
Citation: Nabizada, A.F.; Rousta, I.;

Dalvi, M.; Olafsson, H.; Siedliska, A.;

Baranowski, P.; Krzyszczak, J. Spatial

and Temporal Assessment of

Remotely Sensed Land Surface

Temperature Variability in

Afghanistan during 2000–2021.

Climate 2022, 10, 111. https://

doi.org/10.3390/cli10070111

Academic Editor: Alban Kuriqi

Received: 29 May 2022

Accepted: 11 July 2022

Published: 19 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

climate

Article

Spatial and Temporal Assessment of Remotely Sensed Land
Surface Temperature Variability in Afghanistan during
2000–2021
Ahmad Farid Nabizada 1, Iman Rousta 1,2,* , Marjan Dalvi 3, Haraldur Olafsson 4, Anna Siedliska 5 ,
Piotr Baranowski 5 and Jaromir Krzyszczak 5

1 Department of Geography, Yazd University, Yazd 8915818411, Iran; ahmadfarid.nabizada2020@gmail.com
2 Institute for Atmospheric Sciences-Weather and Climate, University of Iceland and Icelandic Meteorological

Office (IMO), Bustadavegur 7, IS-108 Reykjavik, Iceland
3 Department of Geography and Urban Planning, Payame Noor University of Rezvanshahr,

Yazd 8941787675, Iran; marjan.da21@gmail.com
4 Institute for Atmospheric Sciences-Weather and Climate, Department of Physics, University of Iceland and

Icelandic Meteorological Office (IMO), Bustadavegur 7, IS-108 Reykjavik, Iceland; haraldur@vedur.is
5 Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
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Abstract: The dynamics of land surface temperature (LST) in Afghanistan in the period 2000–2021
were investigated, and the impact of the factors such as soil moisture, precipitation, and vegetation
coverage on LST was assessed. The remotely sensed soil moisture data from Land Data Assimilation
System (FLDAS), precipitation data from Climate Hazards Group Infra-Red Precipitation with Station
(CHIRPS), and NDVI and LST from Moderate-Resolution Imaging Spectroradiometer (MODIS) were
used. The correlations between these data were analyzed using the regression method. The result
shows that the LST in Afghanistan has a slightly decreasing but insignificant trend during the study
period (R = 0.2, p-value = 0.25), while vegetation coverage, precipitation, and soil moisture had
an increasing trend. It was revealed that soil moisture has the highest impact on LST (R = −0.71,
p-value = 0.0007), and the soil moisture, precipitation, and vegetation coverage explain almost 80%
of spring (R2 = 0.73) and summer (R2 = 0.76) LST variability in Afghanistan. The LST variability
analysis performed separately for Afghanistan’s river subbasins shows that the LST of the Amu
Darya subbasin had an upward trend in the study period, while for the Kabul subbasin, the trend
was downward.

Keywords: land surface temperature; LST; Afghanistan; remote sensing; FLDAS; CHIRPS; MODIS;
multiple regression; standardized anomaly analysis

1. Introduction

The temperature of the land surface is one of the most fundamental parameters of the
Earth in geophysical research on both local and global scales [1]. It was recognized as one of
the key climate parameters by the World Meteorological Organization [2,3]. Land Surface
Temperature (LST) is one of the key variables in the Earth’s energy exchange, and it plays an
important role in assessing the surface energy level, being the interface between turbulent
heat fluxes and Earth heat fluxes. LST is seriously affected by the effect of intensification of
global warming connected to the day-by-day increase in the concentration of greenhouse
gases in the atmosphere. Nowadays, a large part of the scientific community focuses
on mitigation and adaptation to the effects of global warming, as the associated rise in
average air temperatures has a severe impact on the global climate [4,5]. Air temperature
changes influence not only LST but also soil moisture and nutrient contents, which, in turn,
affect the physiological characteristics, community structure, and population dynamics of
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plants [6–8]. Such abnormal climate change resulting from the negative effects of human
activities over the past few decades is the main reason for the series of environmental
and ecological problems, such as soil degradation, air pollution, surface temperature
changes, biodiversity loss, and ecosystem degradation [9–11]. Albedo changes resulting
from the intensification of global warming additionally and significantly impact local
weather conditions, especially in the case of the snow-covered ground at mid-latitudes and
high latitudes in the Northern Hemisphere [12–15].

