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Abstract: Land carbon fluxes play a critical role in ecosystems, and acquiring a comprehensive
global database of carbon fluxes is essential for understanding the Earth’s carbon cycle. The primary
methods of obtaining the spatial distribution of land carbon fluxes include utilizing machine learning
models based on in situ measurements, estimating through satellite remote sensing, and simulating
ecosystem models. Recently, an innovative machine learning product known as the Global Carbon
Flux Dataset (GCFD) has been released. In this study, we assessed the reliability of the GCFD by
comparing it with existing data products, including two machine learning products (FLUXCOM
and NIES (National Institute for Environmental Studies)), two ecosystem model products (TRENDY
and EC-LUE (eddy covariance–light use efficiency model)), and one remote sensing product (Global
Land Surface Satellite), on both site and global scales. Our findings indicate that, in terms of average
absolute difference, the spatial distribution of the GCFD is most similar to the NIES product, albeit
with slightly larger discrepancies compared to the other two types of products. When using site
observations as the benchmark, gross primary production (GPP), respiration of ecosystem (RECO),
and net ecosystem exchange of machine learning products exhibit higher R2 (ranging from 0.57 to 0.85,
0.53–0.79, and 0.31–0.70, respectively) compared to model products and remote sensing products.
Furthermore, we analyzed the spatial and temporal distribution characteristics of carbon fluxes
in various regions. The results demonstrate an upward trend in both GPP and RECO over the
past two decades, while NEE exhibits an opposite trend. This trend is particularly pronounced in
tropical regions, where higher GPP is observed in tropical, subtropical, and oceanic climate zones.
Additionally, two remote sensing variables that influence changes in carbon fluxes, i.e., fraction
absorbed photosynthetically active radiation and leaf area index, exhibit relatively consistent spatial
and temporal characteristics. Overall, our study can provide valuable insights into different types of
carbon flux products and contribute to understanding the general features of global carbon fluxes.

Keywords: carbon fluxes; gross primary production; terrestrial ecosystem respiration; net ecosystem
exchange
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1. Introduction

Understanding the intricate dynamics of land carbon fluxes is essential in grasping the
Earth’s carbon cycle and its implications for global climate change [1,2]. There are several
types of carbon fluxes, such as gross primary production (GPP), terrestrial ecosystem
respiration (RECO), and net ecosystem exchange (NEE). GPP signifies the total assimilation
of carbon dioxide by plants through photosynthesis, while RECO represents the release
of carbon dioxide by ecosystems through respiration processes [3,4]. On the other hand,
NEE refers to the net carbon exchange between ecosystems and the atmosphere, which can
be positive (carbon release) or negative (carbon uptake) [5,6]. These crucial carbon fluxes
play a significant role in regulating the global carbon balance and are influenced by diverse
factors such as climate, vegetation type, and land use changes [7,8].

To enhance our understanding of land carbon fluxes and their intricate interac-
tions, researchers have employed diverse datasets obtained through various method-
ologies. These include remote sensing observations, ecosystem modeling, and machine
learning techniques [9]. In recent years, advancements in remote sensing technology have
significantly contributed to our knowledge of global photosynthesis and to theories, sim-
ulations, and observations of carbon fluxes. Among the widely used remote sensing
products is the MODIS satellite, which provides global GPP products at 8-day intervals,
with a spatial resolution of 500 m, based on light use efficiency (LUE) [10]. To address
the errors and uncertainties arising from mismatched input data scales and data quality
issues, Zhao et al. modified the input meteorological data of MODIS products and other
relevant parameters [11]. Additionally, the VPM (vegetation photosynthesis model) remote
sensing product utilized an improved light use efficiency model, incorporating remote
sensing variables and NCEP (National Centers for Environmental Prediction) reanalysis
data. The algorithm related to vegetation indices was also enhanced, thereby addressing
the limitations of previous GPP products [12]. Another valuable remote sensing product,
the Global Land Surface Satellite product (GLASS), based on remote sensing data, offers
high-resolution global data for 12 variables, dating back to 1981. Notably, GLASS data
exhibit good spatial continuity and contain no missing values [13].

