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Abstract: Surface winds over California can compound fire risk during autumn, yet their long-term
trends in the face of decadal warming are less clear compared to other climate variables like tempera-
ture, drought, and snowmelt. To determine where and how surface winds are changing most, this
article uses multiple reanalyses and Remote Automated Weather Stations (RAWS) to calculate autumn
10 m wind speed trends during 1979–2020. Reanalysis trends show statistically significant increases
in autumn night-time easterlies on the western slopes of the Sierra Nevada. Although downslope
windstorms are frequent to this region, trends instead appear to result from elevated gradients in
warming between California and the interior continent. The result is a sharper horizontal temperature
gradient over the Sierra crest and adjacent free atmosphere above the foothills, strengthening the
climatological nocturnal katabatic wind. While RAWS records show broad agreement, their trend is
likely influenced by year-to-year changes in the number of observations.

Keywords: surface winds; trends; reanalysis; RAWS; katabatic winds; mountain meteorology

1. Introduction

Surface winds modulate fire weather conditions over California in a myriad of ways,
yet compared to other climate trends like multi-year drought [1], earlier spring snow
melt [2], and a later onset of autumn precipitation [3–5], their long-term trends in the face
of decadal warming are generally less clear. Although partially due to the sparse and
relatively short nature of long-term wind data, the various wind patterns that can influence
fire weather conditions also makes synthesizing their trends a daunting task.

Downslope windstorms are one such pattern that are ubiquitous during autumn across
California. Over northern California and the Sierra Nevada, these windstorms are known
as Diablo winds (previously Mono winds) [6,7], whereas over coastal southern California,
they are called Santa Ana winds [8–10]. Dry, gusty Sundowners driven by the California
coastal jet also enhance fire risk on the southern slopes of the Santa Ynez mountains [11–14].
These windstorms have each been responsible for the most destructive wildfires in their
respective regions, including the Tubbs Fire (2017) [15,16], the Thomas Fire (2017) [17,18],
and the Camp Fire (2018) [19–21].

Local-scale thermal gradients also generate a myriad of wind patterns, particularly
over the Sierra Nevada. The daytime Washoe Zephyr, for example, blows over northeastern
California during warm seasons in response to asymmetric heating between the Nevada
desert and the western Sierra Nevada, posing unique challenges to fire containment op-
erations and the spread of wildfire smoke [22,23]. Day-time and night-time anabatic and
katabatic winds develop under quiescent conditions in response to asymmetric surface
heating and cooling of terrain relative to the adjacent free troposphere; these temperature
gradients lead to diurnal mountain slope, mountain–valley, and mountain–plain circu-
lations on increasingly larger spatial scales [24]. The confluence of these winds and the
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resulting shears and turbulence have the potential to create challenging fire fighting con-
ditions and take fire crews by surprise [23,25,26]. Furthermore, the katabatic mechanism,
when considered between the relatively warm south Californian coast and cold high desert
constitutes a type of Santa Ana wind, which, in the absence of onshore flow, is the primary
control of Santa Ana variability [27]. Considering both thermally driven winds and synop-
tically driven windstorms is therefore important to build a broad picture of the evolving
wind landscape over increasingly warmer decades, especially during the driest season
in autumn.

Previous studies of wind trend in California are few and concern either future wind en-
ergy viability [28], coastal winds promoting upwelling [29], or are nationwide in scope [30,31].
From the perspective of fire weather, previous studies have understandably focused on
downslope wind conditions, finding little or no discernible trend in the frequency or inten-
sity of Diablo [32,33] or Santa Ana winds [34,35]. To the best of the authors’ knowledge, no
studies exist on the long-term variability of Sundowners. Trends in these high-wind events
often necessitates filtering climate data according to criteria of wind speed thresholds, atten-
dant low humidities, and event duration, with trends then computed in event frequencies
and wind speeds. Alternatively, a broader perspective may be achieved by computing
trends in wind speed alone. Such an approach would reveal the wind circulations changing
fastest, and may indicate not just changes in winds relevant for fire weather, but in those
with other socioeconomic impacts, such as wind energy. To the best of our knowledge, no
such study of historic surface wind speed trends exists for California.