LST is a very useful variable, which found its application in many different fields of
science, including hydrology, climatology, geophysics, and specifically, in the assessment
of the surface urban heat island [16,17]. LST is also recognized as complementary to near-
surface air and spatial temperature data in nature, thus helping to achieve the sustainable
development of climate action goals [18,19]. One of the characteristics of the LST is that it
shows very high spatial and temporal variation, mostly because of the heterogeneity of
factors influencing its value, such as characteristics of the vegetation cover, precipitation,
soil moisture, area topography, and geology [20–23]. Because of this, accurate measure-
ments of LST in larger spatial and temporal scales are more and more desired. LST can be
obtained via ground measurements or analysis of remote sensing data based on estimates
of the Earth’s energy balance model. Although terrestrial measurements are more accurate
than satellite imagery, point observations and the dispersion of meteorological stations are
the main limitations of their research and application on regional and global scales [24].
Because of that, obtaining LST on an extensive terrain or global scale was not possible until
satellite thermal sensors were developed, yet it was difficult to obtain spatial, temporal,
and spectral high-resolution satellite imagery because of the relationships between these
resolutions [25]. Nowadays, thermal infrared satellites can be used to detect LST changes
at various temporal and spatial scales due to the benefits of their coverage, reproducibility,
and low cost needed to download and process the data [26]. The temperature calculated by
remote sensing usually corresponds to the radiometric temperature of the surface measured
in the direction of the sensor, meaning that the temperature is obtained from the radiative
energy balance of the surface [27–29]. LST variability and its long-term dynamics have been
assessed in many studies at various scales, both local and global; however, only limited
studies investigated the influence of vegetation and meteorological parameters, such as
precipitation and soil moisture, on LST [30–33].

Due to a combination of political, geographical, and social factors, Afghanistan is one
of the countries in the world most vulnerable to the effects of climate change, and it is
ranked 176th out of 181 countries in the ND-GAIN Index 2019 list [34]. Afghanistan is a
mountainous country with a dry and continental climate. Mountainous areas are commonly
known as fragile and unfounded environments, very sensitive to global climate change,
earlier and to a greater extent affected by its effects than lowland areas [20]. Afghanistan’s
mountainous regions experience annual LST below zero, while the arid southern regions
regularly experience LST above 35 ◦C [30]. LST increase in Afghanistan can affect various
sectors, with agriculture and water resources being the most vulnerable ones. Agriculture
is one of the largest and most important sectors of the economy in Afghanistan, with about
85% of the country’s population earnings coming directly and indirectly from agriculture.
The vulnerability of the agricultural sector to LST increase is considered high, as it leads to
drought, which, in turn, will increase the water pressure on Afghanistan [31]. Despite the
existing problems, the Afghan government has made no effort to prepare for the effects of
climate change and remedy them. Because of that, the study of spatial and temporal LST
variability in Afghanistan and assessment of LST affecting factors has been undertaken to
cover the information gaps.

In this study, the dynamics of LST over the whole of Afghanistan and separately for
its main river basins were assessed for the period from 2000 to 2021. The main objectives
of this research are (a) to investigate the trend of spatial and temporal changes of LST
by using MODIS product; and (b) to investigate the relationship between LST and such
factors as vegetation, precipitation, and soil moisture by using regression methods. In addi-
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tion, this study provides important information for understanding surface–atmospheric
energy exchanges.

The text is organized in the following order: the materials and methods section
presents the description of the study area (Section 2.1), the sources of the data used
(Section 2.2), and the methods of data analysis (Section 2.3). In the results section, the
seasonal and annual variations of LST are assessed for the whole region of Afghanistan
and taking into account the rivers’ subbasins, annual variations of precipitation, and NDVI
are studied, and the correlation of LST with other variables is analyzed using the linear and
multiple regression methods. The fourth section is dedicated to discussing the obtained
results, whereas the conclusions are presented in Section 5.

2. Materials and Methods
2.1. Study Area

Afghanistan is located in the central zone of Asia, approximately between 29 and
38◦ N and from 61 to 74◦ E. It has a border with Uzbekistan, Tajikistan, and Turkmenistan
in the north, Iran in the west, Pakistan in the southeast, and China in the northeast. Part
of Afghanistan is located in the Hindu Kush region of the Himalayas, with an area of
652,000 km2. The altitude of the country is from 230 to 7471 m, and it has a complex
topography [35]. Afghanistan is a mountainous country with an arid and semi-arid climate,
cold winters, and hot summers. The vast plains of southern Afghanistan experience extreme
seasonal temperature changes, with summer temperatures exceeding 33 ◦C and average
temperatures around 10 ◦C. The average temperature in the highlands of Afghanistan
does not exceed 15 ◦C, and in the winter season (from December to February), the average
value is below zero [32,36]. Afghanistan has large areas with scarce precipitation. The
peak in the precipitation usually occurs in February and March, mainly over the northern
highlands [36]. The precipitation between April and November mostly occurs in the form
of snow in the high mountains due to storms of Mediterranean origin.

