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Abstract: Estimating gross primary production (GPP) is important to understand the land–atmosphere
CO2 exchange for major agroecosystems. Eddy covariance (EC) measurements provide accurate and
reliable information about GPP, but flux measurements are often not available. Upscaling strategies
gain importance as an alternative to the limitations of the use of the EC. Although the potato provides
an important agroecosystem for worldwide carbon balance, there are currently no studies on potato
GPP upscaling processes. This study reports two GPP scaling-up approaches from the detailed
leaf-level characterization of gas exchange of potatoes. Multilayer and big leaf approaches were
applied for extrapolating chamber and biometric measurements from leaf to canopy. Measurements
of leaf area index and photosynthesis were performed from planting to the end of the canopy life
cycle using an LP-80 ceptometer and an IRGA Li-Cor 6800, respectively. The results were compared
to concurrent measurements of surface–atmosphere GPP from the EC measurements. Big-leaf models
were able to simulate the general trend of GPP during the growth cycle, but they overestimated
the GPP during the maximum LAI phase. Multilayer models correctly reproduced the behavior of
potato GPP and closely predicted both: the daily magnitude and half-hourly variation in GPP when
compared to EC measurements. Upscaling is a reliable alternative, but a good treatment of LAI and
the photosynthetic light-response curves are decisive factors to achieve better GPP estimates. The
results improved the knowledge of the biophysical control in the carbon fluxes of the potato crop.

Keywords: carbon flux; gross primary productivity; upscaling; eddy covariance method

1. Introduction

Gross primary production (GPP) is a key ecosystem process that decreases the atmo-
spheric carbon dioxide (CO2) concentration [1–3] CO2 flux information [1] is necessary
to improve the knowledge of the potential of ecosystems to grow and mitigate climate
change [4,5]. Although eddy covariance (EC) measurements provide accurate and reliable
information about carbon and energy balances at the ecosystem level, flux measurements
are often not available in many places [6]. Therefore, different methodologies are needed
to estimate GPP based on extrapolations of chamber and biometric measurements and
the canopy upscaling process using readily measurable meteorological and environmental
variables [4,7,8].

Upscaling the GPP from leaf to canopy is challenging because of the large micro-
environment [light, temperature, vapor pressure deficit (VPD)] variability within plant
canopies at both the vertical and horizontal dimensions [9,10]. A common strategy to repre-
sent carbon uptake during gross primary production (GPP) is through photosynthetic light
use efficiency models based on photosynthetic light-response curves and light distribution
through the canopy [1,11–16], assuming that light is the primary driver of vertical variation

Climate 2022, 10, 127. https://doi.org/10.3390/cli10090127 https://www.mdpi.com/journal/climate

https://doi.org/10.3390/cli10090127
https://doi.org/10.3390/cli10090127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/climate
https://www.mdpi.com
https://orcid.org/0000-0002-1244-5897
https://orcid.org/0000-0001-7190-9412
https://orcid.org/0000-0002-8593-2194
https://orcid.org/0000-0003-1265-9032
https://doi.org/10.3390/cli10090127
https://www.mdpi.com/journal/climate
https://www.mdpi.com/article/10.3390/cli10090127?type=check_update&version=1


Climate 2022, 10, 127 2 of 15

in photosynthesis [17]. Nevertheless, canopy estimates require additional features such
as light distribution through the canopy, canopy structure (mean leaf angle and leaf area
index), and vertical profiles of weather variables within and above the crop [9,18].

Scaling methods vary with different complexity from the simplest one-big leaf [19–23],
to two-big leaf models [22,24,25] and multilayer models [10,26–29]. The big leaf model
is a representation of a canopy as a single giant leaf [18], which can be parameterized
under a tractable mathematical solution at the canopy level [16]. In most plant species,
the photosynthetic system is bulked in the upper layer of the canopy, and light decreases
faster in horizontal canopies than in vertical ones [14]. Since the leaves in the potato canopy
have a horizontal tendency [30,31], an approach that treats vegetation as a big leaf where
the canopy GPP predictions are proportional to the photosynthesis of topmost unshaded
leaves [16] could be useful. However, since the canopy is arbitrarily represented by a single
leaf, it treats sunlit and shaded leaves within the canopy equally. In other words, the model
assumes that there is no uncertainty introduced by ignoring the shaded fraction of the
canopy, which results in an overestimation of flux rates [16,22,24,25].