This article therefore investigates regional trends in gridded 10 m wind speeds over
California for autumns during 1979–2020, the season when fuels are generally drier and
changes in the diurnal cycles of winds and the frequency and intensity of windstorms may
significantly increase fire risk. Given the sparse and short record of weather station obser-
vations, wind speed trends are calculated from daily maximum winds in three reanalyses:
the European Centre for Medium-Range Weather Forecasts ERA5 reanalysis, the NCEP
North American Regional Reanalysis (NARR), and the National Centers for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis 1. Ad-
ditionally, reanalysis trends are compared against a 30-year record of Remote Automated
Weather Station (RAWS) observations spanning 1990–2020. Where trends are prominent
and significant, we also seek to describe the underlying physical mechanism to elicit a
deeper understanding of the state’s evolving wind landscape.

2. Datasets and Trend Method

Given the sparsity of weather station observations and their tendency to often extend
no more than a decade, reanalyses are the next best datasets to investigate trends in surface
wind speeds. This suitability is largely due to their consistent use of a single numerical
weather prediction model and data assimilation scheme, as well as their wide catalog of
meteorological variables that permit an examination of the potential physical mechanisms
driving trends.

In this study, we use three reanalyses to investigate trends in 10 m winds: the European
Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis [36], the North
America Regional Reanalysis (NARR) [37], and the National Centers for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis 1 [38].
ERA5 has a 31 km horizontal grid spacing, 25 hPa vertical grid spacing in the lower
troposphere, and is the first reanalysis with hourly output, allowing insight into diurnal
variability. ERA5 can also correlate well with near-surface station winds over mountain
terrain and most closely resembles the observed interannual variability compared to four
other reanalyses [39,40]. Additionally, Molina et al. [41] compared ERA5 10 m winds
with 245 stations across Europe and determined that ERA5 is able to represent the diurnal
variability of winds in light-to-strong conditions. NARR has a similar grid spacing to
ERA5 (32 km), 3-hourly output capturing diurnal variability, and has been reported to
have a small bias (less than 1 m s−1) for summertime and wintertime surface winds over
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the contiguous United States (CONUS) [37]. NARR also assimilates 10 m wind speeds
from around 450 surface stations over the CONUS. Although the NCEP 1 reanalysis has
coarse spatial (209 km) and temporal (6-hourly frequency) resolutions, it is used here as an
additional dataset to compare 10 m trends with the modern reanalyses on larger scales.

One should also be aware that 10 m winds in reanalysis are not observations, but
diagnostics from the model’s planetary boundary layer scheme. ERA5 10 m winds are
calculated by extracting the wind speed at a blending height of 40 m and then extrapolating
to 10 m using Monin–Obukhov theory and assuming a surface roughness length of 0.03 m,
the roughness length of short grass surface. Zonal and meridional wind components
are then calculated with this wind speed and the wind direction on the lowest model
level (https://confluence.ecmwf.int/display/FUG/Section+9.3+Surface+Wind, accessed
on 28 September 2023). NARR’s 10 m winds are likewise extrapolated from the wind at
the model level nearest the ground minus a similarity function from Monin–Obukhov
theory (Eqn. 4.6, [42]), but whose surface roughness varies with orography [30]. Another
important difference between ERA5 and NARR is that NARR assimilates wind speeds
from 450 land stations over the contiguous U.S. [37], although how many of these stations
are in California is unknown to the authors. NCEP/NCAR 1 initially assimilated ocean
surface wind speeds from microwave imaging; however, the process incurred logical and
other issues and so were not incorporated in the final product [38]. As for ERA5 and NARR
though, NCEP/NCAR 1 10 m winds are extrapolated from the lowest model level winds
using Monin–Obukhov theory with a surface roughness derived from climatology [30].
Given the universal extrapolation approach to obtain surface winds and to evaluate our
confidence in them, we also verified wind trends at other near-surface heights where
permissible. This was only possible in ERA5 at 100 m where winds are interpolated from
the nearest bounding model levels [43].

Trends from these data are calculated as follows. At each grid point, zonal and
meridional wind components are used to calculate 10 m wind speeds at hourly (ERA5),
3-hourly (NARR) and 6-hourly (NCEP/NCAR) frequencies. For NARR, its zonal and
meridional wind components are first treated with a Gaussian spatial filter to reduce noise
that results from regridding its native grid to the Northern Lambert Conformal grid on
which the data are archived. Filtering with a Gaussian kernel of degree N = 6 (i.e., standard
deviation N/2π) reduces 95% of noise on the order of 64 km, which is twice the NARR grid
spacing. Next, daily maximum wind speeds in each dataset are identified and September–
October–November (SON) seasonal averages computed from 1979 to 2020. Linear trends
in these time series are computed as Theil–Sen estimators, whose statistical significance is
determined with the Yue and Wang Modified Mann–Kendall test [44] to account for the
temporal autocorrelation of winds, which can occur on 30-year timescales [31,45]. While
this modified method has little effect on the magnitude of trends, it does increase the
number of grid points with statistically significant trends (defined as those exceeding the
95% significance level) compared to standard Mann–Kendall testing.

