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Supplementary materials 
S1. Comparisons of daily temperature from ERA5 reanalysis and FLUXNET data sets. 

  



 
Figure S1.1: Scatter plots for analyzed stations of daily temperature from ERA5 reanalysis versus 
FLUXNET data sets. The period is given in brackets in the plot title. 
  



S2. Statistical analysis of temperature and precipitation trends. 

The sequential version of the Mann-Kendall test statistic (SeqMK-test) (Chatterjee, 2014, Sneyres, 
1990, Mohsin and Gough, 2009) was used to estimate the trend change in the time series.  The method can 
be used to determine whether a time series has a monotonic upward or downward trend. In addition, the 
method allows to identify the trend turning points in the time series (e.g. air temperature and 
precipitation). The SeqMK test is calculated using the ranking values yi of the initial time series (x1, x2, ..., 
xn). Values yi (i=1, 2, 3, ..., n) are compared with yj (j=1,2,3,..., i-1). At each step i, the condition yi > yj is 
checked and the result of this condition is stored in ni.  The t-value is determined according to Saffari 
(Safari, 2012) as : 𝑡 = ∑ 𝑛              (1) 

The distribution of test statistic 𝑡 , is derived as:    𝐸(𝑡 ) =  ( )                  (2) 

and the variance as: 𝑣𝑎𝑟(𝑡 ) =  ( )( )              (3) 

For each ti, the sequential values of a reduced or standardized variable u(𝑡 ) are calculated as (4):  u(𝑡 ) = ( )( )                     (4) 

The forward sequence u(ti)  are calculated based on the original time series (x1,x2,...,xn).  The values 
of the backward sequence u'(ti) are evaluated in the same way, but starting from the end of the time 
series. When evaluating u'(ti), the time series is constructed so that the last value in the original time 
series is the first. 

The intersection of the curves corresponding to u(ti) and u'(ti) allows the beginning of the probable 
trend change to be identified. If the values of u(ti) and u'(ti) at the point of change do not exceed 1.96, we 
can say that there is a significant change in the trend (at the 5% level of significance). 

If at least one value of a reduced variable is greater than the selected significance level of the 
Gaussian distribution, then the null hypothesis (that the examined series has no significant trend change) 
is rejected. 

The forward and backward sequences are calculated based on the mean annual temperature and 
precipitation values for the period 1980-2021 for all ERA5 grid points north of 40 N (Figure S2) and 
separately for the grid cells with detected trend turning point (Figure S3).  

Despite the detected trend changes at individual grid points and regions, the averaging over all grid 
cells located at temperate and high latitudes in the Northern Hemisphere (north of 40N) does not detect 
the trend turning points in temperature and precipitation (the plots u(ti) and u'(ti) do not intersect). Even 
if the averaging is applied to the grid cells with detected trend turning points (Figure S3), it is impossible 
to identify the common turning point for all grid cells. For precipitation in 2015 and for temperature in 
1996-1997, we see a convergence of the curves u(ti) and u'(ti), but they do not overlap. This indicates the 
regional variations of the detected trend changes and makes it impossible to identify the periods with 
significantly different trends for the whole Northern Hemisphere.   
 
  



 
Figure S2.1 Sequential Mann-Kendall test for the air temperature (a) and precipitation (b) for all grid 
points situated north of 40N. 

 
Figure S2.2 Sequential Mann-Kendall test for the air temperature (a) and precipitation (b) for grid cells 
with detected trend turning points situated north of 40N. 
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S3. Temporal variability of daily temperature anomalies, precipitation, NEE and LE anomalies. 

 
Figure S3.1 

 Temporal variability of daily temperature anomalies, precipitation, API, and NEE and LE flux anomalies 
for the evergreen needleleaf forest of western Canada (CA-Ca3).  



S4. Relationships between daily NEE anomalies and daily air temperatures. 

 
Figure S4.1 Relationships between daily NEE anomalies and daily extremely high air temperature, T > 
Q95 (a,b) and precipitation, P > Q95 (c,d) for selected flux stations in deciduous broadleaf (a,c) and 
evergreen needleleaf (b,d) forest types. 
 

 
 

Figure S4.2 Relationships between daily positive (a,b) and negative (c,d) LE anomalies and daily 
extremely high (T > Q95) and low (T < Q5) air temperature for selected flux stations in deciduous 
broadleaf (a,c) and evergreen needleleaf (b,d) forest types. 

 



S5. Relationships between daily NEE and air temperature anomalies. 

 

Figure S5.1 Relationships between daily positive NEE (NEE anomalies > 1 STD) and positive air 
temperature (T > Q95) anomalies for selected flux stations in deciduous broadleaf (a), evergreen 
needleleaf (b), mixed (c) and evergreen broadleaf (d) forests. 

 

 

Figure S5.2 Relationships between daily negative NEE (NEE anomalies < -1 STD) and positive air 
temperature (T > Q95) anomalies for selected flux stations in deciduous broadleaf (a), evergreen 
needleleaf (b), mixed (c) and evergreen broadleaf (d) forests. 

 



 

Figure S5.3 Relationships between daily positive NEE (NEE anomalies > 1 STD) and negative air 
temperature (T < Q05) anomalies for selected flux stations in deciduous broadleaf (a), evergreen 
needleleaf (b), mixed (c) and evergreen broadleaf (d) forests. 

 

 

Figure S5.4 Relationships between daily negative NEE (NEE anomalies < -1 STD) and negative air 
temperature (T < Q05) anomalies for selected flux stations in deciduous broadleaf (a), evergreen 
needleleaf (b), mixed (c) and evergreen broadleaf (d) forests. 

 

  



S6. Relationships between daily NEE and LE anomalies and daily extreme precipitation. 

 

Figure S6.1 Relationships between daily positive NEE anomalies (NEE anomalies > 1 STD) and daily 
extreme precipitation (P  >  Q95) for selected flux stations in deciduous broadleaf (a), evergreen 
needleleaf (b), mixed (c) and evergreen broadleaf (d) forests. 

 

 

Figure S6.2 Relationships between daily negative NEE anomalies (NEE anomalies < -1 STD) and daily 
extreme precipitation (P > Q95) for selected flux stations in deciduous broadleaf (a), mixed (b) and 
evergreen broadleaf (c) forests. 

 



 

Figure S6.3 Relationships between daily positive LE flux anomalies (LE anomalies > 1 STD) and daily 
extreme precipitation (P  >  Q95) for selected flux stations in deciduous broadleaf (a), evergreen 
needleleaf (b), mixed (c) and evergreen broadleaf (d) forests. 

 

 

Figure S6.4 Relationships between daily negative LE flux anomalies (LE anomalies < -1 STD) and daily 
extreme precipitation (P  >  Q95) for selected flux stations in deciduous broadleaf (a), evergreen 
needleleaf (b), mixed (c) and evergreen broadleaf (d) forests. 

 