In Afghanistan, five main river basins can be distinguished: Amu Darya, Northern,
Harirod-Murghab, Helmand, and Kabul (Indus) (Figure 1). The Helmand river basin (HRB)
is the largest basin in the country, with an area of 327,661 km2. The Amu Darya basin
(ADB) is the second-largest basin in Afghanistan, with an area of about 90,941 km2. The
Northern basin (NB) is the only closed basin area in Afghanistan, with an area of about
70,000 km2 [37,38]. The Kabul river basin (KRB) is the eastern basin in Afghanistan, which
covers approximately 12% of the country’s area (71,266 km2) [38]. The Harirod-Murghab
basin (HMB) is located in the western part of the country and covers around 13% of the
country (78,060 km2) [38,39].

2.2. Data

In this study, LST-Day variability in Afghanistan was investigated for the period
2000–2021, and the impact of such factors as soil moisture, precipitation, and vegetation
coverage on LST was assessed using regression methods. The summary of the sources of
the remote sensing data used in this study is provided in Table 1, while the flowchart of
data processing is presented in Figure 2. All satellite-born statistics of the surfaces belong
to the bright days (hours) only.

2.2.1. Land Surface Temperature (LST) Data

In the study, the MODIS-LST-Day MOD11A2 product with a spatial resolution of
1 km and temporal resolution of 8 days data were used. The data from 2000 to 2021 were
downloaded using the Google Earth Engine (GEE) platform. The seasonal and annual LST
were calculated using the equations:

Winter LST =
∑12

i=1 LSTi

12
, (1)
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Spring LST =
∑24

i=13 LSTi

12
, (2)

Summer LST =
∑36

i=25 LSTi

12
, (3)

Fall LST =
∑46

i=37 LSTi

10
, (4)

Yearly LST =
∑46

i=1 LSTi

46
, (5)

where the index i is numbering images for each year chronologically by dates.
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Figure 1. The map of Afghanistan, including an elevation profile.

Table 1. Remote sensing data used in this study.

No Data Source Spatial Resolution Temporal Resolution File Format

1 MODIS Land Surface
Temperature (MOD11A2)

MODIS packages
in GEE 1 km 8 days Geo tif

2 Normalized Difference
Vegetation Index (MOD13Q1)

MODIS packages
in GEE 250 m 16 days Geo tif

3
Climate Hazards Group

Infra-Red Precipitation with
Station data (CHIRPS)

CHIRPS packages
in GEE 0.05◦ (~5 km) pentade Geo tif

4 Monthly Soil moisture FLDAS packages
in GEE 1◦ 30 days NC file
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2.2.2. Normalized Difference Vegetation Index (NDVI) Data

NDVI is one of the most common indicators for measuring crop health in the agricul-
tural sector. In recent years, NDVI has been used by many scientists in various studies such
as vegetation classification, land cover changes, vegetation phenology, continental cover
mapping, and vegetation dynamics [40,41]. This index provides information on green and
healthy leaf pigments that strongly reflect infrared radiation, at the same time absorbing a
large portion of the visible spectrum [42]. NDVI is calculated using the formula

NDVI =
RNIR − RRED
RNIR + RRED

, (6)

where RRED is the reflectance in the red visible range (0.670–0.620 µm), and RNIR is the
infrared reflectance (0.876–0.841 µm). The range of NDVI values is between −1 and 1,
with vegetation usually having NDVI in the range of 0.2–0.8, corresponding to the areas
with greenness or with plants. NDVI can be divided into eight classes (<0.2, 0.2–0.3,
0.3–0.4, 0.4–0.5, 0.5–0.6, 0.6–0.7, 0.7–0.8, and >0.8). Values lesser than 0.2 indicate areas
with no vegetation and are barren, or covered with rocks, snow, water, ice, or urban areas.
Values between 0.2 and 0.3 indicate areas with shrubs and pastures, 0.3–0.4 indicate areas
with scattered vegetation, 0.5–0.6 indicate areas with moderate vegetation, 0.6–0.7 can
be interpreted as areas with dense vegetation, values between 0.7 and 0.8 indicate areas
with very dense vegetation, and a value greater than 0.8 is the indicator of the area with
extremely dense and green vegetation [43,44]. In this study, the NDVI vegetation index
was examined by downloading MOD13Q1 products with a spatial resolution of 250 m and
a temporal resolution of 16 days for the period 2000–2021 using the Google Earth Engine
(GEE) platform.