From zonal and meridional wind components, we also calculate trends in maximum
northerly, southerly, westerly, and easterly 10 m wind components during the day (0600–
1700 PST) and at night (1800–0500 PST) to capture any diurnal changes in anabatic (upslope)
vs. katabatic (downslope) winds. These 12 h periods contain 12, 4, and 2 reanalysis times
in ERA5, NARR, and NCEP/NCAR reanalyses, respectively. Trends in seasonal averages
of these daytime and night-time wind maxima are likewise evaluated with the Yue and
Wang Modified Mann–Kendall test.

Further to reanalysis trends, we examine trends in daily maximum wind speeds
from 28 Remote Automated Weather Stations (RAWS) archived at the Western Regional
Climate Center of the Desert Research Institute (DRI) (https://raws.dri.edu/, accessed
on 27 September 2023). While this network incorporates far more than 28 stations, the
stations chosen are those with a 30-year record spanning 1990–2020. As these stations are in
remote areas, often over complex terrain, and they provide a crucial dataset for comparing
reanalysis trends as well as offering long-term trends in areas where reanalysis typically

https://confluence.ecmwf.int/display/FUG/Section+9.3+Surface+Wind
https://raws.dri.edu/
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underestimate winds. Trends at these locations are also calculated from seasonal averages
of daily maximum winds using Yue and Wang Modified Mann–Kendall testing.

Where trends are significant and prominent, we investigate potential regional vs. local-
scale processes. Specifically, regional processes include MSLP gradients and downslope
windstorms, with the latter identified from the gridded ERA5-derived dataset of Abat-
zoglou et al. [46]. This dataset contains two variables: the gridded daily occurrence of
a downslope windstorm, indicated by 1 (present) or 0 (absent), and the associated wind
direction. While not matching our period of study exactly, this period is still sufficiently
long to elicit the influence of windstorms on any identified wind trends. On the other hand,
we consider local-scale processes to be on the order of what reanalysis can resolve (i.e.,
approximately 30 km or greater). The Abatzoglou et al. [46] dataset has this resolution
and can capture downslope windstorms, including California’s Sierra Nevada, suggest-
ing that 30 km reanalyses offer some utility for examining surface winds over complex
terrain. However, it is important to remember that these windstorms are often driven by
larger-scale MSLP gradients, not local-scale processes. Therefore, surface winds and their
underlying processes that occur on local scales should be thought of as in a gray zone of
resolvability. Consequently, while surface winds can affect fire risk over complex terrain
in terms of fire spread, this level of detail cannot be investigated here. Rather, we use the
reanalyses as a first approach to assess long-term trends, which can serve as a reference
and jumping-off point for future research.

3. Results
3.1. Reanalysis Trends

During SON, surface wind speeds over California are increasing most significantly
over the Sierra Nevada (Figure 1). In ERA5, increases in daily maximum wind speeds span
the entire western slopes of the mountain range, in addition to the Mendocino Range in the
northwest of the state (Figure 1a). In NARR, increasing wind speeds are more confined
to the northern Sierra Nevada and the Sacramento Valley (Figure 1b). As expected, these
local trends are not found in the NCEP/NCAR reanalysis due to its coarser grid (Figure 1c).
Furthermore, ERA5 also displays nearly identical significant and stronger trends in daily
maximum wind speeds at 100 m (Figure 2), although trends at this height were not available
in NARR or NCEP reanalyses. That this trend is seen at 100 m (where winds are interpolated
between bounding model levels rather than extrapolated to the surface) indicates that wind
trends do not result from assumptions in the surface extrapolation.

