the harms of prospective TC damage, local decision makers and
stakeholders should consider mechanisms to protect these environmental assets. Examples
of solutions could include drainage water management through subsurface tile drainage
to protect cropping and animal agriculture from floods, and water gates to help farmers
protect their crops and livestock from floodwater [96].

4.4. Overall Exposure–Vulnerability Index

The values from the social, infrastructure, and environment exposure–vulnerability
indices, found in Figures 5–7, were then multiplied by the PCA values found in Table 5
to generate the overall exposure–vulnerability map (Figure 8) for the designated study
area. PCA was utilised to generate this final map for various reasons, primarily including
dimensionality reduction and an objective weighting scheme. PCA assists in reducing
the dimensionality of the data by transforming the original variables into a new set of
uncorrelated variables, the PCs. Additionally, PCA assigns weights to each PC based
on their contribution to the overall variance of the data. The first PC accounts for the
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most significant amount of variance, followed by the second and then the third. The
weights generated by PCA specify the relative importance of each PC in explaining the
data. The PCA weights thus reflect the importance of each of the social, infrastructure, and
environment indices in determining the overall exposure–vulnerability index.

Within the PCA eigenvalues, two of the domains had their first PCs representing less
than 50% of the variance in the dataset. This infers that a large portion of the variance
has not been captured by these components. A potential reason for this was inherent
complexity, where the dataset could have had a high degree of complexity and inherent
variability that was not captured effectively by a small number of PCs [97]. As an example,
in the IRSD indicator, there are various inputs, seen in Appendix A, which makes this
indicator complex. The spread of data within this indicator can therefore be unclear in how
it interacts with other input datasets, generating greater variability and uncertainty in the
final dataset.

Utilising the eigenvectors to generate the final exposure–vulnerability map, the two
LGAs with an ‘extreme’ ranking are Mackay Region and the City of Townsville, with
normalised values of 1.00 and 0.980, respectively. Thus, these two regions are the most
exposed and vulnerable to TCs within this study area. Following this, Isaac Region (0.708)
and Charters Towers (0.626) had a ‘severe’ ranking. Burdekin Shire (0.217) and Whitsunday
Region (0.000) fell into the rankings of ‘moderate’ and ‘very low’, respectively.

These results are validated by the impacts felt by the communities within Mackay
Region, where destructive winds and torrential rain resulted in significant damage to homes,
infrastructure, and agriculture across the region [50]. Additionally, major flooding critically
impacted many communities within this region [50]. However, both in Mackay Region
and Whitsunday Region, over 90 percent of the community service respondents stated that
they were satisfied with the speed and proficiency of the decision makers’ responses to the
event and the time in which they could return home after being evacuated [50].

Importantly, the value of 0.000 for exposure–vulnerability associated with Whitsunday
Region can appear misleading. Given all values have been normalised and made relative
to the other LGAs in the study area, one region will have the value of 0.000 and another
region a value of 1.00. Hence, this value does not infer that Whitsunday Region has no
exposed assets or that the exposed assets are protected from damage. Whitsunday Region,
being a coastal region on the eastern coast of Australia, has fallen victim to damage from
natural hazards, including TC Debbie [50]. When combining exposure and vulnerability
with hazard, this region has a greater propensity to risk from TCs than many inland areas
that are likely to never experience damage from such events [87]. Thus, protocols and
resilience strategies are still required to ensure that such a region curtails the possibility of
either societal, infrastructural, or environmental damage from TCs.

The overall exposure–vulnerability index displays largely high rankings for the LGAs,
with two regions having their assets exposed and vulnerable to an ‘extreme’ extent, followed
by two regions being ‘severe’, and then another being ‘moderate’. Thus, it is clear that
this is a highly exposed and vulnerable region to the threats and damages of TCs, and so
ultimately mitigation strategies are required to reduce the damages and ultimate loss of
lives and livelihoods from such events.

In earlier studies [98,99], combined indices for coastal risk assessment have been
developed. However, in this study, specifically focused on TCs, each exposure indicator
is linked to a related vulnerability indicator, rather than having a list of exposure and
vulnerability indicators with some relationship as in [100,101]. Through the methodology
developed in this study, decision makers have a better understanding of specific exposed
assets and their vulnerability to TC-related damages.

For this methodology to be transferred to other study areas, particularly those more
vulnerable to the damages of TCs, there is a need to select community-specific indicators.
These include datasets that directly relate to the exposed assets and the vulnerability
of such assets within the community and study area being assessed. An example of
this could include selecting the number of informal settlements within the coast of Fiji
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to assess the vulnerability of infrastructure in this Pacific-island country [102]. When
applying this methodology to a global lens, exposure and vulnerability would need to
be combined with a hazard model [21]. Examples of hazard models that can be utilised
within a comprehensive TC risk assessment are through Random Forest Machine Learning
techniques to assess flooding hazard [100] or a Variable Enhanced Bathtub Model to assess
storm surge hazard [101].