2.2.3. Precipitation Data

Climate Hazards Group Infra-Red Precipitation with Station (CHIRPS) is a product
developed by the US Geological Survey Earth Resources Observation and science center
in association with the Santa Barbara Climate Risk Group at the University of California.
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The data spans from 1981 up to the present and is updated almost in real-time. CHIRPS
covers the area from 50◦ S to 50◦ N and from 180◦ E to 180◦ W, and delivers information on
precipitation with a spatial resolution of 0.05◦ (approximately 5 km) with daily, pentad, and
monthly temporal resolution [45]. This product is designed to monitor drought conditions
in areas with a complex topography and deep precipitation system [46]. In this research,
the CHIRPS data product (precipitation data) was downloaded for the whole Afghanistan
area and the period from 2000 to 2021 using the Google Earth Engine (GEE) platform.

2.2.4. Soil Moisture Data

The Land Data Assimilation System (FLDAS) satellite has been developed with the
help and cooperation of several reputable organizations (NASA, USGS, EROS, GSFC, UCSB)
and produces various parameters such as soil moisture, temperature, evapotranspiration,
and runoff [47]. FLDAS from version 3.6.1 introduced global monthly products with
1◦ spatial resolution, which have been available for the period from January 1982 up to
the present. In this study, the soil moisture of the topsoil (0–10 cm) product has been
downloaded for the period 2000–2021 using the Google Earth Engine (GEE) platform.

2.3. Standardized Anomaly Calculation

The standardized anomaly, also known as the Z-score, shows the deviations of the
quantity under consideration from the mean. The average standardized anomaly (Z-score)
is always 0, and the deviation ranges from −3 to 3 for almost all of the results (in fact, 99.7%
of them) [20,22]. The standardized anomaly is calculated using the formula

Zij =
Xij−U

σij
, (7)

where Zij is a standardized anomaly, i stands for the assessed period, and j represents the
time scale. Xij is an analyzed parameter in a given year (i.e., LST, precipitation, vegetation,
or soil moisture), U represents the mean statistical period, and σij indicates the standard
deviation. Positive values of the standardized anomaly indicate that the values under
consideration are larger than the mean, while negative values of the standardized anomaly
indicate that the values are smaller than the mean [8].

2.4. Margin of Error Calculation

The errors were estimated using the margin of error formula, in which the standardized
anomaly (Z-score) and standard deviation are used to calculate errors as:

Margin o f error = Zij
σ√
n

, (8)

where σ is the standard deviation, and n is the sample size.

3. Results
3.1. Seasonal and Annual Variations of LST
3.1.1. Seasonal and Annual Variations of LST over the Whole Afghanistan Area

Figure 3 shows the seasonal variations of Afghanistan’s LST during the study period.
The warmest season was summer, whereas the coldest season was winter. In the spring
and fall, the LST was moderate. In the winter, 44% of the area (276,824.14 ± 38,814 km2)
had an LST lower than 10 ◦C, and 56% of the area (351,962 ± 82,195 km2) had an LST be-
tween 10 and 50 ◦C. In the spring, 10% of the area (65,965 ± 58,683 km2) had an LST lesser
than 10 ◦C, 79% of the area (522,384 ± 107,829 km2) had an LST between 10 and 50 ◦C,
and 11% of the area (70,361 ± 56,145 km2) had an LST above 50 ◦C. In the summer, 0.9%
(5890± 50,921 km2) of the study area had an LST less than 10 ◦C, 75% (482,343± 174,833 km2)
of the study area had LST between 10 and 50 ◦C, and about 24.1% (154,923± 68,754 km2) of the
study area had an LST higher than 50 ◦C. In the fall, 8.1% of the area (55,858.96± 60,718 km2)
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had an LST lower than 10 ◦C, 87.1% of the area (601,843± 154,506 km2) had an LST between 10
and 50 ◦C, and 4.8% (33,220± 63,788 km2) of the area had an LST higher than 50 ◦C.
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Figure 3. The mean seasonal histograms for the period 2000–2021 showing the areas of Afghanistan
with specific values of LST.

In Figure 4, the time series of mean annual LST variations in Afghanistan during the
study period are presented. The year 2000 was the warmest, with an LST equal to 32.92 ◦C
(±0.62), followed by 2001, 2004, 2010, 2016, 2017, 2018, and 2021 having almost the same
temperatures, with LSTs of 28.84 (±0.14), 28.31 (±0.15), 27.96 (±0.23), 28.88 (±0.13), 28.11
(±0.14), 28.43 (±0.13), and 29.05 (±0.11) ◦C, while 2005, 2009, 2012, and 2019 were the
coldest years during the study period, with LSTs equal to 26.39 (±0.56), 27.96 (±0.63), 25.58
(±0.43), and 26.49 (±0.54) ◦C, respectively. The trend line fitted to the LST data indicates a
slow decrease in the LST in Afghanistan (~0.05 ◦C/year).
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2000–2021.