Many ecosystem models have been developed to describe the land carbon cycle in
ecosystems, and these models can also respond to different climatic and atmospheric
conditions [14]. Models based on light use efficiency have proven effective in improving es-
timates of GPP [8,15]. For example, Yuan et al. used an eddy covariance–light use efficiency
model to generate high-resolution GPP products, accurately representing both spatial
and temporal patterns [16–18]. A process-based model combining atmospheric, radiative,
photosynthetic, transport, and energy balance factors was used to estimate global GPP
and evapotranspiration (ET) by utilizing FLUXNET 2015 data and MODIS data, achieving
the same spatial resolution as the MODIS product [19,20]. Moreover, Li et al. addressed
the uncertainty in estimating GPP from solar-induced chlorophyll fluorescence (SIF) by
exploring eight different forms of the relationship between SIF and GPP. They obtained
a high-resolution GPP global dataset at 0.05◦ resolution, which exhibited a strong fit to
the observed data [21]. Gao et al. developed a remote sensing-based model for predicting
RECO driven by multiple MODIS remote sensing data in northern China and the Tibetan
Plateau region [22]. Richardson et al. presented three models for predicting RECO and em-
ployed statistical methods to assess model and parameter uncertainties, providing valuable
references for RECO modeling in terms of data and methods [23]. Ge et al. developed a
predictive model for RECO in grassland ecosystems in northern China, integrating factors
such as temperature, humidity, and productivity. They used MODIS surface data to sim-
ulate RECO, offering a comprehensive understanding of the climatic and environmental
influences on RECO in grassland ecosystems [24]. Moreover, Mendes et al. estimated sea-
sonal variations in GPP, RECO, and NEE in a tropical forest in Brazil. Their results revealed
that carbon fluxes were influenced by precipitation and vegetation distribution, while NEE
remained balanced even during the dry season [25]. Dyukarev et al. employed soil and air
temperature, radiation, and leaf area index (LAI) to model and estimate the distribution of
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GPP, RECO, and NEE in western Siberia, demonstrating that the studied ecosystem acted
as a carbon sink [26]. Fang et al. investigated the relationship between carbon fluxes and
climate variables during different phases of the El Niño–Southern Oscillation (ENSO) by
utilizing carbon flux outputs from a global ecosystem model [27]. Zhou et al. used the
biogeochemical Carnegie Ames Stanford Approach (CASA) model to develop a dataset of
GPP, RECO, and NEE for North America [28].

Data-driven machine learning methods are playing an increasingly significant role.
This approach typically uses satellite remote sensing data, meteorological data, and other
datasets related to land carbon fluxes to construct machine learning models. Numerous re-
search projects have utilized a variety of machine learning models to forecast carbon fluxes.
Among these projects, the FLUXCOM project has been widely adopted [29]. The model tree
ensemble approach, which relies on remote sensing and meteorological data, represents a
significant advancement in global land carbon flux estimation [30]. The resulting dataset
can be used to evaluate existing models of land surface processes and the biosphere’s
condition [31]. Tramontana et al. evaluated the performance of a random forest model for
different target variables across various regions [32]. Their study employed 11 machine
learning algorithms from four major classes, including tree models, kernel function meth-
ods, neural networks, and regression splines. The outputs were compared to the results of
existing models [33,34]. Prediction results using a random forest model demonstrated its
superiority over the MODIS product in certain areas [35]. Xiao et al. utilized a modified
regression tree to predict net ecosystem carbon exchange in the United States [36]. A cubic
regression tree model based on MODIS remote sensing data and reanalysis meteorolog-
ical data was used to predict global SIF and GPP [37]. A tree ensemble model was also
employed to generate a national dataset for China [38]. Zeng et al. employed a random
forest model to upscale GPP, RECO, and NEE data from the FLUXNET2015 dataset to
derive global carbon flux products spanning 1999 to 2019 [39]. Neural network models
employing remote sensing SIF, along with other radiometric and meteorological data as
predictors, have also been employed to predict global GPP [40]. Furthermore, a support
vector regression model can produce GPP and NEE products on both site and spatial scales
within Asia [41].

For the aforementioned three types of land carbon flux products, it is necessary to
evaluate the carbon fluxes derived from their predictions due to the differing method-
ologies employed by these products. With the rapid advancement of machine learning
technology in carbon flux simulation, a notable example being the recently released Global
Carbon Flux Dataset (GCFD) product [42,43], it is crucial to also examine the reliability of
products generated using this technology. This study aimed at comparing three distinct
types of products, including machine learning products, ecosystem model products, and
remote sensing products, to further assess whether the carbon flux products obtained
through machine learning algorithms adequately reflect the realistic distribution of car-
bon fluxes. The objective was to enhance the reliability and applicability of carbon flux
products predicted by machine learning algorithms. Furthermore, in order to conduct a
comprehensive analysis of global carbon flux characteristics, this study analyzed temporal
variations and spatial distributions of global carbon fluxes. Additionally, an attribution
analysis of the spatial and temporal variations in carbon fluxes was performed, taking into
account significant factors that influence changes in carbon fluxes.