In the multilayer model, the canopy is divided into n layers and light intensity declines
with depth into the canopy as a function of the leaf area index [18,32]. Consequently,
canopy photosynthesis is calculated separately for each layer. In general, multilayer
models consider variations in the light level within the canopy, leaf inclination, and other
leaf aspects as well as the variation of air temperature, wind speed, humidity, and CO2
concentration [13,18,22]. The model calculates the net photosynthetic rate (An) for each
layer, using the absorptance and the respective layer’s leaf area [1,18,22,33].

Several researchers have attempted to evaluate the performance of different upscaling
schemes with flux measurements (for wheat, shrublands, broadleaf, Amazonian, and
conifer forests) [1,34–36], and have shown that the big-leaf approach matches overestimate
or underestimate EC measurements [13,15,36]. Other studies have demonstrated the
improved accuracy of multilayer models for GPP calculations [13,15,36]. Potatoes are
critical for the food security of people across South America, Africa, and Asia, feeding more
than one billion people worldwide [37,38]. It is the 4th most important crop in terms of
global production [39], since more than 19 million hectares are cultivated around the world,
making potatoes an important agroecosystem for worldwide carbon and greenhouse gas
(GHG) balances [39–41]. However, despite the importance of potatoes, there are currently
no studies on potato GPP upscaling processes as an alternative to the limitations inherent
to EC techniques to obtain GPP contributions to the net ecosystem exchange.

This study aimed to test big-leaf and multilayer upscaling strategies for potato canopy
GPP estimation. Our scaling proposal is based on the light profile within the canopy and
photosynthetic light-response curves (An–I curves). The analytical solution uses models of
photosynthesis such as the nonrectangular hyperbola and exponential model to describe
light-driven photosynthesis in conjunction with Beer’s law for the canopy light profile.
The scaled-up estimates of canopy GPP were compared to concurrent measurements of
surface–atmosphere GPP from the EC technique. To our knowledge, this study is the first
to investigate upscaling strategies for potato canopy GPP estimation using EC data. This
upscaling proposal might provide a useful and validated alternative to the EC technique
and could be extrapolated to other potato cultivars to obtain canopy GPP estimations from
infra-red gas analyzer (IRGA) measurements.

Specifically, the study reports the performance of two GPP scaling-up modeling
approaches from the detailed leaf-level characterization of the gas exchange of potatoes.
We addressed the following specific questions in our study: (1) what are the differences in
the upscaled GPP between the two approximations? (2) why do these differences occur?
(3) which model is the closest to the GPP obtained from the EC data?
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2. Materials and Methods
2.1. Site Description

This study was conducted in the Colombian Andean Region, Western Savanna
Province of the department of Cundinamarca. The potato (Solanum tuberosum L. Diacol
Capiro Cultivar) cropping system was planted in a 3.11 hectare (ha) commercial plot, under
a fixed-sprinkler irrigation system, located in the municipality of Subachoque (4.888668 N,
−74.18668 W; ~2609 m asl). The crop was sown on 22 January 2021, with a plant density of
33333 pl ha−1. The site was located over a fluvio-lacustrine plain with a flat landscape, with
an average annual temperature ranging from 12 to 14 ◦C and an annual precipitation from
800 to 1000 mm with a bimodal distribution. The June–August and December–February
periods have the lowest rainfall [8] due to the double passage of the Intertropical Conver-
gence Zone (ITCZ). The soils are deep and well drained with the presence of volcanic ash
and correspond to the Andisol order [42].

2.2. Microclimate and Eddy Covariance (EC) Measurements

Net carbon exchange and microclimatic variables were continuously recorded using
the EC technique. The equipment was installed on 3 February 2021 (12 days post planting,
DPP), and the measurements were taken until the end of the canopy life cycle on 9 June
2021 (138 DPP). The EC tower included an IRGASON with an open-path gas analyzer
(EC 150, Campbell Scientific, Inc., Logan, UT, USA) and a 3D sonic anemometer (CSAT3A,
Campbell Scientific, Inc., Logan, UT, USA). Both are operated by a separate electronic
module (EC100, Campbell Scientific, Inc., Logan, UT, USA). The EC tower and additional
sensor configuration are described by [8].