In Figure 5, the mean seasonal variations of LST during the study period are presented.
In the winter, the highest LST was observed in 2018 (12.91 ± 0.73 ◦C), while the lowest
was in 2008 (4.7 ± 0.79 ◦C). In the spring, the highest LST values were in 2000 and 2001
(34.37 ± 0.94 and 34.12 ± 0.88 ◦C, respectively), and the lowest values were observed in



Climate 2022, 10, 111 8 of 19

2003, 2005, 2014, 2019, and 2020 (27.87 ± 0.44, 27.68 ± 0.48, 27.27 ± 0.57, 27.54 ± 0.51,
27.60 ± 0.5 ◦C, respectively). In the summer, the highest LST was in 2000 (43.74 ± 1.04 ◦C).
However, the errors in the LST estimation indicate that it should be treated the same as
the values for 2001, 2006, 2008, 2011, 2013, 2016, 2017, and 2021. The lowest summer LST
was in 2009 (39.1 ± 1.03 ◦C), but it is indistinguishable from the values for 2003, 2005, 2010,
2012, 2014, and 2019. In the fall, the highest LSTs were in 2002, 2016, and 2017 (32.97 ± 0.27,
33.03 ± 0.28, 33.05 ± 0.29 ◦C, respectively) and the lowest in 2000 and 2001 (29.28 ± 0.5,
and 29.55 ± 0.4 ◦C, respectively). The trend lines fitted to the seasonal time series of LST
indicate that the LST went up by 0.063 ◦C/year in the winter and by 0.035 ◦C/year in the
fall, while it decreased by 0.14 ◦C/year in the spring and 0.03 ◦C/year in the summer.
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Figure 6 shows the maps of seasonal mean LST in the period 2000–2021. The highest
LST was observed in the summer, and the lowest LST was observed in winter. The HRB was
the warmest basin, and ADB was the coldest basin in Afghanistan during the study period.

3.1.2. Seasonal and Annual Variations of LST over the Afghanistan River Basins

Figure 7 shows the mean, minimum, and maximum LST of Afghanistan’s basins
during all seasons. In the winter, the maximum LST of 30.14 ◦C (±4.06) was observed
in the HRB, and the minimum LST was equal to −25◦C (±2.9) in the ADB. In the spring,
the maximum LST of HRB was 51.75 ◦C (±3.52), and the highest mean LST of HRB was
34.3 ◦C (±4.01), while the minimum LST was observed in the ADB (–10.5 ± 4.42 ◦C) and
KRB (−4.17 ± 4.27 ◦C). In the summer, the maximum LST was 58.7◦C (±2.06) in the HRB,
and 56.8◦C (±1.9) in the NB, and the minimum LST was 2.58◦C (±6.99) in the ADB. The
highest mean LST of HRB was 46.2◦C (±2.88). During the fall, the highest mean LST was
32.55 ◦C (±3.39) in HRB.
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Figure 8 shows the seasonal variations of LST, precipitation, vegetation coverage,
and soil moisture in Afghanistan’s basins. In the summer, being the hottest season in
Afghanistan, all basins had high LST. The HRB, NB, and HMB were the warmest basins,
with the LSTs equal to 46.14 (±2.8), 44.5 (±2.8), and 42.1 ◦C (±2.7), respectively, and
ADB and KRB were the coldest basins, with LST’s equal to 31 (±3.0), and 34.9 ◦C (±2.9),
respectively. In spring, HRB and NB had higher LSTs; however, during the fall, they had low
LSTs. In the fall, KBR, HMR, and ADB had high LSTs, but in the spring, they had low LSTs.
Winter was the coldest season in Afghanistan, and during this season, the warmest basin
was HRB, and the coldest basin was ADB, with LSTs in these basins equal to 14 (±4.0) and
−4.25 ◦C (±3.1), respectively. Precipitation was the highest in Afghanistan in the spring. In
this season, ADB and KRD had the highest precipitation sums, equal to 188 (±21.6) and
167 (±20.4) mm, and HRB had the lowest precipitation sum, equal to 72 (±20.5) mm. In
the summer in Afghanistan, the lowest precipitation sums were observed, except for KRB
(with the lowest precipitation sum during the fall). In this season, the highest precipitation
sum was observed in KRB and ADB, with 45 (±12) and 38.7 (±11.2) mm, respectively,
whereas the lowest was in HMB, NB, and HRB, with 1.6 (±7.5), 2.3 (±7.8) and 3.4 (±7.6)
mm, respectively. Such precipitation sum values were indicators of drought conditions
occurring in Afghanistan in the summer. The highest soil moisture values were observed
during spring in ADB, HMB, and NB (0.286 ± 0.009, 0.29 ± 0.0075, and 0.32 ± 0.014 m3