The remaining structure of the paper is organized as follows. Section 2 describes the
carbon flux products and evaluation methods. Section 3 gives the comparison results of dif-
ferent products and an in-depth analysis of global carbon flux distribution. Sections 4 and 5
present the discussion and conclusions, respectively.

2. Materials and Methods

This study analyzed three types of land carbon fluxes, including GPP, RECO, and NEE.
They were chosen according to previous studies and variables provided in the datasets.
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2.1. Flux Tower Site Data

Observations from three flux tower datasets were utilized for site-level validation in
this study. These datasets include FLUXNET2015 [44], FLUXNET-CH4 [45], and Drought-2018 [46],
collectively comprising a total of 280 sites worldwide. They provide various variables such
as GPP, RECO, and NEE. Initially, daily values were extracted from these datasets, spanning
the timeframe from 1999 to 2018. Subsequently, the extracted data were aggregated into
monthly averages to ensure their consistency with the time intervals of other products.

2.2. Machine Learning Products

Three datasets, including the GCFD (Global Carbon Flux Dataset) [42], the FLUXCOM
RS+METEO product [33,34], and the NIES (National Institute for Environmental Studies)
product by Zeng et al. [39], were utilized for evaluation in this study. The GCFD is a
global land carbon flux dataset with a resolution of 1 km, generated using deep learning
techniques trained with in situ measurements from 280 stations, which are the same as the
flux tower sites in Section 2.1. It encompasses three carbon flux variables, namely gross
primary production (GPP), terrestrial ecosystem respiration (RECO), and net ecosystem
exchange (NEE), recorded at 10-day intervals from January 1999 to June 2020. FLUXCOM
provides monthly data on the three carbon fluxes, with a spatial resolution of 0.5◦, covering
the period from 2001 to 2010. Zeng et al. provided NIES data on the three carbon fluxes at
a 10-day resolution and a spatial resolution of 0.1◦, spanning from 1999 to 2019. Compared
to FLUXCOM and NIES, the GCFD is derived using deep learning with better performance
than traditional machine learning; the GCFD demonstrated more spatial details with
higher resolution.

2.3. Ecosystem Model Products

Two model products, namely the TRENDY model product [47] and the EC-LUE (eddy
covariance–light use efficiency) model product by Yuan et al. [16,48], were utilized as the
representative ecosystem model products in this study. GPP data from 1999 to 2018 from
these two models were employed. The TRENDY model offers monthly data with a spatial
resolution of 1◦, while Yuan et al.’s model provides GPP data every 8 days at a spatial
resolution of 0.05◦.

2.4. Remote Sensing Product

The Global Land Surface Satellite (GLASS) product [13,49,50] was utilized as the rep-
resentative remote sensing carbon flux product. This comprehensive product incorporates
14 different land variables, encompassing the prevailing LUE models presently accessible.
The GPP variable obtained from GLASS offers a spatial resolution of 0.05◦ and a temporal
resolution of 8 days. For the purposes of this study, data spanning from 1999 to 2018 were
employed for evaluation.

2.5. Methods for Data Comparison

Detailed information about the carbon flux datasets has been summarized in Table 1.
Here, the GCFD was compared to land carbon flux products provided by Zeng et al., FLUX-
COM, TRENDY, Yuan et al., and GLASS. No additional quality check was performed, and
all data are used for the comparison. It should be noted that the resolution of GCFD (1 km)
is closer to the footprint area of eddy covariance data, which makes it more comparable to
in situ data than the other products with coarser resolution. When different datasets are
compared, the product with higher spatiotemporal resolution is processed according to the
product with lower resolution using the averaging method. Since the FLUXCOM data are
available on a monthly basis, all datasets were processed to a monthly scale for accurate
comparison. Since only GPP is available in the carbon flux data from TRENDY, Yuan et al.,
and GLASS, the focus of the comparison was solely on the differences in GPP predictions
between the GCFD and the aforementioned datasets. Also, in addition to the global scale,
the analysis was also conducted in seven climate zones, including the tropical, subtropical,
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continental, Mediterranean, oceanic, dry, and polar climates, which were divided according
to the Koppen climate classification [51].