2.3. NEE Partitioning

The non-linear Mitscherlich light-response function, which parametrizes the net
ecosystem exchange (NEE) against the photosynthetic photon flux density (PPFD), was
used to partition diurnal NEE (solar global radiation > 1 W m−2) into ecosystem respiration
(Reco) and GPP [43,44] as follows:

NEE = −
(

Agmax + Rd
)
∗
(

1− exp
(
−Φ∗Iinc

Agmax+Rd
)
)
+ Rd (1)

where Agmax is the CO2 uptake at light saturation [µmol (CO2) m−2 s−1]; Rd is the respira-
tion term [µmol (CO2) m−2 s−1]; and Φ is the quantum yield efficiency [µmol (CO2) µmol
(photon) −1], i.e., the initial slope of the photosynthetic light-response curve, and Iinc is the
incident PPFD [µmol (photon) m−2 s−1].

For each day, a set of parameters was calculated through non-linear regression, using
a subset of NEE and PPFD data within a centered moving window of 14 days. For each
diurnal half-hour of the same day, GPP was estimated by subtracting Rd from the non-
linear Mitscherlich light-response function. Reco was calculated by subtracting the modeled
GPP from the measured NEE. Data postprocessing, quality control, gap-filling, energy
balance closure, uncertainty, and statistical analysis methods were applied, following the
procedures described in [8].

2.4. Leaf-Level Measurements

At the leaf scale, we used an infrared gas analyzer IRGA LICOR 6800 IRGA system
(LI-COR Biosciences, Lincoln, Nebraska, USA) to measure (1) the net photosynthetic rate at
leaf scale (An) [µmol (CO2) m−2 s−1] as a function of PPFD, ranging from 50 to 2000 µmol
(photon) m−2 s−1 (An–I curves); and (2) An–I curves were recorded in three strata of the
plant canopy: the upper stratum (topmost unshaded leaves), the middle stratum, and the
low stratum (bottommost shaded leaves). Measurements were taken at 28, 36, 41, 52, 66, 71,
77, 91, 105, 117, and 130 days post planting (DPP) between 9:00 and 11:00 am in three plants.
On the same days, the accumulated leaf area index (LAI) was also determined for each layer
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of the plant canopy in 15 randomly selected plants using an ACCUPAR LP-80 ceptometer
(METER Group, Inc., Pullman, WA, USA) with an external Apogee SQ110 PPFD sensor
from 0 to 4000 µmol (photon) m−2 s−1 and 80 probe PPFD sensors at the measurement bar.
LAI data for the three canopy layers (upper, middle, and low) were fitted to third-degree
and fourth-degree polynomial regressions.

Leaf insertion angles were determined using a compass and protractor, marking the
leaf inclination angle. Subsequently, an analysis of the distribution of foliar angles was
carried out according to [30,45] to determine the mean density angle (MDA) and the value
of the ratio of the horizontal to vertical axis of the ellipsoid or parameter x using the
following equation:

x = 1.7433025 +
(

162.22048
MDA

)
(2)

The extinction coefficient (K) between 8:00 and 17:30 h was estimated from the el-
lipsoidal equation [30] that relates the variation of K with the vertical and horizontal
projections of the canopy elements (parameter x) and the zenith angle ψ:

K =

√
x2 + tan2 ψ

x + 1.774 (x + 1.182)−0.733 (3)

2.4.1. Upscaling Approaches

The upscaled canopy GPP was based on light-use-efficiency models. The photosyn-
thetic light-response curves (An–I curves) were fitted to three different and well described
mathematical models like rectangular hyperbola-based models: (1) Michaelis–Menten as in
Baly and Smith [46,47]; (2) hyperbolic tangent-based models [48]; and (3) exponential-based
models [49]. The mathematical models that better fit the An–I curve data obtained in the
field measurements were determined via sum of squared residuals (SSR) comparison [50].
Models with the lowest SSR were found in Baly [46], Smith [47] and Webb [49], and they
have basically the following structure:

An =
Φ ∗ I∗ Agmax

Φ ∗ I + Agmax
− Rd (4)

Michaelis–Menten function (Baly) [46]

An =
Φ ∗ I∗ Agmax√

Φ2
(Io) ∗ I2 + A2

gmax

− Rd (5)

Michaelis–Menten type function (Smith) [47]

An =

{
Agmax

[
1− exp

(
Φ ∗ I
Agmax

)]}
− Rd (6)

Exponential type function (Webb) [49], where An is the net photosynthetic rate [µmol
(CO2) m−2 s−1]; Agmax is the light-saturated gross photosynthetic rate [µmol (CO2) m−2 s−1];
Rd is the dark respiration rate [µmol(CO2) m−2 s−1]; I is the photosynthetic photon flux
density PPFD [µmol (photon) m−2 s−1] and Φ is the quantum yield of assimilation [µmol
(CO2) µmol (photon) −1]. The light-saturated gross photosynthetic rate (Agmax) and quantum
yield of assimilation (Φ) data obtained from the light-use-efficiency models and for each
canopy stratum (upper, middle, and low) were fitted to third-degree and fourth-degree
polynomial regressions to describe their behavior during canopy growth over time.
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2.4.2. Modeling Schemes for Gross Primary Production of the Canopy (GPPcan)
Big-Leaf Approach (BL)

The gross primary production of the canopy (GPPcan) was integrated over the canopy
using a rectangular hyperbola base function (Michaelis–Menten type model), where light
intensities within a canopy were calculated using a negative exponential function with a
canopy light extinction coefficient (k) [9,32,51]. The total net carbon uptake integrated over
the canopy is:

GPPcan =
Agmax

K
ln

Φ ∗ K ∗ I + Agmax

(Φ ∗ I ∗ K ∗ e−KLAI) + Agmax
(7)

where GPPcan is the gross primary production of the canopy [µmol (CO2) m−2 s−1]; Agmax is
the light-saturated gross photosynthetic rate [µmol (CO2) m−2 s−1] of the topmost unshaded
leaves; I is the photosynthetic photon flux density PPFD [µmol (photon) m−2 s−1]; K is
the extinction coefficient; and Φ is the quantum yield of assimilation [µmol(CO2) µmol
(photon)−1]. The values of the asymptotic estimate of the maximum gross photosynthetic
rate (Agmax) [µmol (CO2) m−2 s−1] and the quantum yield Φ [µmol (CO2) µmol (photon) −1]
were obtained from the fitted rectangular hyperbola-based models Baly [46] and Smith [47]
(Figure 1).
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Multilayer Approach (ML)

In this approach, the value of GPPcan was estimated from an extrapolation scheme
based on Michaelis–Menten (rectangular hyperbola-based model) of Smith [51] and expo-
nential Mitscherlich (Webb) [49] applied to three different layers of the canopy.

The canopy was divided in three layers, upper stratum (topmost unshaded leaves),
middle stratum, and low stratum (bottommost shaded leaves), each one with defined LAI
values. The leaf area index for each layer was obtained by the difference in leaf area index
at the two heights bounding the layers. Thus, LAIi = LAI′i − LAI′i−1, where LAI′i is the
LAI- ACCUPAR LP-80 measurement beneath the ith layer. For n layers, LAI′n ≡ LAI.

The leaf gross assimilation (Gi) was computed for each layer by introducing the
description of the incident and absorbed PPFD in each layer in the Michaelis–Menten
(Smith) [47] and Mitscherlich (Webb) [49] functions:

Gi Smith =
Φi ∗ Iai∗ Agmaxi√

Φi
2 ∗ Iai

2 + Agmaxi
2)

(8)
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Gi Webb =

{
Agmaxi

[
1− exp

(
Φi ∗ Iai
Agmaxi

)]}
(9)

where Gi is leaf gross assimilation; Agmax is light-saturated gross photosynthetic rate
[µmol(CO2) m−2 s−1] for the layer i; Φ is the quantum yield of assimilation for the layer i
[µmol(CO2) µmol (photon)−1]. Agmax and Φ are parameters estimated from the mathematical
models Michaelis–Menten (Smith) [47] and Mitscherlich (Webb) [49]. Iai is the absorbed
PPFD [µmol (photon) m−2 s−1] for each layer, computed using Beer’s law and the approach
by Monsi et al. [14] and Sellers et al. [52]:

Iai = I ∗ (1− e−K LAIi ) (10)

where LAIi is the leaf area index for each layer; I is the incident PPFD [µmol (photon)
m−2 s−1] above the canopy (measured every 30 min by the EC station) for the top layer, or
the transmitted PPFD irradiance (Iti) from cumulated leaf area index (LAIc) of the layers
above the layer i estimated by:

Iti = I ∗ e−KLAIc (11)

The gross primary production for each canopy layer (GPPly) was computed every
30 min by multiplying Gi by the canopy scaling factor, as shown in Equation (13) [32,51].

GPPlyi
= Gi ∗

{
1− e−KLAIi

K

}
(12)

Then, the gross primary production of the entire canopy (GPPcan) was estimated by
summing the contribution of each layer (Figure 1):

GPPcan =
3

∑
1

GPPlyi
(13)

2.4.3. Accuracy Assessment

The model’s goodness of fit was evaluated using RMSE. Complementary accuracy
assessment was made through the variation of regression data around the 1:1 line.

3. Results
3.1. Meteorological Conditions

The daily mean PPFD was 724.5 ± 216.7µmol (photon) m−2 s−1. The average daily
mean temperature (Tmean) and the maximum air temperature (Tmax) were
16.51 ◦C ± 1.02 and 19.73 ◦C ± 1.23, respectively. The average daily maximum vapor
pressure deficit (VPD) was 0.73 kPa ± 0.25 and the average irrigated daily mean VPD
was 0.38 kPa ± 0.16. The accumulated rainfall was 306 mm, uniformly distributed, but
including the relatively drier period from 13 March to 22 April 2021 (50–90 DPP). The
soil water content (SWC) was near to field capacity in almost all the crop growth cycles
(Figure 2).
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vapor pressure deficit (VPD, kPa); (d) daily and cumulated precipitation (Pp, mm), shown as daily
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0–20 cm depth, shown as daily mean values.

3.2. Leaf Area Index (LAI) Evolution

LAI is defined as the sum of the photosynthetically active leaf surfaces divided by
the soil surface occupied by canopy and is the basic variable for relating the radiation
intercepted by the canopy to the total incident radiation. The total LAI increased in an
accelerated way, from the initial phase of crop growth to around 80 DPP, when the LAI peak
reached 4.65. The accumulated LAI in the middle stratum had the same trend, increasing
up to a maximum of 3.43 at 73 DPP. The LAI measured in the upper stratum remained
around unity throughout the entire growth period of the crop (Figure 3).
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3.3. Photosynthetic Behavior through the Canopy

The response of the net assimilation rate to the incident photosynthetic photon flux
density (PPFD) varied with canopy depth and leaf age. The leaves of the upper stratum
presented the highest carbon assimilation (An) responses to PPFD. The largest An response
to an incident PPFD was observed between 71 and 91 DPP. Maximum values around
23 µmol (CO2) m−2 s−1 were obtained with PPFD higher than 900 µmol (photon) m−2 s−1

(Figure 4a). The middle leaves had a lower response of net photosynthetic rate (An) to
photosynthetic photon flux density than the upper stratum leaves. The highest responses of
An to PPFD were observed between 71 and 77 DPP. In this canopy position, An leaf values of
around 20 µmol (CO2) m−2 s−1 were obtained with a PPFD greater than 800 µmol (photon)
m−2 s−1 (Figure 4b). The bottom leaves presented a limited (maximum average 9.7 µmol
(CO2) m−2 s−1) net photosynthetic rate response to PPFD in all evaluated dates. Although
the highest response to PPFD was observed between 77 and 105 DPP, the highest possible
assimilation values (An < 15 µmol (CO2) m−2 s−1) were obtained at low PPFD values
(500 µmol (photon) m−2 s−1) (Figure 4c). The declining tendency in net photosynthetic
responses to PPFD was observed with leaf aging and canopy depth. The measured light
response of An declined from the top (young and unshaded leaves) to the basal (old and
most shaded leaves) within the potato canopy. Likewise, the net photosynthetic responses
to PPFD were lower when canopy age was greater than 117 DPP in all canopy strata,
revealing the impact of leaf age on potato leaf photosynthetic traits (Figure 4).
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Figure 4. Measured response of net photosynthetic rate (An) for potato (Solanum Tuberosum L. Var.
Diacol capiro) to photosynthetic photon flux density (PPFD) at different days post planting (DPP)
on the bottommost shaded leaves (left), middle leaves (center), and the topmost unshaded leaves
(rigth) of potatoes (Solanum Tuberosum L. Var. Diacol capiro).