m-3, respectively), and the lowest in the spring and fall in the same basins. In ADR and
KRB basins, the highest soil moisture value occurred in the summer (0.303 ± 0.009 and
0.301 ± 0.008 m3 m-3), and the lowest was recorded in the winter and the fall. From the
analysis of the seasonal vegetation coverage variability, the fall and winter seasons were the
least green seasons in Afghanistan, with the HMB and NB having the least vegetation in the
fall season and KRB, HRB, and ADB having the least vegetation during the winter season.

3.2. Annual Variations of Precipitation and NDVI

Figure 9 shows the changes in the mean annual precipitation in the study area over
22 years. The trend line indicates that in the study area, the yearly precipitation sum slightly
increased with subsequent years. The highest precipitation was observed for 2008, 2009,
2019, and 2020, with sums of 346.6 (±13.04), 346.4 (±13.02), 411.33 (±16.8), and 351.42 (±14)
mm, respectively. The lowest precipitation sums were observed for 2000, 2001, and 2021,
with sums of 182 (±22), 210 (±16), and 197 (±18.7) mm, respectively. A brief look at the
LST and precipitation anomalies (Figures 4 and 9) suggests that they should be negatively
correlated, which indicates that the precipitation parameter was one of the factors affecting
the LST.

Figure 10 shows the vegetation coverage changes during the analyzed period. The
years 2009, 2019, and 2020 were the greenest, with 87,011 (±2576), 98,380 (±4999), and
102,724 (±5926) km2 of the area covered by vegetation, respectively. In turn, 2000, 2001,
2008, and 2021 were the least green, with 52,731 (±4732), 46,701 (±6018), 45,422 (±6290),
and 74,116 (±6173) km2 of the area covered by vegetation, respectively.

3.3. Correlation of LST with Other Variables

In Figure 11, the variations of annual anomalies of LST, precipitation, soil moisture,
and vegetation coverage are presented. In 2000, 2001, and 2021 the highest LST and the
lowest vegetation coverage, precipitation, and soil moisture were observed simultaneously,
while in 2012 and 2019, the lowest LST was followed by the highest vegetation coverage,
precipitation, and soil moisture.
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Figure 12 shows the spatiotemporal map of Afghanistan’s LST change over the period
from 2000 to 2021. The map was created by calculating the linear trend for chronologically
ordered values of the LST for each pixel, taking the value of the slope, and then multiplying
it by the length of the study period (22 years). The red color on the map, with values greater
than 0 ◦C, indicates that the LST of those areas has increased during the study period,
whereas the green color, with values less than 0 ◦C, indicates that the LST of those areas
has decreased in the study period. The yellow color, with values of 0 ◦C or close to 0 ◦C,
indicates that the LST changed insignificantly in these areas during 2000–2021. It can be
concluded that the eastern parts of Afghanistan (mostly the ADB and some areas of the
NB) had an upward LST trend, whereas in the southern parts of Afghanistan (KRB and
some parts of HRB) downward LST trend occurred in the study period.
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In Table 2 and Figure 13, the relationships between LST, precipitation, soil moisture,
and vegetation coverage obtained employing the linear regression are presented. They
were obtained for annual country-wide means. It can be concluded that the relationships
between LST and soil moisture and precipitation were significant, high, and negative
(R = −0.79, and R = −0.635, respectively), which means that the increase in soil moisture
or precipitation caused a decrease in LST. LST was also anticorrelated with vegetation
coverage (R = −0.337); however, this relation was statistically insignificant. Soil moisture
had the highest impact on LST variability, and vegetation coverage had the lowest impact
on LST changes.

Table 2. The correlation (R) and determination (R2) coefficients and p-value for relationships between
LST, precipitation, soil moisture, and vegetation coverage in Afghanistan in the period 2000–2021
calculated using the linear regression method.

R2 R p-Value

LST-precipitation 0.433 −0.658 * 0.000867
LST-soil moisture 0.503 −0.709 * 0.000216

LST-NDVI coverage 0.114 −0.339 0.122
* denotes that the correlation was significant (p-value = 0.05).



