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Abstract: Surface air temperature is an important variable in quantifying extreme heat, but high-
resolution temporal and spatial measurement is limited by sparse climate-data stations. As a result,
hyperlocal models of extreme heat involve intensive physical data collection efforts or analyze satellite-
derived land-surface temperature instead. We developed a geostatistical model that integrates
in situ climate-quality temperature records, gridded temperature data, land-surface temperature
estimates, and spatially consistent covariates to predict monthly averaged daily maximum surface-air
temperatures at spatial resolutions up to 30 m. We trained and validated the model using data from
North Carolina. The fitted model showed strong predictive performance with a mean absolute error
of 1.61 ◦F across all summer months and a correlation coefficient of 0.75 against an independent
hyperlocal temperature model for the city of Durham. We show that the proposed model framework is
highly scalable and capable of producing realistic temperature fields across a variety of physiographic
settings, even in areas where no climate-quality data stations are available.

Keywords: heat; temperature modeling; land-surface temperature; urban heat island; INLA

1. Introduction

Current Twenty-First-Century climate projections show increasing extreme heat expo-
sure across much of the coterminous United States [1–3]. Projected temperature increases
in the U.S. correspond to four- to twenty-fold increases in population exposure to extreme
heat, from 107 million person-days per year to as high as two billion by the end of the
century [4]. Despite the scale of projected increases in heat exposure and strong associations
between extreme heat and mortality [5,6], accurately modeling high-resolution temperature
variations is difficult due to the sparsity of climate-quality data stations recording in situ
observations [7,8]. Without dense in situ observations, it is difficult to resolve hyperlocal
spatial and temporal variations in extreme heat, especially in rapidly growing urban envi-
ronments where the urban heat island effect can significantly increase temperatures [9,10].

In the United States, national state-of-the-art in situ temperature records are collected
at 139 Climate Reference Network (CRN) stations spread across CONUS, Hawaii, and
Alaska [11]. Other high-quality national networks include the airport-based Automated
Surface Observing System (ASOS) and Automated Weather Observing System (AWOS),
operated by the National Weather Service and Federal Aviation Administration [12]. Indi-
vidual states, cities, or localities also operate additional “mesonet” networks that vary in
size and area. The National Oceanic and Atmospheric Administration (NOAA) National
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Centers for Environmental Information (NCEI) collates and applies expert quality control
to many of these data streams into the Global Historical Climatology Network (GHCN)
and its associated information products [13].

However, the spatial coverage provided by each of these datasets is limited, even to
the extent that using data from multiple networks does not provide a sufficiently dense and
spatially consistent set of measurements upon which to evaluate local temperature variation
with high fidelity. To address this shortcoming, a variety of derivative products have been
developed (e.g., PRISM, Daymet, GridMET, CHIRTS) that apply statistical or model-based
techniques to interpolate temperature observations onto spatially consistent grids, typically
at horizontal resolutions of several kilometers [7,8,14–16]. Specific methodological details
vary across products, but common approaches either use the relationships between station
features such as location, elevation, coastal proximity, and topographic orientation or
position and temperature to guide an interpolation between stations [14,16] or calibrate
temperature estimates from regional climate reanalysis against other remotely sourced
temperature records [8] or station-based data products [15]. These types of products form
the basis for one segment of research assessing heat impacts on human health and changes
in heat exposure from climate change [4,17].

A related area of research analyzes local heat variations and potential impacts at scales
finer than the native resolution of gridded data products. The urban heat island (UHI)
or urban cool island (UCI) effects describe the elevation or diminution of temperatures
relative to their surrounding area, driven by varying heat absorption and storage patterns
among different land-surface types and urban layouts, as well as increased capture of
anthropogenic heat sources [18,19]. Although precise classification of UHI and UCI effects
is dependent on the chosen reference frame (e.g., urban–rural end members), there is broad
agreement that air temperatures can exhibit distinct variation at scales of tens to hundreds
of meters [19–24]. Common approaches for characterizing microthermal anomalies include
analyzing land-surface temperature (LST) estimates or other satellite imagery data [21–23,25,26],
dense networks of in situ measurements [27,28], or a combination of both [29–31]. LST-
based approaches are widely applied in studies of urban land use and heat-related public
health outcomes due to their scalability, but results often lack a direct connection to expe-
riential air temperatures. By contrast, studies using dense in situ measurements are able
to more accurately resolve local air temperatures, but require pre-existing measurement
equipment or intensive physical data collection efforts [30].