On the regional scale, trends show good cross-reanalysis agreement. ERA5 and
NARR shows statistically increasing wind speeds off the California coast, consistent with
ERA-Interim [47], and additionally in a broken, but broad, arc stretching from northern
California, parts of the northern Intermountain West, and into the western Midwestern
states. The NCEP/NCAR reanalysis also shows increasing wind speeds over the northern
Intermountain West, but where it highlights strengthening winds between the Great Basin
and Rocky Mountains, ERA5 and NARR show decreasing wind speeds. One other notice-
able source of disagreement is in decreasing wind speeds over the Southern California
Bight in ERA5 that is not present in either NARR or NCEP, despite the former’s similar
grid spacing. Overall, however, reanalyses exhibit broad agreement in daily maximum
wind trends over the western U.S.

Figure 3 shows the breakdown of trends by westerly, easterly, northerly, and southerly
components. Strengthening winds over the Sierra Nevada in ERA5 are most closely associ-
ated with stronger night-time easterlies (cf. Figures 1a and 3h) during both autumn and
summer. NARR likewise highlights stronger night-time easterlies, and over a larger latitu-
dinal range than in wind speed alone (Figure 3p). Additionally, increasing wind speeds
in the Sacramento Valley in the NARR closely resemble stronger night-time northerlies
(Figure 3m). This trend is also seen in seasonal averages at 80 m by Holt and Wang [48],
and in stronger easterlies over the northern Sierra Nevada and coastal southern California
(cf. Figure 3l,p and their Figure 5n). Surprisingly, the NCEP/NCAR reanalysis also shows
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an increasing nocturnal downslope easterly trend, though the whole of California is rep-
resented as a westward slope (Figure 3x). Trends towards stronger nocturnal downslope
winds therefore appear robust across multiple reanalyses.

Figure 1. Autumn trend in seasonally averaged daily maximum 10 m wind speed for (a) the ERA5,
(b) NARR, and (c) NCEP/NCAR reanalyses over 1979–2020. Solid colors indicate the wind speed
trend in m s−1 per decade. Dots indicate statistically significant trends at the 95% significance
level from Yue and Wang Modified Mann–Kendall testing. Black contours show the corresponding
reanalysis orography.

Figure 2. As in Figure 1a, but at 100 m height.

Figure 4 shows how wind speeds have changed over time in ERA5 and NARR in
regions of statistically significant trends. Over Northern California, night-time easterlies
have generally strengthened over the past 40 years, with four successive autumns from
2017 to 2020 being 1–3 standard deviations stronger than the long-term mean in both ERA5
and NARR (Figure 4a,b). Trends over the central Sierra Nevada are even more prominent
(Figure 4c,d), where night-time easterlies become noticeably stronger than climatology
after 2000, especially in ERA5, where the change from below-average seasons to above-
average seasons is virtually symmetric. Interestingly, significant trends towards stronger
night-time easterlies are also seen over the Transverse Ranges of coastal southern California
(Figure 4e,f). This shift to seasons of stronger night-time easterlies may be correlated with
teleconnection patterns (e.g., El Nino, the Pacific North American (PNA), Quasi-biennial
Oscillation (QBO), etc.). The PNA and NAO have previously been linked to low-wind
“dead” days over Central California in the fall [49] and combined El Nino–QBO patterns in
the spring are associated with stronger Diablo winds in the fall [32]. While teleconnection
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patterns would help to understand whether trends result from low-frequency climate
variability or long-term warming, this aspect is beyond the scope of this paper.
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Figure 3. Linear trends over 1979–2020 in autumn averaged daily maximum westerly and southerly
10 m wind speed components and autumn averaged daily minimum easterly and northerly 10 m wind
speed components. The top subpanel shows ERA5 trends, the middle subpanel shows NARR trends,
and the bottom subpanel shows NCEP/NCAR 1 trends. For each reanalysis ((a–h) for ERA5, (i–p) for
NARR, (q–x) for NCEP/NCAR 1), the top row shows the daytime trend (0600–1700 PST) and the
bottom row shows the night-time trend (1800–0500 PST). Solid colors indicate the wind speed trend
in m s−1 per decade. Dots indicate statistically significant trends at the 95% significance level from
Yue and Wang Modified Mann–Kendall testing. Black contours show the corresponding reanalysis
orography. Note that, as northerly and easterly wind components are traditionally negative, trends
are multiplied by −1 so that brown colors indicate strengthening winds while blue colors indicate
weakening winds.
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ERA5 NARR

(a) (b)