The three models represented the variation of the photosynthetic traits with leaf
aging and canopy depth well. The measured light-saturated net photosynthetic rate
(Agmax) and quantum yield of assimilation (Φ) reached their maximum at full canopy
development, around the maximum LAI stage (60–90 DPP), and then declined gradually
as leaves senesced (Figure 5). Regarding canopy leaf position, the three models showed
an Agmax declination from the top to the bottom of the canopy, where the lowest carbon
assimilation rates at light saturation were observed. In contrast, by comparison with upper
canopy leaves, values for Φ in the lower canopy were higher. The parameters Agmax and Φ
calculated throughout Michaelis–Menten (Smith) [47] and Mitscherlich (Webb) [49] models
showed a similar trend and values for the three canopy strata. The values of Agmax and Φ
obtained from Michaelis–Menten (Baly) [46] were higher and varied over a wider range. In
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addition, they presented variations in their behavior, easily observed in the leaves of the
middle and lower canopy strata (Figure 5).
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Figure 5. Parameters of light-saturated gross photosynthetic rate (Agmax) and quantum yield of
assimilation (Φ) for the topmost unshaded leaves ((c,f), respectively), middle stratum leaves((b,e),
respectively), and the bottommost shaded leaves ((a,d), respectively) of potato (Solanum Tuberosum
L. Var. Diacol capiro) calculated by the rectangular hyperbola Michaelis—Menten type function,
Smith [47] and Baly [46], and by an exponential Mitscherlich function [49].

3.4. GPP Up Scaling

The measured EC GPP shows a progressive increase from 28 DPP until a maximum
GPP (500 kg C ha−1 day−1) occurred at 88 DPP. From 90 to 138 DPP, the daily GPP decreased
progressively until a minimum value of 200 kg C ha−1 day−1. Multilayer (ML) models
correctly reproduce the behavior of potato GPP over time as well as the magnitude of
the maximum values that occur around 90 DPP. In the ML Michaelis–Mentem (Smith)
model [47], the GPP was underestimated between 36 and 66 DPP (measured GPP was
up to 170% higher) and between 87 and 117 DPP (measured GPP was 50% higher). The
multilayer model-based Mitscherlich (Webb) function [49] underestimates the GPP during
most of the cycle. The greatest differences were in the period between 28 and 65 DPP and
95 to 117 DPP. The Big-leaf (BL) Michaelis–Mentem (Smith) model [47] underestimates the
GPP mainly between 28–70 DPP. After this period, however, GPP values were close to the
measured GPP. The maximum GPP reached is 50% greater than the one measured with
the EC tower. However, BL models overestimated GPP, mainly during the maximum LAI
phase (80–90 DPP) (Figure 6).

The modeled and measured GPP showed variations of the half-hourly GPP mean
throughout the day and across growth stages (Figure 7). In the tuberization stage, GPP
measured rates increased progressively throughout the day, reaching a maximum of
1.30 ± 0.19 mg CO2 m−2 s−1 between 9 to 13 h. In this stage, the ML Michaelis–Menten
(Smith) model [47] predicted the measured values more closely than the other models.
In the vegetative and tuber bulking stages, half-hourly GPP maximums (0.83 ± 0.37 mg
CO2 m−2 s−1 and 0.96 ± 0.18 mg CO2 m−2 s−1, respectively) were also found between
9 and 13 h. Again, the GPP predicted by the ML Michaelis–Menten (Smith) model [47] was
closer to the measured values. The BL Michaelis–Menten (Baly) model [46] overestimates
the half-hourly GPP in all stages (Figure 7).
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Figure 7. Half-hourly variation of gross primary production (GPP) estimated with the scaling up
Big-leaf—BL (red and blue lines) and Multilayer–ML (green and yellow lines) models and with eddy
covariance measurements (black line) in three different growth stages (vegetative, tuberization, tuber
bulking) of potatoes (Solanum Tuberosum L. Var. Diacol capiro). Half-hourly averages are plotted.