In this paper, we propose a data fusion model to estimate monthly averaged daily
maximum air temperatures at high spatial resolution without the restrictive requirement of
additional data collection. The model was based on a geostatistical modeling framework
for integrating areal and point data sources described in Moraga et al. [32], and leveraged
advances in Bayesian inference via the integrated nested Laplace approximation (INLA) [33]
and the stochastic partial differential equation (SPDE) [34] approaches. The framework
flexibly accommodates a variety of spatially misaligned data sources while taking into
account the collection mechanisms for both area and point observations [32]. We used this
capability to link gridded observations from a coarse, but spatially complete gridded data
product (GridMET) with highly accurate, but spatially sparse in situ measurements from
climate-quality data stations. The model was jointly fit to both sets of observations using
a collection of geospatial covariates at 30 m resolution, enabling predictions at the same
spatial resolution.

We organize the remainder of the paper as follows. First, we introduce the general
modeling approach describing the covariate datasets used for prediction. We then trained
and validated the model for the state of North Carolina using in situ measurements of
maximum monthly air temperature from observed NOAA Global Summaries of the Month
(GSOM) and 1/24th degree gridded temperature estimates from GridMET [15]. Following
the model validation, we highlight the broader utility of the model by producing air temper-
ature predictions on a high-resolution (30 m) grid for three locations across North Carolina.
We conclude with a discussion of the results and limitations and the concluding remarks.
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2. Methods
2.1. Temperature Records and Covariate Data

The proposed model integrates two forms of surface-air-temperature data: in situ
measurements from climate-quality data stations and gridded temperature estimates. For
this study, we used data covering North Carolina, a state with a blend of urban and rural
environments and both coastal and mountainous environments. A consistent set of in situ
mean monthly max surface-air temperature data for the months of June, July, and August
was acquired from the NOAA Global Summaries of the Month (GSOM) Version 1 [35], a
summary dataset derived primarily from the NOAA Global Historical Climatology Net-
work Daily dataset [13]. All stations in North Carolina with complete monthly temperature
records between 2014 and 2020 were used for model training (n = 191). This time range
contained the maximum number of records that could be date-matched against equivalent
Landsat 8 LST estimates. We acquired gridded estimates of monthly maximum temperature
from GridMET for the same months. GridMET data integrate PRISM and National Land
Data Assimilation System data to provide spatially and temporally continuous estimates of
climate variables at 1/24th degree resolution (roughly 4 km) [15]. To visualize the coverage
of both data sources, we show the combined set of station observations and GridMET
temperature values for an example month in Figure 1.

Figure 1. Average daily maximum June air temperature values between 2014 and 2020 for GHCN
stations and GridMET cells across North Carolina.

Following previous research, we relied on satellite-derived land-surface temperature
(LST) as a key covariate for predicting surface-air temperature (TS2) at high spatial resolu-
tion [31,36–39]. LST is a distinct physical quantity from air temperature, but the two values
tend to be strongly correlated. However, the relationship is geographically and temporally
variable, and a simple linear relationship is insufficient for calibrating LST to air temper-
ature [22,31,36,40–43]. Models relating the two quantities almost always use additional
covariates to capture other effects. Accordingly, we also utilized other gridded covariates
that are directly or indirectly related to surface-air temperature, including elevation, land
cover, canopy cover, impervious surface cover, distance to water bodies, and distance to
coastlines [22,23,27,36,37].

We acquired LST data from the Landsat 8 Collection 2 surface-temperature product,
accessed from Google Earth Engine [44,45]. The Landsat LST product has a higher spatial
resolution (100 m native resolution, re-sampled to 30 m) than other LST products, but less
frequent collection with an 8 d repeat cycle. To handle the lower temporal resolution, we
generated a single composite image by taking the median LST value for each 30 m pixel
across all Landsat scenes covering portions of North Carolina with less than 15% cloud
cover in June, July, and August between the years of 2014 and 2020 (n = 5080). Compositing
the summer LST months minimizes the probability of cloudy pixels. We found that the
15% cloud cover threshold returned the smoothest mosaic with the fewest gaps in the
data. Additionally, while there was some seasonal variation in the relative variation of LST,
research suggests that summer LST may show the best differentiation among local climate
zones [46].
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Figure 2 shows the covariate data layers used in the model. Source information for each
covariate layer is listed in Table A1. We applied pre-processing steps such as classification,
filtering, and rasterization to standardize the format of covariate data layers for the model.
Land-cover data were reclassified to Modified Anderson Level I classifications [47] to
increase the representation of land-cover classes at the climate-data stations. Land-cover
classes present at less than five stations were further reclassified into a neighboring class
with similar vegetation cover (conversions in Table A2). The surface water layer was filtered
to remove small ponds and streams that are unlikely to affect air temperature by imposing
a requirement of 10 inter-connected pixels. Coastline vectors were converted to a 30 m
binary raster. Distance to coastlines and other sources of surface water were then calculated
as the log-transformed euclidean distance to the nearest water or coastline pixel. Following
these pre-processing steps, covariate values were extracted at each climate-data station
location and for each cell in the 1/24th degree GridMET grid. For each extraction, the
mean values were utilized for continuous rasters and the modal value for the categorical
land-cover classes.
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2.2. Model Framework