Climate 2022, 10, 111 14 of 19

Climate 2022, 10, x FOR PEER REVIEW 15 of 20 
 

 

 

 

 
Figure 13. The scatter plots of relationships between annual country-wide means of LST and soil 
moisture (upper panel), vegetation coverage (middle panel), and precipitation (bottom panel) in 
Afghanistan in the period 2000–2021. 

For the variations of LST, the multiple regression equations taking into account the 
relationships between LST, precipitation, soil moisture, and vegetation coverage in Af-
ghanistan in the period 2000–2021 were obtained for both yearly and seasonal values (Ta-
ble 3). These equations allow the estimation of the projected value of LST. The obtained 
multiple regression and determination coefficients indicate that precipitation, soil mois-
ture, and vegetation coverage explained about 60% of the yearly LST variation, almost 
80% of the spring and summer LST variations, and only around 30% of its variation in 
winter and 20% of its variation in fall. 

  

Figure 13. The scatter plots of relationships between annual country-wide means of LST and soil
moisture (upper panel), vegetation coverage (middle panel), and precipitation (bottom panel) in
Afghanistan in the period 2000–2021.



Climate 2022, 10, 111 15 of 19

For the variations of LST, the multiple regression equations taking into account the rela-
tionships between LST, precipitation, soil moisture, and vegetation coverage in Afghanistan
in the period 2000–2021 were obtained for both yearly and seasonal values (Table 3). These
equations allow the estimation of the projected value of LST. The obtained multiple regres-
sion and determination coefficients indicate that precipitation, soil moisture, and vegetation
coverage explained about 60% of the yearly LST variation, almost 80% of the spring and
summer LST variations, and only around 30% of its variation in winter and 20% of its
variation in fall.

Table 3. The yearly and seasonal multiple regression relationships between country-wide means of
LST, precipitation, soil moisture, and vegetation coverage in Afghanistan in the period 2000–2021.

Model of LST R (Regression Coefficient) R2 (Determination Coefficient) Multiple Regression Equations

yearly 0.77 0.59 LSTyearly = 47.2 − 0.000009·VCyearly − 80.9·SoilMoistureyearly − 0.004·Precipyearly

winter 0.55 0.30 LSTwinter = 26.16 + 0.000038·VCwinter − 74.35·SoilMoisturewinter + 0.022·Precipwinter

spring 0.86 0.73 LSTspring = 49.44 − 0.000009·VCspring − 66.6·SoilMoisturespring − 0.0068·Precipspring

summer 0.87 0.76 LSTsummer = 67.41− 0.000031·VCsummer − 163.2·SoilMoisturesummer + 0.22·Precipsummer

fall 0.46 0.21 LSTfall = 39.6 + 0.000034·VCfall − 52.08·SoilMoisturefall − 0.007·Precipfall

4. Discussion

The purpose of this study was to investigate the spatial and temporal LST variations
and the impact of vegetation coverage, soil moisture, and precipitation on these variations
in Afghanistan and also for its main river basins. To assess the LST variability in more detail,
various statistical parameters such as mean, maximum, and minimum LST for separate
watersheds of Afghanistan have been calculated for the period 2000–2021. The LST of each
basin was separately investigated, taking into account such factors as climatic parameters,
topography, and vegetation cover of the area.

The vegetation coverage had an upward trend in Afghanistan during the analyzed
period, with 2009 and 2020 being the greenest and 2001 and 2008 the least vegetated years.
The LST in Afghanistan had a decreasing trend, with 2000 having the highest LST, and 2001,
2004, 2010, 2016, 2017, 2018, and 2021 having the second-highest LST, and 2005, 2009, 2012,
and 2019 having the lowest LST. The trend of precipitation was upward, with 2000, 2001,
and 2021 with the lowest precipitation, and 2008, 2009, 2019, and 2020 with the highest
precipitation, which is in agreement with other research [32]. It was revealed that the soil
moisture impacted the LST to the greatest extent, whereas vegetation coverage had a low
and statistically insignificant impact on the LST changes in Afghanistan. The results of the
study also indicate that in Afghanistan, the highest LST in summer was observed in HRB
and the NB, and the lowest LST was observed in winter in the ADB, also in agreement with
other studies [31]. The highest soil moisture was observed in the NB, HMB, and ADB in
the spring season, and the lowest soil moisture was observed in HRB, NB, and HMB in the
fall. The highest rainfall was observed in the ADB and KRB in the spring, and the lowest
precipitation was observed in HRB, NB, and HMB in the summer. The highest vegetation
was observed in the northern basin and the ADB in the spring, and the lowest vegetation
was observed in HMB, HRB, and NB in the fall.