(c) (d)
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*
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Figure 4. Autumn averages of night-time 10 m easterly wind minima during 1979–2020 in ERA5 (left
column) and NARR (right column). Averages are calculated for regions of statistically significant
trends bounded by red boxes: Northern California (39–41.5 N and 120.5–123.5 W), the Sierra Nevada
(36.25–38.5 N and 117.5–120 W), and Southern California (32.7–35 N and 116.5–119.25 W). Within each
region, only easterly winds above 304 m (1000 ft) are averaged to emphasize winds over elevated
terrain. Time series are standardized by subtracting their mean and dividing by their standard
deviation. Red lines denote the linear Theil–Sen trends in m s−1 per decade, whose significance
is estimated with the Yue and Wang Modified Mann–Kendall test. Note that, as easterly wind
components are traditionally negative, trends are multiplied by −1 so that positive trends indicate
strengthening winds.

3.2. RAWS Trends

We further compared reanalysis trends against trends in the magnitude of maximum
night-time easterlies from 28 RAWS observations over the Sierra Nevada. Although an
analysis over the same period of the reanalyses is desirable, the earliest RAWS data for the
region of interest begin in 1988, with 1990–2020 offering the longest consistent period of
observations from all stations.

Overall, RAWS trends show broad agreement with reanalyses. Of the 28 stations over
the Sierra Nevada, 18 (64%) show positive trends (Figure 5a), of which nine are statistically
significant and are largely confined to the northern part of the range, whereas reanalysis
shows significant trends over the whole range. This disagreement may be due to more
spatially homogeneity in terrain slope in the reanalysis, especially in ERA5, producing a
more spatially homogeneous wind field and thus a more spatially homogeneous trend.
Reanalyses may therefore be overstating the spatial extent of significant increasing wind
speeds. Furthermore, stations show much interannual variability; Ladder Butte, Mount
Zion, Pike County, and Westwood each show years of abrupt spikes in seasonal averages.
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However, with the exception of Doyle (Figure 5f), averages at all stations are significantly
correlated with the number of observations in a season. Therefore, while more than 64% of
stations agree with reanalysis trends, this could simply be due to a general increase in the
number of observations over time.

(a)

(b)

(c)

(d)
(e)

(f)

(g)

(h)

(i)

(j)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

m/s per decade

Figure 5. Linear trends over 1980–2020 in autumn averages of night-time 10 m easterly wind
minima (a). As easterly wind components are traditionally negative, trends are multiplied by −1 so
that positive trends indicate strengthening winds. Stations with red outlines indicate statistically
significant trends at the 95% significance level. Black contours in (a) represent the ERA5 orography.
Panels (b–j) show autumn averages (black lines) with their corresponding Theil–Sen linear decadal
trend (blue lines) for all stations that show significantly strengthening trends. Statistical significance
is estimated with the Yue and Wang Modified Mann–Kendall test.

RAWS records for autumns during 2015–2019 are also used to determine which
reanalysis better represents surface winds (Figure 6). ERA5 is better correlated with station
winds compared to NARR (0.52 vs. 0.41, respectively); while the ERA5 distribution is
fairly centered over fair correlations, the NARR distribution is more skewed towards low
correlations. Additionally, ERA5 has a smaller mean bias than NARR (−0.07 vs. −1.31),
which overall tends to underestimate station winds. This result is somewhat surprising,
given that NARR assimilates 450 surface station winds over the CONUS [37].

3.3. Potential Physical Mechanisms

To determine potential mechanisms of wind speed trends over the Sierra Nevada,
trends in mean sea level pressure (MSLP) are examined (Figure 7). While NARR and
NCEP/NCAR reanalysis show a dipole of significantly decreasing MSLP over coastal
California and building pressure over east of the state, ERA5 shows significant building
pressure over the Great Basin and decreasing pressure off the coast. The scale of these pat-
terns of pressure trends and their southwesterly orientation suggest enhanced synoptically
driven downslope windstorms may be driving wind speed trends. This interpretation is
inviting, given that Abatzoglou et al. [46] show trends of increased downslope windstorm
frequencies in ERA5 over the Sierra Nevada. Such a contribution to the wind speed trend
was tested by using the Abatzoglou et al. [46] dataset to remove all dates of downslope
windstorms from 10 m wind components and recomputing the trend, which was virtually
identical to Figure 1a. Wind speed trends over the Sierra Nevada therefore do not appear
to result from stronger or more frequent synoptically driven windstorms.
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Figure 6. Mean bias error (MBE) and correlation for 59 hourly RAWS wind speed against the nearest
grid cell reanalysis wind speed (blue for ERA5, red for NARR). Each dot represents the pair of MBE
and correlation averages from five SONs during 2015–2019.