Table 1. Detailed information on global carbon flux datasets.

Dataset Name Spatial Resolution Temporal Resolution and Coverage Estimating Method

GCFD 1 km Every 10 days from January 1999 to June 2020
Machine learningFLUXCOM 0.5◦ Monthly, from 2001 to 2010

NIES 0.1◦ Every 10 days from 1999 to 2019

TRENDY 1◦ Monthly, from 1999 to 2018 Ecosystem model
EC-LUE 0.05◦ Every 8 days from 1999 to 2018

GLASS 0.05◦ Every 8 days from 1999 to 2018 Remote sensing

2.6. Product Evaluation Methods

In station-level validation, this study employed the observations from each station to
compare them with the predictions generated by the products at the corresponding station
locations. The coefficient of determination (R2) [52], root mean square error (RMSE) [52],
and bias [52] were used to evaluate the performance of products as:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 , (1)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
, (2)

bias = ∑n
i=1(ŷi − yi)

n
(3)

where yi and ŷi are the observed and predicted values, respectively, and y is the averaged
value of observations.

2.7. Attribution Analysis

To identify significant factors among the variables associated with carbon fluxes,
this study employed two methods for attribution analysis; the corresponding results are
presented in a study by Shangguan et al. [42]. The first method involved calculating all
correlation coefficients between the predictors and the three target variables to identify the
variables with high associations. The second method utilized a random forest model to
determine the feature importance of the predictors and rank them accordingly. The first and
second method can identify the linear and nonlinear relationships for attribution analysis,
respectively. Following attribution analysis, four important variables were selected for
further analysis in Section 3.4, including FAPAR (fraction of absorbed photosynthetically
active radiation), LAI, air temperature (TA), and latent heat flux (LE). FAPAR and LAI were
obtained from the Copernicus Global Land Service (CGLS) [53], while air temperature and
latent heat flux were obtained from ERA5-Land [54] with a spatial resolution of 0.1 degree
and temporal resolution of 3 h.

3. Results
3.1. Comparisons of Products

Comparisons were conducted using data from each flux tower site and the correspond-
ing grid data to obtain the results presented in Figure 1. The findings indicate that the
GCFD demonstrated the most outstanding performance, whereas the predictions of the
other datasets exhibited notable underestimations or overestimations. Evaluating the R2

and RMSE values, FLUXCOM and Zeng et al. showcased very similar performance, while
the GCFD exhibited higher R2 values and lower RMSE values for all three predicted fluxes.
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Notably, when compared to FLUXCOM, the GCFD exhibited a remarkable enhancement
in R2, with improvements of 49%, 49%, and 126% for GPP, RECO, and NEE, respectively.
Among all the products, GCFD predictions exhibited the lowest biases, with GPP, RECO,
and NEE showing prediction biases of −0.044, 0.018, and 0.053, respectively. Conversely,
FLUXCOM displayed the most pronounced bias.
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The discrepancy between the predicted carbon flux values of the ecosystem model
and the in situ observations is more pronounced in comparison to the machine learning
products. This disparity could arise from a mismatch in the scales of the model and the
site, possibly due to the low spatial resolution of the model data. Additionally, it could be
attributed to the uncertainties generated by the model during the parameterization and
simplification of the ecosystem structure.

Compared to ecosystem model products, the remote sensing product produced GPP
data that are closer to site data and exhibited significantly smaller bias. The validation
accuracy stands at 0.56, though it remains lower than the site validation accuracy of
machine learning. Remote sensing products, derived primarily from satellite-observed
data, offer the advantage of reducing complex calculation processes and minimizing data
generation uncertainties. However, satellite observations are subject to environmental
and equipment conditions, leading to greater uncertainty compared to machine learning
methods, which rely solely on data. These factors suggest that the accuracy of carbon flux
products estimated through remote sensing methods falls between that of ecosystem model
products and machine learning products.