Figure 8 shows day-to-day variations of GPP measured (obtained by the eddy co-
variance technique) versus the big-leaf and multilayer models. In general, the correlation
coefficient r showed that the modeled and measured GPP values had a strong linear cor-
relation. The RMSE value was higher for BL models than ML models, indicating a lower
performance and hence less accuracy for BL models. Most of the ML GPP modeled vs.
GPP measured data are closely distributed around the 1:1 line. This greater closeness of
the multilayer models’ scatter plot of the predicted value to the 1:1 line indicates a better
accuracy than BL models (Figure 8a,b). The ML Michaelis–Menten (Smith) [47] based
model had the highest accuracy due to its lowest RMSE (0.131) obtained, followed by the
multilayer model based on the Mitscherlich (Webb) [49] function (RMSE = 0.155). Likewise,
the daily variability in GPP is more accurately captured by the ML Michaelis–Menten
(Smith) [47] model due to the linear regression showing the smallest deviation from the 1:1
line (Figure 8b).
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4. Discussion

The measured GPP has a close relationship with the carbon requirements of each crop
growth stage. The maximum daily GPP and half-hourly GPP occur in the tuberization
stage and maximum LAI (close to 90 DPP). The behavior of modeled data is consistent
with our hypothesis: the big-leaf models overestimate the GPP, specifically during the
period of maximum LAI and tuberization stage. Even though multilayer models tend to
underestimate the GPP, they better described the daily GPP behavior, and their maximum
values were close to the daily GPP and half-hourly GPP values determined by the EC
station. Previous studies have shown that the big leaf approach overestimates EC measure-
ments [24]. In particular, de Pury et al. [24] concludes that the performance of the big leaf
model is strongly affected by the LAI and reports an overestimation of 50% in the GPP
during the maximum LAI.

Big leaf assumes that the canopy has the same photosynthetic behavior. It has an
inability to consider the variation in the CO2 assimilation of the leaves along the canopy,
especially the shaded leaves, which have differences in photosynthetic capacity. This model
assumes that the entire canopy is a single unshaded leaf located at the canopy top (with
an evident greater photosynthetic capacity) [36]. Therefore, the increase in the amount
of foliage with these characteristics resulted in overestimations of the maximum LAI. In
contrast, with the ML approach, the canopy is separated into layers with different light
environments and photosynthetic capacities. In the maximum LAI, the topmost unshaded
layer remains constant, and the remaining LAI is distributed between the intermediate and
lower layers. Our results indicate that multilayer models performed better than big-leaf
models at simulating GPP (as evidenced by ML RMSE being lower than BL RMSE). Some
other researchers have also found better performance of ML models compared to BL models
in maize and forests [1,34]. However, including several canopy layers for studying light
interactions through the canopy requires more detailed input data. In our study for the
big-leaf models, we used just 30 min data of PPFD and the zenith angle, and the extinction
coefficient was used to define the PPFD attenuation through the canopy in a single LAI
layer. In the multilayer models, in addition to daily data of the zenith angle and incident
PPFD, transmitted and absorbed radiation in each canopy layer were computed, as well as
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the evolution of Agmax, quantum yield of assimilation (Φ), and LAI in three different layers
during growth was determined.

The main difference is the treatment of the LAI in each approach. In potatoes, Martinez-
Maldonado et al. [8] demonstrated that the evolution of daily GPP is linked to the behavior
of the LAI. Furthermore, a direct effect of changes in canopy architecture on simulated
productivity has been shown [36]. This effect is not only linked to the number of pho-
tosynthetic leaves but also to the variability in the photosynthetic capacity throughout
the canopy. Not all the leaves along the canopy behave like those of the upper stratum.
There was a gradient in the photosynthetic capacity within the canopy depending on the
age of the leaf, its position in the canopy, and its light environment. In this study, the
photosynthetic behavior through the canopy showed that the leaf photosynthesis responses
to PPFD, the light-saturated net photosynthetic rate (Agmax), and the quantum yield of
assimilation (Φ) of the middle and bottom layers of the canopy were highly different from
the upper unshaded leaves. Therefore, each stratum contributed in a different way to the
total assimilation of the canopy and this contribution changes during the crop growth cycle.