Figure 7. Linear trend in autumn averaged mean sea level pressure (MSLP) over 1979–2020 (solid
colors) in the ERA5 (a), NARR (b), and NCEP/NCAR (c) reanalyses. All trends are in hPa per decade.
Hatching denotes statistically significant trends at the 95% significance level from Mann–Kendall
testing. Black contours denote each reanalyses orography.

Alternatively, wind trends may represent crude, but stronger, thermally driven kata-
batic winds, given that climatological diurnal winds are partially resolved in the reanalyses.
Upslope daytime (0900–1500 PST) and downslope night-time (2100–0300 PST) flow are
clearly represented in ERA5 confined to the western Sierra slopes (Figure 8a,b). This diurnal
variability is much less apparent in NARR, where wind trends are strongest (Figure 8c,d); a
discrepancy possibly due to NARR’s 3-hourly frequency compared to ERA5’s hourly fields.
Nevertheless, the reanalyses give some indication of representing thermally driven winds.

The katabatic mechanism hypothesis is therefore investigated by interpolating po-
tential temperature and zonal and vertical wind components onto vertical cross sections
bisecting each reanalysis’s easterly wind trend maxima (Figures 3h,p and 9). This analysis
is not performed for the NCEP/NCAR reanalysis, given its coarse resolution. These cross
sections are highlighted in Figure 10, illustrating substantial warming gradients aloft. While
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both ERA5 and NARR show stronger warming over California compared to the desert inte-
rior (Figure 10a,b), with the largest absolute difference in NARR near 700 hPa, the gradient
in warming aloft at the Sierra Nevada crest is sharper in ERA5 than in NARR. This trend
is seen explicitly in potential temperature gradient trends, which shows an increasingly
sharper night-time boundary between warm air over the western Sierra Nevada and cooler
air pooling against the eastern side of the Sierra Nevada crest, accompanied with a broad
and deep region of increasing easterly trends down to the surface (Figure 10c,d).

Figure 8. Autumn average over 1979–2020 of 10 m zonal and meridional winds (blue arrows) during
0900–1500 PST and 2100–0300 PST in ERA5 (a,b) and NARR (c,d). Wind arrows have been scaled to
have the same size. Note that during 0900–1500 PST and 2100–0300 PST, there are seven hours of
output to average over in ERA5, while for NARR, there are only two hours of output. Solid black
lines denote the reanalysis orography in meters.
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(a) (b)ERA5 NARR

Figure 9. Orography and cross sections (red lines) used in Figure 10 for the ERA5 (a) and NARR
(b) reanalyses, respectively. The blue dots show the points used for calculating the katabatic pressure–
gradient acceleration in (1) at 2.5 km height ASL.

Embedded within these broad easterly trends appears to be a strengthening of the
climatological katabatic winds. The density-driven katabatic wind that arises from the
horizontal temperature gradient between the upper slopes and the adjacent free troposphere
at the same altitude is given mathematically as

B =
g∆θ

θ0
sin(α), (1)

where g is the acceleration due to gravity (9.81 m s−2), ∆θ is the potential temperature
difference between the upper slope and the adjacent free troposphere, θ0 is the mean night-
time surface potential temperature on the upper slope, and α is terrain’s inclination. This
katabatic acceleration has previously been proposed as a modulator of Santa Ana wind
variability, where the temperature gradient is that between the Nevada desert and the
California coast [27]. Likewise, this mechanism explains wintertime katabatic winds on
the Antarctic continent, where diabatic cooling from the ice sheets provides the requisite
temperature gradient [50,51]. Similarly, long-term warming and snow melt have driven
increased katabatic winds over the southern Himalayas [52].

Here, we calculate the trend in the katabatic acceleration (1) in ERA5 and NARR as
follows: the potential temperature difference used is that between the Sierra Nevada crest
and adjacent atmosphere at 2.5 km over the Sierra foothills (blue markers in Figure 9); θ0 is
the average night-time 2 m potential temperature at the Sierra Nevada crest; the terrain
slope in ERA5 is calculated as approximately 1.5◦ (1.4 km change in elevation over 58 km)
and 0.45◦ in NARR (0.34 km change in elevation over 43 km). Computing night-time
seasonal averages of (1), we find statistically significant negative trends in both ERA5 and
NARR, becoming increasingly negative after the 2000s, especially in ERA5 (Figure 10e,f).