A further comparison was conducted by subtracting the 2010 annual averages of the
three carbon fluxes predicted by the GCFD from the predicted values of other products.
This process generated a distribution of differences, which is illustrated in Figure 2. Among
the three carbon fluxes, NEE exhibited the smallest disparity across the data products due
to its relatively narrow range of values. The GCFD only exhibited a slight overestimate or
underestimate in tropical regions when compared to the two machine learning products.
The distinction between GCFD and FLUXCOM predictions for RECO was more prominent
in the Amazon region of South America. On the other hand, the gap between the GCFD
and FLUXCOM was slightly larger than that between the GCFD and Zeng et al. In the
case of GPP, the GCFD tended to slightly overestimate FLUXCOM in various regions, such
as Siberia, North America, and South America, where the difference between the GCFD
and Zeng et al. was smaller. GCFD predictions in tropical Africa were slightly lower than
the two machine learning datasets, but the underestimation was relatively minor. These
outcomes might be attributed to the similarity in the covariates used in the GCFD modeling
process compared to those employed by Zeng et al., resulting in closer predictions.
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The GPP values predicted by the GCFD exhibited varying degrees of over- or un-
derestimation in certain regions when compared to ecosystem model data. In tropical
Africa, the GPP values predicted by GCFD were slightly lower than those obtained by
both models. Similarly, in southern Asia and certain coastal areas of South America, the
GCFD predictions were also lower compared to the model predictions. Conversely, in the
remaining regions across the globe, the GCFD predictions for GPP tended to be higher than
the model predictions to varying extents. The most substantial differences were primarily
observed in areas adjacent to the southern Sahara, the northern part of the Indochinese
Peninsula, the central United States, and some regions of south-central South America.
Overall, the disparity between GCFD and ecosystem models was more pronounced than
that between machine learning products.

The GCFD product exhibited significantly higher values in the Amazon region com-
pared to GLASS. The range of high values obtained by GCFD was greater than that of
GLASS in the high-value region of southeastern China. In the eastern USA and western Eu-
rope, the GCFD exhibited similar characteristics. However, in tropical Africa and Southeast
Asia, GLASS showed more prominently high values. Overall, the GCFD product effectively
captured the accurate distribution of GPP in most regions.

Based on the global absolute difference, it is evident that the smallest disparity was
found between the GCFD and Zeng et al. In comparison to machine learning products,
the absolute values between the GCFD and the remaining datasets were relatively higher.
Consequently, it can be inferred that the GCFD exhibits the highest similarity to Zeng et al.
among the three categories of carbon flux products.

3.2. Characteristics of Temporal Variation in Carbon Fluxes

Carbon fluxes have a tendency to fluctuate over time due to various factors such as
climate change, vegetation conditions, and meteorological factors. These fluxes exhibit
different patterns of change in different regions across the world. Figure 3 illustrates the
trends in carbon fluxes based on the GCFD, showing the average annual change in each
carbon flux variable from 1999 to 2020. The findings indicate that, among the three carbon
flux variables, GPP and RECO demonstrated consistent trends over time, while NEE
showed an opposite trend to GPP and RECO. The analysis primarily focused on the trend
of GPP. Regarding regional variations, significant changes in carbon fluxes over time were
observed in central Africa and near the tropics of South America, where GPP exhibited
a clear upward trend. The northern regions of Asia and Europe also displayed a slight
upward trend. Conversely, the central region of the USA demonstrated the most noticeable
downward trend in GPP. Additionally, some areas on the edge of the Sahara desert and in
certain parts of the Far East exhibited downward trends as well. A comparative analysis
revealed that the extent of rising GPP in the tropics surpassed the areas where declining
GPP was observed, indicating a more pronounced global trend of increasing GPP over time.
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Next, this study calculated the mean carbon fluxes over time on both the global scale
and within seven climate regions, as depicted in Figure 4. Regarding the global time series,
the annual sum of GPP and RECO exhibited a slight increase over time, while the value of
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NEE declined. Specifically, the global mean GPP rose from 1158.1 g C m−2 yr−1 in 1999
to 1217.8 g C m−2 yr−1 in 2019, and RECO increased from 995.0 g C m−2 yr−1 in 1999 to
1025.3 g C m−2 yr−1 in 2019. Conversely, NEE decreased from −215.6 g C m−2 yr−1 in
1999 to −244.6 g C m−2 yr−1 in 2019. It is plausible that the upward trend in global GPP is
attributable to the recent increase in greenhouse gases and rising temperatures. Analyzing
the time series of individual climate zones, a more pronounced trend of increasing GPP
values can be observed in the tropical, Mediterranean, subtropical, continental, and polar
climate zones. However, in the dry and oceanic climate zones, the regional averages of
carbon fluxes fluctuated relatively widely over time. Overall, the general trend in GPP
indicates a predominant increase over time, both globally and within individual regions.
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Figure 4. Variation in annual sums of GPP, RECO, and NEP (net ecosystem production), calculated
from the GCFD dataset, global and for seven climate zones over the period from 1999 to 2019. We
provided NEP instead of NEE here for the convenience of plotting, which is the opposite value
of NEE.