Our proposed model builds upon the general framework for combined analysis of
point-level and area-level data proposed in [32]. We specified a geostatistical model for
surface-air temperature that assumes there is a spatially continuous field underlying both
point and areal observations that can be modeled with a Gaussian random field process,
defined over a fixed domain D as S = S(x) : x ∈ D ⊂ R2. For a given set of observations
Yi, point records are defined as realizations at fixed locations xi ∈ D, i = 1, 2, . . . , I with
Equation (1):

Yi|S(xi) ∼ N(µ(xi) + S(xi), τ2) (1)

where µ(xi is the large-scale temperature trend, modeled with covariates.
Areal observations are subsequently defined as block averages over areas Bi ∈ D,

j = 1, 2, . . . , J with Equation (2):

Y|Bj = |Bj|−1
∫

Bj

(µ(x) + S(x))dx, |Bj| > 0) (2)

where |Bj|
∫
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dx is the area of each block.
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2.2. Model Framework

Our proposed model builds upon the general framework for combined analysis of
point-level and area-level data proposed in [32]. We specified a geostatistical model for
surface-air temperature that assumes there is a spatially continuous field underlying both
point and areal observations that can be modeled with a Gaussian random field process,
defined over a fixed domain D as S = S(x) : x ∈ D ⊂ R2. For a given set of observations
Yi, point records are defined as realizations at fixed locations xi ∈ D, i = 1, 2, . . . , I with
Equation (1):

Yi|S(xi) ∼ N(µ(xi) + S(xi), τ2) (1)

where µ(xi) is the large-scale temperature trend, modeled with covariates.
Areal observations are subsequently defined as block averages over areas Bi ∈ D,

j = 1, 2, . . . , J with Equation (2):

Y|Bj = |Bj|−1
∫

Bj

(µ(x) + S(x))dx, |Bj| > 0) (2)

where |Bj|
∫

Bj
dx is the area of each block.
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The proposed model can be fit using the INLA-SPDE approach. INLA is a com-
putationally efficient alternative to Markov chain Monte Carlo methods that performs
approximate Bayesian inference [33]. The SPDE approach models the underlying spatial
process by defining a triangular mesh across the study region with basis functions that
provide a sparse representation of a Gaussian field with Matérn covariance [34]. A projector
matrix is then used to linearly map values of the random field from the triangulation
nodes to points of interest inside the mesh. For the combined areal and point data model
implemented here, the value of the random field in a given area is defined as the average
value across all embedded triangulation nodes. More information on the SPDE approach
was provided in [34,48], with specific details on the joint areal and point projector matrix in
Moraga et al. [32].

2.3. Model Specification

We applied the modeling framework to predict summertime monthly averaged daily
maximum surface-air temperature for the State of North Carolina. A combined set of
temperature observations Yi from climate-data station records xi, i = 1, . . . , n and raster
grid cells Bi, i = n + 1, . . . , n + m was modeled with a normal likelihood with the mean
defined in Equation (3):

Yi ∼ Normal(µi, σ2), i = 1, ...n, n + 1, . . .n + m

µi = ziβ + S(xi), i = 1, ..., n

µi = ziβ + |Bj|−1
∫

Bj

S(X)dx, i = n + 1, ..., n + m
(3)

where zi = (1, zi) is a vector of the intercept and covariates, β is a vector of coefficient
values, and S is a zero-mean Matérn covariance function with parameters σ2 and ρ, varying
by month. We fit the model using a random effect for months and fixed coefficients on all
variables except for impervious surfaces, which we allowed to vary by month to moderate
the effect of land-surface temperature.