Furthermore, Figure 11 shows that differential warming between California and the
Nevada desert exists on a regional scale at 700 hPa. Although warming is weaker in ERA5
than in NARR, the orientation of warming gradients aligns well over the Sierra Nevada in
ERA5 (Figure 11a) and over northeastern California in NARR (Figure 11b), where wind
trends are greatest. This differential warming aloft therefore appears to be sharpening the
local-scale temperature gradient over elevated terrain that drives reanalysis night-time
katabatic slope winds.
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ERA5 NARR

𝜃Trend  (K/season)

(𝜕𝜃/𝜕s)Trend  (K/km)

x 10-5

Figure 10. Top row: Linear trend in autumn averaged night-time potential temperature during
1979–2020 (solid colors) in ERA5 (a) and NARR (b). Statistically significant trends at the 95% level
are colored in (a,b). Abscissas represents the cross section transects shown in Figure 9. Middle row:
Linear trend in autumn averaged night-time potential temperature gradient during 1979–2020 (solid
colors) in ERA5 (c) and NARR (d). Wind arrows show trends in zonal and vertical wind components
at locations where the zonal wind trend is statistically significant at the 95% level from Mann–
Kendall testing. Hatching denotes where the potential temperature gradient trend is statistically
significant at the 95% level from Mann–Kendall testing. Solid gray in each subpanel depicts the
reanalysis orography. Bottom row: autumn averaged katabatic pressure-gradient acceleration and
their respective linear Theil–Sen decadal trends for ERA5 (e) and NARR (f). Katabatic pressure–
gradient accelerations are computed between the two blue dots in Figure 9 at 2.5 km height ASL.

700 hPa 700 hPa

Figure 11. Linear trend in autumn night-time averaged 700 hPa temperature (solid colors) over
1979–2020 in the ERA5 (a) and NARR (b) reanalyses. Solid colors indicate the temperature trend
in K per decade. Hatching denotes statistically significant trends at the 95% significance level from
Mann–Kendall testing. Thin black contours denote the reanalysis orography.
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4. Discussion and Conclusions

This study investigated trends in surface wind speeds over California during 1979–2020
using three reanalyses (two of which with a 30 km grid spacing) and RAWS measurements
spanning 1990–2020. We find that nocturnal downslope easterly wind components have
increased on the western slopes of the Sierra Nevada, especially over the past two decades.
While synoptically forced windstorms are frequent in this region, they are not responsible
for the identified trends, pointing towards a local-scale mechanism. Despite the ability
of the reanalysis, particularly ERA5, to capture the diurnal variability in upslope and
downslope winds, we are wary of attributing these results to an enhancement of winds on
the mountain slope scale, given the grid spacing of the reanalyses. We believe our findings
describe an enhancement of katabatic winds due to thermal gradients aloft between the
Pacific coast and the interior high desert, which is sharpest at the Sierra Nevada crest.

We also note that, despite the broad agreement between RAWS and reanalysis trends,
there is disagreement even when stations are directly adjacent to one another, and that
reanalysis trends are noticeably more spatially homogeneous. This disagreement may be for
several reasons. First, while the RAWS records span 30 years, the reanalysis cover 41 years;
having more years of RAWS data may have yielded further agreement. Second, reanalysis
topography is smoother than reality and lacks the fine-scale structure of canyons and gaps,
favoring less spatial variation in the wind field and hence in the trend field; reanalyses are
therefore likely overestimating the spatial extent of increasing wind speeds. Furthermore,
RAWS transmission standards report wind speeds in integer mile-per-hour increments
(0.44 m s−1) (DRI, personal communication). As reanalysis trends are approximately
0.20 m s−1 per decade or less, then over the 30-year RAWS record this trend amounts
to a total change of 0.60 m s−1 (i.e., 1.3 mph). As this change is on the order of the
observations’ precision, it is doubtful whether RAWS measurements are sufficiently precise
to detect the accumulated wind speed change. Finally, we also find statistically significant
correlations between the number of RAWS observations in a season and seasonal averages;
this sampling bias is known to introduce spurious trends in reanalyses [39]. A combination
of these factors could explain why reanalyses and RAWS trends differ at certain locations.