The global distribution patterns of carbon fluxes for the four seasons are presented
in Figure 5. It is evident that regardless of the seasons, GPP exhibits its highest values
near the equator and decreases with increasing latitude. In regions such as central Africa,
the Amazon area, and the South Asian tropics, GPP values remain consistently high
throughout the year. In certain temperate regions, there is a noticeable seasonality in
GPP variations. For instance, in northern Asia and Europe, the eastern United States, and
southeastern China, GPP values reach their peak during summer and hit their lowest point
in winter. This disparity may be attributed to the contrasting vegetation types found in
tropical and temperate areas. Vegetation in the tropics tends to remain evergreen due to
favorable climatic conditions, while the climate in temperate regions undergoes substantial
changes across seasons, resulting in phenomena like defoliation and a significant decline
in productivity during the winter. Regarding the seasonal fluctuations of RECO, the
spatial distribution maps for the four seasons demonstrate a relatively similar pattern to
that of GPP. Likewise, the spatial distribution maps for NEE throughout the four seasons
indicate that central Africa and the southern Asian tropics consistently function as carbon
sinks throughout the year. Conversely, areas such as the eastern United States, Europe,
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and East Asia exhibit higher carbon absorption during summer, while certain regions in
South America and southern Africa act as carbon sinks during winter and spring. From
Figures 3 and 5, it is clear that in some countries with fast-paced development, such as
China and India, carbon fluxes showed obvious variations over seasons and trends over
the years, driven by factors such as aerosol, precipitation, and temperature [55–57].
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3.3. Characteristics of Spatial Variation in Carbon Fluxes

The spatial distribution pattern of carbon fluxes can be influenced by the environmen-
tal conditions of different regions, resulting in variations in values. In this study, the global
distribution of carbon fluxes and their distribution within seven distinct climate zones were
calculated, as depicted in Figure 6. This approach enables a more quantitative comparison
of the spatial distribution characteristics of carbon fluxes. On a global scale, GPP (gross
primary production) and RECO (ecosystem respiration) values are primarily concentrated
within the range of 0–8 g C m−2 d−1, while NEE (net ecosystem exchange) values are
mainly concentrated within the range of −2–2 g C m−2 d−1. The median values for GPP,
RECO, and NEE are 2.6, 2.2, and −0.5 g C m−2 d−1, respectively. GPP exhibits the largest
range of variation, followed by RECO, and NEE shows the smallest range of variation. The
results for different climatic zones indicate that the tropics exhibit the highest GPP among
all climatic zones, with a median GPP of 5.9 g C m−2 d−1. This finding aligns with the
tropical climatic environment, characterized by a hot and humid climate, ample sunshine,
and abundant vegetation, which favor vegetation productivity. Additionally, subtropical
regions with favorable climatic and vegetation conditions as well as oceanic climatic zones
with mild climates also display higher GPP values, with a median of 4.6 g C m−2 d−1.
Conversely, polar regions, characterized by cold climates and sparse vegetation, exhibit the
lowest GPP values, with a median of only 1.0 g C m−2 d−1. Furthermore, in dry climate
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zones, where moisture conditions are insufficient, and in certain areas such as deserts with
sparse vegetation, GPP values are relatively low, with a median of 1.7 g C m−2 d−1. Overall,
the distribution of high and low carbon flux values is closely linked to climatic conditions,
primarily temperature, moisture, and vegetation type.
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3.4. Attribution Analysis of the Distribution of Carbon Fluxes

It is crucial to analyze the correlation between the spatial and temporal variability
of carbon fluxes and key variables to facilitate the study and prediction of carbon fluxes.
For this purpose, we have identified the most significant factors that impact the variability
of carbon fluxes, aiming to investigate their relationship with the spatial and temporal
variability patterns of carbon fluxes. In this section, we have chosen FAPAR (fraction of
absorbed photosynthetically active radiation), LAI, air temperature (TA), and latent heat
flux (LE) for attribution analysis.