To evaluate the model’s performance, we implemented two separate validation proce-
dures, a k-fold (k = 10) cross-validation on out-of-sample in situ climate-quality station data
and a correlation analysis against an independent hyperlocal temperature map for the city
of Durham from CAPA Heat Watch [49]. The CAPA Heat Watch product uses different data
sources from our model, and the mapped area contains none of the in situ climate-data
stations used for training our model. For the k-fold cross-validation procedure, we split
the station data into ten folds of roughly equal size, fit the model using k−1 folds, and
generated predictions for the withheld observations. For each validation set, we calculated
the mean absolute error (MAE), root-mean-squared error (RMSE), and bias. These metrics
provide a robust way to characterize the out-of-sample prediction capability of the model.

For the correlation analysis, we first acquired the CAPA Heat Watch afternoon (3–4 p.m.)
and evening temperature maps (7–8 p.m.) and transect-based measurements for Durham [49].
These 10 m gridded raster layers were produced by integrating thousands of in situ mea-
surements collected by volunteers on 23 July 2021 with Sentinel II imagery (methodological
details available in Shandas et al. [30]). We selected the afternoon and evening time frames
because they were more likely to correspond to the average daily maximum temperature
values output by our model compared to the morning collection window. To generate
baseline predictions, we applied our model to covariate data at 30 m resolution for Durham
in the month of July. We then performed three different comparisons between raster layers:
interpolating our complete results onto the Heat Watch 10 m resolution grid, aggregating
the Heat Watch raster data onto our 30 m resolution grid, and aggregating the raw Heat
Watch transect measurements onto our 30 m grid. In all cases, we standardize the data to
have a zero mean and standard deviation of one to minimize the underlying differences in
mean temperature resulting from the specific day of collection for the Heat Watch campaign.
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We assessed the similarity by computing the correlation coefficient on a pixel-by-pixel basis
for both the afternoon and evening time windows.

3. Results

We fit the model in R Version 4.1 using the R package R-INLA [33]. Coefficient values
for all parameters are reported in Table A3. We found that the 95% confidence intervals for
all covariates except land cover were exclusive of zero, indicating consistent associations
between most covariates and air temperature. Due to the different scales of the covariates,
the estimated coefficient values were not directly compared. However, our results generally
showed that temperatures were lower at higher elevations and near water bodies. Addi-
tionally, our estimates (Table A3) showed a positive coefficient for canopy cover percentage
and a negative coefficient for impervious surface percentage, opposite the common direc-
tional associations for these variables seen in other heat research (e.g., [21,22,27]). These
differences were likely due to the inclusion of the LST as an additional predictor variable.
We found only small differences between land-cover classes. The estimates for the spatial
random effect indicated significant spatial dependence of the data, with an effective spatial
range (the distance at which spatial dependence for the large-scale trend is negligible) of
approximately 75 km.

3.1. Validation Results

Figure 3 shows the predicted versus observed temperature values for the withheld
climate stations in the 10-fold cross-validation. The average MAE and RMSE of the model
were 1.61 and 2.11 ◦F, errors which were comparable to other studies using LST to model
surface-air temperature [36,37], The bias of the fitted model was small (0.23 F). Full cross-
validation results are reported in Table A4. Model performance varied across months, but
the differences in MAE and RMSE were small (<1 ◦F). It may be preferable to use month-
specific LST data as opposed to a composite across all months if enough cloud-free imagery
is available in a given region. Overall, the model showed good predictive performance,
especially given the relatively sparse spatial coverage of climate-quality data stations across
the study area.

Figure 3. Observed monthly average maximum daily temperature records at withheld climate-data
stations versus model predictions.

3.2. Correlation with CAPA Heat Watch Data

Figure 4 shows the evening 10 m CAPA Heat Watch map for the city of Durham
compared to our gridded model predictions downscaled to the same resolution. The
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two rasters had a correlation coefficient of 0.75 and displayed strong similarities over
the location of the warmest and coldest regions within the city. The correlation for the
afternoon collection period was weaker, with a coefficient of 0.50. Considering only the
transect locations, the correlation coefficients were 0.66 and 0.20 for the evening and
afternoon observations, respectively. Comparing the full Heat Watch map aggregated to a
30 m resolution instead of 10 m did not change the correlations. The stronger performance
against the evening data suggested that our model produced a spatial trend more similar
to an evening-time heat distribution. Figure 5 shows the differences between our model
predictions and the evening CAPA data stratified across land-cover types. The model’s
predictions were mostly balanced, but tended towards under-predictions over water and
wetlands. On the whole, these results suggested that our model was capable of producing
estimates of 30 m temperature variation that were broadly similar to some results of an
intensive field-collection project, even in locations where there were no pre-existing climate-
data stations. However, our predictions may have variable accuracy across land cover
types, especially in areas with limited in situ measurements.
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selected to show model predictions across multiple geographic and physiographic settings.
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3.3. Evaluating Gridded Predictions across Geographies