Additional factors influencing reanalysis trends have been articulated
by Ramon et al. [39]. These include decadal changes in large-scale atmospheric circu-
lation, more observations available in recent years, spurious trends in reanalyses data
assimilation due to instrument drift and relocation, and changes in surface roughness.
Although decreasing surface roughness could result in stronger winds, the ERA5 10 m
wind extrapolation assumes a constant surface roughness; surface roughness, however,
is not an archived variable in the NARR available for analysis. To minimize spurious
trends due to instrumentation errors, Ramon et al. [39] advise using multiple reanalyses,
and we find consistent trends over the Sierra Nevada in three different reanalyses. The
effect of spurious trends due to more observations in recent years is harder to quantify,
and has not been addressed here. Although we find significant increasing winds speeds
and correlations to the number of observations in the RAWS data, these winds are not
assimilated into the reanalyses used here. Increasing RAWS observations over time cannot
therefore be the source of reanalysis trends.

Furthermore, the historical inadequacies of reanalysis surface winds over complex
terrain and the approximately 30 km grid spacing of products used here can give reason to
question the veracity of trends and the types of local flow they can resolve. However, some
confidence in the reanalysis trends can be gleaned from the diurnal composites (Figure 8)
reproducing climatological downslope winds over the western Sierra Nevada, at least for
ERA5. Additionally, surface wind trends are consistent with trends at 100 m in ERA5,
where winds are interpolated from model levels rather than extrapolated to 10 m. Although
NARR winds are not archived at 100 m height, trends at 80 m computed by [48] also show
agreement with 10 m trends highlighted here. ERA5 and NARR 10 m wind trends are also
consistent with easterly trends over a deep layer of the lower troposphere (Figure 9c,d), and
are associated with a plausible physical mechanism. Therefore, while further examination
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is required, reanalyses may realistically be capturing a stronger katabatic flow over the
Sierra Nevada, albeit crudely.

Whether these trends compound fire risk, however, is unclear at this point. Although
the interaction of katabatic and valley winds may lead to dangerous fire behavior scenar-
ios [23], and the Sierra Nevada is becoming increasingly fire-prone at higher elevations
[53], any contribution from intensifying winds is premature to say. In fact, given that
terrain-driven fires tend to grow faster upslope, these results equally suggest an impedi-
ment to night-time fire spread. Moreover, it is also unclear whether these trends represent a
transient shift in response to modes of internal climate variability (e.g., the Pacific Decadal
Oscillation or Pacific Norther American, etc.) or are part of a longer-term intensification.
Still, the fact that nocturnal katabatic trends over the Sierra Nevada are the largest and
most pronounced feature suggests that they are the most rapidly changing autumn wind
pattern over recent decades and invites further investigation.

This study also points to additional areas of research in need of further investigation.
Surface wind speed trends have potential implications for wind energy production in
California. ERA5, NARR, and NCEP/NCAR reanalyses all indicate stronger northerlies
west of Humboldt County and the central California coast, while ERA5 and NARR also
show stronger easterlies over the Mojave Desert; each of these regions are being targeted
for future wind turbine development [54,55]. Given the cubic relationship between wind
speed and turbine power output, even small long-term trends in wind speed can represent
significant improvements in energy production. Furthermore, winds in Tehachapi Moun-
tains are more frequent from April to October in the afternoon [56], while ERA5 and NARR
show stronger daytime easterly trends for SON, possibly extending the number of days of
feasible energy production there. However, any implications for wind energy should be
couched in the knowledge that wind speed trends found here may be either long-term or a
response to internal climate variability, which has not been investigated here and could
impact turbines’ efficiency over the course of its lifetime.

Our results also show that, in addition to long-term trends, seasonal means of noc-
turnal maximum surface winds exhibit consecutive years of above-normal values over
the Sierra Nevada (Figure 4). This finding shows that low-frequency modes of climate
variability (e.g., El Nino/Southern Oscillation and Pacific Decadal Oscillation) together
with local mechanisms (e.g., density-driven katabatic pressure gradients) may control the
variability of surface winds in California, which has important implications for wildfire
management of terrain fires at night. We are currently developing 30 years of dynamical
downscaling over California with high spatio-temporal resolutions, and the investigation
of these research topics will be reported in future work.
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