The eastern parts of Afghanistan connected to the ADB and the northeastern parts of
the KRB, which are situated at high altitudes, have low LST (Figure 14). The southern and
southwestern areas of HRB, the northern sides of the NB, the south and southwest of HMB,
the southeastern areas of KRB, and the northwestern areas of the ADB have low elevations
and high LST. The central regions of Afghanistan, which include the areas southwest of the
ADR, west of KRB, northeast of HRB, west of HMB, and south of the NB, are situated at
moderate altitudes and have moderate LST. Because of this, HRB is the warmest basin, and
ADB is the coldest basin in Afghanistan.
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Thus far, no research assessing the LST changes and quantifying the impact of various
parameters on them has been performed for Afghanistan, but such research has been
performed for other countries. Among them are the simulations of land cover changes
and their effects on LST in Dhaka, Bangladesh [48], analysis of LST changes with the use
of MODIS products for the central Himalayas [49], and also quantification of the actual
impact of forest cover changes on LST in Guangdong, China [50]. The additional aspect
of the present study, besides the investigation of the spatial and temporal changes of LST,
is the quantification of the impact of vegetation coverage, precipitation, and soil moisture
variations on the LST in Afghanistan during the period 2000–2021. In the manuscript,
considerable and significant correlations were found between LST and soil moisture
(R = −0.709) and LST and precipitation (R = −0.658), while the correlation between LST
and NDVI coverage was small and insignificant (R = −0.339), contrary to several other
reports [51–53]. However, it was revealed by Sun and Kefastos [54], who studied the
LST-NDVI relation over North America, and Kaufmann et al. [55], that the correlations
between LST and vegetation depend on the region, the season of the year, and even the
time of day. They found that in the winter (or cold) season, the correlation between LST
and NDVI was positive, whereas a strong negative correlation between LST and NDVI was
found in the warm months (from May to October). It suggests the correlation coefficient R
calculated for the annual period may be close to zero because of the mutual suppression
of positive and negative values observed in various seasons, depending on the analyzed
region. It can be expected that if the correlation coefficient R calculated for the annual
period is close to zero, then also its value calculated for the longer period (21 years) can be
close to zero.

5. Conclusions

This study analyzed the spatial and temporal changes of LST and the impact of param-
eters affecting these changes by using remote sensing data for the period 2000–2021. The
research showed that 2000 was the hottest year in Afghanistan, with an LST of 32.92 ◦C,
and 2009, 2012, and 2019 were the coldest years, with LSTs equal to 26.39, 25.58, and
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26.49 ◦C, respectively. It occurred that the warmest basins were HRB and NB, and the
coldest one was ADB during the study period. During the spring, 29,896 (±29,143) km2

of the study area had an LST less than 0 ◦C, while during the summer, 437 (±32,538) km2

had an LST less than 0 ◦C. During the fall, 21,355 (±30,362) km2 of Afghanistan had an
LST lower than 0 ◦C, and during the winter, 160,227 (±28,719) km2 of the study area had
an LST less than 0 ◦C. It was shown that many parameters affect LST directly and indi-
rectly. The research revealed that soil moisture had the strongest impact on LST, and they
were anticorrelated (R = −0.79 and p-value = 0.000216). Precipitation also impacted LST
(R = −0.636 and p-value = 0.00146), while the impact of the vegetation coverage was rather
small and statistically insignificant (R = −0.339 and p-value = 0.122). It was revealed that
precipitation, soil moisture, and vegetation coverage explained about 60% of the yearly
LST variation and almost 80% of the spring and summer LST variations in Afghanistan.

The trend of LST changes was downward (R = 0.2, p-value = 0.25). The decrease of
the LST was around 0.05 degrees each subsequent year, but in the fall and the winter, the
LST was slightly increasing by 0.035 and 0.063 ◦C each year. The trend of soil moisture
changes was upward in the study area, with the highest soil moisture of 0.238 m3 m–3
observed in 2020 and the lowest soil moisture in 2000, equal to 0.199 m3 m–3. The trend of
precipitation changes in Afghanistan in the period 2000–2021 was upward, with the highest
precipitation observed in 2019 equal to 411.33 mm and the lowest in 2000 and 2021 equal to
182 and 197 mm, respectively. The trend of vegetation changes in the study area between
2000 and 2021 was upward, with 2019 and 2020 being the greenest years, with vegetation
covering about 98,260.65 and 102,601.204 km2 of the study area, respectively, while the
least vegetation was observed in 2008, with vegetation covering about 45,360.703 km2 of
study Afghanistan.
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