Figures 7 and 8 calculate the regional averages of the four aforementioned predictors
on a global scale and within seven climate zones over the years. In terms of global trends,
both remote sensing variables, FAPAR and LAI, exhibit an upward trend over time, with
a more notable increase especially after 2010. The global mean of FAPAR increases from
0.30 in 1999 to 0.34 in 2019, while LAI increases from 1.11 in 1999 to 1.24 in 2019. This
upward trend aligns relatively consistently with the rising trend in global carbon fluxes.
The results for different climate zones indicate that FAPAR and LAI have higher values in
tropical and oceanic climate zones compared to other regions. Furthermore, both variables
display varying magnitudes of increasing trends within each climate zone, with relatively
larger increases in dry, subtropical, continental, and polar climate zones. These findings
suggest that the rising FAPAR and LAI are important factors contributing to changes in
carbon flux. The time series of temperature, globally and within each climate zone, also
exhibit a certain upward trend, indicating a relationship between carbon flux changes
and temperature increase. Among the climate zones, the greatest increase in temperature
occurs in tropical and subtropical regions. Latent heat fluxes show a decreasing trend over
time in the Mediterranean, continental, and polar climatic zones, while in other regions,
they mainly demonstrate relatively large fluctuations. Overall, remote sensing variables
and temperature changes over time are the primary factors influencing the temporal
characteristics of carbon fluxes.
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The latitudinal average distribution of the three carbon fluxes and four predictors were
calculated using the spatial distribution maps, which were obtained by averaging across
all time points as depicted in Figure 9. Figure 10 shows the spatial distribution of three
carbon fluxes and four predictors. The findings confirm the previous analysis, indicating
that GPP and RECO exhibit the highest values at lower latitudes, while carbon sinks are
primarily located in the southern hemisphere and the tropics. Specifically, GPP reaches its
maximum value of 7.13 g C m−2 d−1 at 1.5◦ S, whereas RECO peaks at 6.30 g C m−2 d−1

at 5.0◦ S. Conversely, NEE exhibits the lowest value of −1.27 g C m−2 d−1 at 41.5◦ S. The
distribution of the two remote sensing variables reveals that the carbon fluxes attain their
peaks in regions that correspond to the peaks of FAPAR and LAI, with both FAPAR and
LAI reaching their maximum values at 1◦ N. Overall, the latitudinal distribution of carbon
fluxes aligns well with the remote sensing variables. Furthermore, the latitudinal mean
distribution of latent heat fluxes displays a symmetrical relationship with GPP and RECO,
with the minimum values of latent heat fluxes coinciding with the maximum values of
GPP and RECO. Lastly, the latitudinal averaging of temperature demonstrates the highest
values at lower latitudes, gradually decreasing with increasing latitude.
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Figure 9. Latitudinal mean distribution of carbon fluxes and FAPAR, LAI, air temperature (TA), and
latent heat flux (LE), with data derived from the spatially averaged distribution of each variable from
1999 to June 2020, where GPP, RECO, and NEE are in g C m−2 d−1 and the remaining four predictors
have been normalized (subtracted by the average and then divided by the standard deviation).
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4. Discussion
4.1. Time Series of Different Products

Figure 11 compares the annual changes in carbon fluxes across different products.
Among these products, the carbon fluxes obtained from GCFD predictions are relatively
large, second only to TRENDY predictions, and the trends align more closely with those
derived from Zeng et al. The GPP and RECO values from the GCFD exhibit an upward
trend, accompanied by a decrease in NEE. In the GPP data from TRENDY products, there
is also a noticeable upward trend in their year-to-year variation. This result indicates that
the interannual variation in carbon fluxes predicted by the GCFD is more pronounced
compared to previous studies such as FLUXCOM and GLASS. Though the trends were
similar among the GCFD, Zeng et al. and TRENDY, their interannual variations are not
exactly the same. For example, the GCFD demonstrated an abrupt decrease in NEE around
2014, while the other two products did not. This abrupt decrease may have been due to
the abrupt increase in global LAI and FPAR around 2014, as shown in Figure 8, when
vegetation greening led to a carbon sink.
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4.2. The Depth of Carbon Flux Analysis

There is scope for further enhancement in analyzing the spatial and temporal variabil-
ity of carbon fluxes in the future. Firstly, focusing solely on the distribution of carbon fluxes
in climatic zones overlooks the valuable insights that can be gained from sub-regional
approaches, which take into account different ecosystem types. Therefore, it is necessary
to consider alternative perspectives, including various ecosystem types, when examining
carbon flux distribution. Secondly, the attribution analysis conducted in this study only
considered a limited set of predictors, disregarding numerous factors that have an impact
on the variability of carbon fluxes. To address this limitation, future studies should aim
to conduct more comprehensive attribution analysis by incorporating a wider range of
influential factors. This will provide a more comprehensive understanding of the drivers of
carbon flux variability.