The upscaling performance depends on the choice of the photosynthetic light-response
curves (An–I curves). In the present study, the modeling of the GPP was achieved based
on functions that describe and interpret the photosynthetic light responses of leaves. This
interpretation works based on primary parameters such as light-saturated net photosyn-
thetic rate (Agmax) and quantum yield of assimilation (Φ). For C3 species, the theoretical
quantum yield is around 0.1250 µmol (CO2) µmol(photon)−1 [50,53,54] and the maximum
value of Agmax ranges from 42 to 59 µmol (CO2) m−2 s−1 [55]. Although, the functions used
for upscaling had below typical C3 Agmax values, the parameters deduced by the classical
Michaelis–Mentem (Baly) function were larger (32 µmol (CO2) m−2 s−1 and 0.15 µmol
(CO2) µmol (photon)−1), in comparison to maximum values for Michaelis–Mentem (Smith)
(25,6 µmol (CO2) m−2 s−1 and 0.08 µmol (CO2) µmol (photon)−1) and for Webb (26.2 µmol
(CO2) m−2 s−1 and 0.098 µmol (CO2) µmol (photon)−1). The above indicates that the
Baly-based upscaling model overestimated the GPP due to its higher values in the pho-
tosynthetic capacity parameters. The Michaelis–Menten (Baly) function, which tends to
overestimate the rate of photosynthesis at low and high irradiances, fails to reproduce the
decline of photosynthesis at the photoinhibitory region [56–58] and overestimates Agmax
and quantum yield of assimilation (Φ), which has also been reported in Amazon forest
species [59].

There are inherent limitations of An–I curves to capture the photosynthetic responses
of the canopy, mainly for the upper leaves that were never fully light-saturated even
under direct sunlight (Figure 2). However, the GPP calculated based on the parameters
deduced from Michaelis–Menten (Smith) [47] and Mitscherlich (Webb) [49] in both big-leaf
and multilayer approaches was closer to the measured GPP because they saturated at a
lower PPFD than the classical Michaelis–Menten (Baly) equation. In this regard, authors
such as [13,60,61] indicate that the modeling of the GPP from the Mitscherlich exponential
function led to more realistic saturation assimilation values. Among the several processes
that need to be described in up scaling models, canopy light absorption is essential since
it drives the energy available for photosynthesis. Especially in potatoes, the planophile
leaves generate a pronounced light gradient with a possible large effect on total GPP that
can be estimated using the analytical solution proposed in this work, which is based on
light relations in the canopy using simplified models of photosynthesis.

5. Conclusions

The results improve the knowledge of biophysical control in carbon fluxes of potato
crops and demonstrate the importance of both the characteristics of the canopy (LAI, leaf
angle) and the light relationships of the plants in their immediate environment. Therefore, the
photosynthetic light-response curve and a good treatment of the LAI are decisive factors in
order to get closer GPP determinations. Big-leaf models are simpler and, although they can
simulate the general trend of GPP during the growth cycle, they overestimate the GPP during



Climate 2022, 10, 127 13 of 15

the maximum LAI since they assume that the canopy has the same photosynthetic behavior
as the topmost unshaded leaves. The multilayer approaches allow us to understand not only
the amount of leaf area available for photosynthesis but also how the photosynthetic capacity
is redistributed in a canopy in relation to the age of the leaf, its position in the canopy, and
the changing carbon demand during the crop cycle. Based on these results, the multilayer
Michaelis–Menten (Smith) based model predicted more closely both the magnitude and the
daily and half-hourly variation in GPP of eddy covariance measurements.

Finally, we demonstrated that models describing the net CO2 assimilation by a plant
leaf as a function of an increase in the photosynthetic photon flux density could be useful
for potato GPP estimations. However, for future studies improving accuracy in the GPP
upscaling requires descriptions that includes exponential profiles of leaf nitrogen and
explore canopy chemistry models to scale leaf GPP to canopy.
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