5. Conclusions

To improve TC risk assessments, this study developed an exposure–vulnerability
index, utilising the study area of TC Debbie in the six LGAs surrounding landfall. There-
fore, local decision makers are provided with insight into appropriate action to reduce
future losses of human lives and livelihoods. This study could serve as a proof-of-concept
methodology for other TC-prone regions.

It was found that the LGAs most exposed and vulnerable to TC damage were the
two coastal LGAs of Mackay Region and the City of Townsville, receiving exposure–
vulnerability values of 1.00 and 0.97, respectively. This is due to a combination of societal
factors including a large need for core assistance, highly vulnerable age groups, a high
proportion of residential housing with antiquated building codes, and a high popula-
tion density.

The results from this study provide a valuable contribution to the discussion of TC
management in Australia and abroad. The linked exposure and vulnerability indica-
tors utilised within this study are suitable proxies in describing TC-prone landscapes of
Australia’s eastern coastal regions. Given that this index-based technique is simple and
transferable to other regions, a similar risk assessment could be conducted in other areas
concerned of TC damage. Insight from this proof of concept can also assist TC mitigation
and adaptation in other TC-prone areas outside of this study area, which is bolstered by
the openly accessible nature of an index-based methodology.

This study adds value to the TC risk assessment scientific landscape through linking
exposure and vulnerability indicators, and having them ranked using a PCA approach,
within the study area of impacted LGAs surrounding the landfall of TC Debbie in the
eastern coast of Australia.

Ultimately, this research can help relevant decision makers and stakeholders to gain
better insight into TC risk management for disaster risk reduction, by introducing policy
that relates closely with the exposed and vulnerable assets within their community. In a
landscape where TC intensity is continually increasing in the presence of anthropogenic
climate change, the replicable and scalable TC risk assessment scoped by this research
will serve as a meaningful and proactive method for TC mitigation and adaptation. It
is recommended that the methodology used for this study is considered as a potential
framework for future index-based TC assessment approaches.

Author Contributions: Conceptualization, K.B. and Y.K.; methodology, K.B.; software, K.B.; valida-
tion, K.B.; formal analysis, K.B.; investigation, K.B.; resources, Y.K.; data curation, K.B.; writing—
original draft preparation, K.B.; writing—review and editing, K.B. and Y.K.; visualization, K.B.;
supervision, Y.K.; project administration, Y.K.; funding acquisition, Y.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors express sincere gratitude to colleagues from the Climate Risk
and Early Warning Systems (CREWS) team at the Australian Bureau of Meteorology and Monash
University for their helpful advice and guidance.

Conflicts of Interest: The authors declare no conflict of interest.



Climate 2023, 11, 235 26 of 32

Appendix A. List of All 16 Variables That Are Used to Create the IRSD Index. All
Variables Are Indicators of Disadvantage

• INC_LOW: % of people with stated household equivalised income between AUD 1
and AUD 25,999 per year

• CHILDJOBLESS: % of families with children under 15 years of age who live with
jobless parents

• NONET: % of occupied private dwellings with no internet connection
• NOYEAR12ORHIGHER: % of people aged 15 years and over whose highest level of

education is Year 11 or lower
• UNEMPLOYED: % of people (in the labour force) who are unemployed
• OCC_LABOUR: % of employed people classified as Labourers
• LOWRENT: % of occupied private dwellings paying rent less than AUD 215 per week

(excluding AUD 0 per week)
• ONEPARENT: % of one-parent families with dependent offspring only
• DISABILITYU70: % of people under the age of 70 who have a long-term health

condition or disability and need assistance with core activities
• SEPDIVORCED: % of people aged 15 years and over who are separated or divorced
• OCC_DRIVERS: % of employed people classified as Machinery Operators and Drivers
• OCC_SERVICE_L: % of employed people classified as low-skill Community and

Personal Service workers
• NOCAR: % of occupied private dwellings with no cars
• OVERCROWD: % of occupied private dwellings requiring one or more extra bedrooms
• NOEDU: % of people aged 15 years and over who have no educational attainment
• ENGLISHPOOR: % of people who do not speak English well

Appendix B. Map of Tropical Cyclone Social Exposure in the Six LGAs Surrounding
TC Debbie Landfall, with Values after Logarithmic Min–Max Normalisation (QGIS
3.30 Software)
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Appendix C. Map of Tropical Cyclone Social Vulnerability in the Six LGAs
Surrounding TC Debbie Landfall, with Values after Logarithmic Min–Max
Normalisation (QGIS 3.30 Software)

Appendix D. Map of Land Use Classifications of Animal Agriculture and Cropping in
the Six LGAs Surrounding TC Debbie Landfall (QGIS 3.30 Software)
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Appendix E. Map of All Eight Land Use Classifications in the Six LGAs Surrounding
TC Debbie Landfall (QGIS 3.30 Software)
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