4.3. Representativeness of Sites and Regions

This study utilized carbon flux data from a total of 280 flux tower sites worldwide
to validate the data. These sites cover all the seven climate zones and various land cover
types in all continents except Antarctica (Table 2). However, it should be noted that the
distribution of these sites is not uniform across regions. The number and density of sites
are much higher in North America and Europe than in other parts of the world. As a result,
site-level validation results are expected to be more accurate and representative within
these respective continents. In terms of climate zones, the continental climate zone has the
highest number of sites, while the remaining climate zones consist of a similar number of
sites ranging from 19 to 33. Concerning land cover types, the majority of sites are located in
grassland, savannah, and forests, while only a few sites are located in unvegetated land
and cropland. Therefore, it is necessary to gather additional in situ carbon flux data by
establishing more flux tower sites in regions where site density is sparse in the future.
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Table 2. Number of sites in different continents, climate zones, and land cover types.

Continent Number Climate Zone Number Land Cover Type Number

Asia 18 continental 131 forest 65
Africa 8 dry 29 grassland 95

North America 113 Mediterranean 33 shrubland 20
South America 8 oceanic 21 cropland 15

Europe 109 polar 23 savannah 74
Oceania 24 subtropical 31 unvegetated 11

tropical 19

4.4. Limitations of Data Sets

This study employed three machine learning datasets, two ecosystem model datasets,
and one remote sensing dataset to compare site-level and global-level carbon fluxes. How-
ever, there are some limitations in this study that affect the assessment of carbon flux
product reliability. Firstly, the comparison of carbon flux datasets is inadequate due to the
inclusion of only a limited number of products. Numerous datasets on carbon fluxes are
available, and their omission restricts the comprehensiveness of the comparison. Secondly,
the selected carbon flux products generally have low spatial resolution, which prevents
a detailed analysis of the predicted spatial distribution of each dataset in a local area.
Consequently, the evaluation of spatial distribution can only be conducted on a larger
scale. To improve the reliability assessment of the GCFD product at the regional level,
it is necessary to incorporate higher-resolution carbon flux products. Thirdly, the sites
used for validation are limited in number and exhibit uneven spatial coverage, and there
is a scale mismatch between the site-level observations and the grid-level estimations of
carbon fluxes. These factors introduce uncertainties in the validation results of various
carbon flux products. Fourthly, despite their ability to represent the actual distribution of
carbon fluxes, remote sensing products have their own limitations. Satellite observation
can be affected by atmospheric conditions, while factors such as instruments and data
processing algorithms can affect remote sensing data, thereby compromising their accuracy
and reliability. Therefore, future studies on carbon fluxes require high-quality data to
overcome these limitations.

5. Conclusions

In order to validate the accuracy of carbon flux predictions from the GCFD gener-
ated by a machine learning model and evaluate their capacity to accurately depict the
actual spatial distribution of carbon fluxes, this study conducted a comparative analysis
of three types of carbon flux products: remote sensing, ecosystem model, and machine
learning products. The comparison was conducted on both the site scale and the global
scale. Furthermore, this study examined the overall patterns of variation in carbon fluxes
by analyzing their time series and spatial distribution. Additionally, an attribution analysis
was performed, taking into account significant factors affecting carbon fluxes.

Our conclusions are as follows. First, on the site scale, among the products, the GCFD
product shows the closest agreement with site observations in terms of predicted carbon
fluxes. Second, the spatial distribution patterns of carbon fluxes are similar across all three
product types, with the smallest bias observed between the GCFD and machine learning
products. Third, regarding temporal trends, GPP and RECO exhibit consistent patterns,
while NEE shows an opposite trend. On the global scale, GPP values exhibit an overall
increasing trend, with the tropics experiencing the most significant increase. Conversely,
the polar regions display the lowest GPP values. Fourth, vegetation-related variables such
as FAPAR and LAI play crucial roles in influencing the spatial and temporal variations in
carbon fluxes. The temporal trends and spatial distribution of carbon fluxes align with the
characteristics of FAPAR and LAI.
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