To further illustrate the predictive application of the model, we show the estimated
monthly averaged daily maximum temperatures in the month of July on 30 m resolution
grids for three locations across North Carolina in Figure 6: (a) Asheville, a mid-sized city in
the Blue Ridge Mountains, (b) Charlotte, a major city and urban hub, and (c) Morehead
City, a coastal town and part of the State’s “Crystal Coast”. These three locations were
selected to show model predictions across multiple geographic and physiographic settings.
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We also calculate local thermal anomalies (d–f) by differencing the temperature value in
each 30 m grid cell from a one kilometer moving average across each location. These maps
show how warm or cool a given location is relative to the surrounding area. All three areas
show smooth temperature gradations and temperature variability ranges of 4–7 degrees
Fahrenheit. In all three areas, higher temperatures are located in urban areas and along
major highways and arterial roadways.
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4. Discussion

As extreme heat events become more common, intense, and frequent across the U.S., it is
critically important to understand high-resolution spatial temperature variations [4,6,9]. Our
results indicated that a joint model framework blending in situ climate-quality temperature
records and spatially consistent gridded temperature estimates was able to produce accurate
predictions of monthly averages of daily maximum air temperatures at spatial resolutions
up to 30 m in North Carolina. The model uses openly available climate records and
covariate data that can readily be acquired at a 30 m spatial resolution for any location in
the United States. While our model is not intended to be directly compared to in situ data
collection, it is highly scalable and could be used to produce initial estimates of hyperlocal
temperature variations in areas where other sources of high-resolution data are not yet
available. These results could also inform locations for further physical data collection
efforts, especially in dense urban environments where heat effects are more challenging to
model at high resolution.

A novel feature of this study is the application of a geostatistical framework allowing
both point and areal data sources to be jointly predicted by LST and other spatially con-
sistent covariates. This approach has several advantages. First, incorporating a gridded
data product such as GridMET [15] into the model significantly increases the total number
of observations for model training, especially in areas where no climate-data stations are
available. This is useful for accurately modeling covariate effects and the spatial random
field across large study areas. Second, covariate effects are generalized across scales as
long as the new observations are assumed to arise from the same underlying temperature
field, modeled as a Gaussian random field process. This property allows for predictions at
the native spatial scale of the covariate data (30 m). Although previous heat research has
also used data fusion approaches, such as integrating dense point observations with raw
satellite imagery bands [30], the present framework can theoretically be rapidly applied to
other locations or adjusted to handle other sources of temperature data.

4.1. Limitations and Tradeoffs

While our results showed good predictive performance for our example application
in North Carolina, there are several limitations and opportunities for future development.
Our model is currently designed to produce predictions for monthly averages of maximum
daily daytime air temperature. Therefore, our model results did not capture temporal
variations in temperature at hourly or daily time scales, which can be important features of
heat management in specific circumstances. For example, high nighttime temperatures are
strongly associated with excess morbidity in extreme heat events and often show different
spatial patterns from daytime LST [26,38,50]. A similar modeling approach may be effective
for nighttime temperatures, but it would require a different source of LST data (nighttime
Landsat LST was not collected). We also note that air temperature alone is not sufficient for
fully characterizing heat stress. Research has shown that wind speed, relative humidity,
surface cover, and even factors such as building height and geometric distribution are
important determinants of how heat is experienced at the local level, especially in urban
environments [11,51–54]. Heat fluxes in urban environments are characterized by turbulent
fluid processes that require additional modeling efforts that are beyond the scope of
our model.

We also faced several tradeoffs in selecting input data to train the model. The spatial
resolution of Landsat 8 is higher than other data sources, but the eight-day recollection
period complicated the process of deriving a seamless LST mosaic. We found that taking the
median pixel value across several years of low cloud cover images produced a composite
mosaic with few sharp boundaries, but there remained small areas where artifacting was
present. This most frequently occurred at the boundaries of individual collection paths
or pixels with frequent cloud cover. Normalizing LST values across images with different
collection dates, or developing a secondary model to generate composite median LST
images may be helpful in the future for generating consistent mosaics. For smaller study
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areas, this issue is less of a concern because a single Landsat scene, or a few scenes at most,
can be composited together without issue. A second limitation is the lack of climate-quality
data across different land-cover types. Even with a simplified land-cover classification
system, only five classes had enough station representation to include as unique effects of
the model. As a result, our model results were likely less accurate in specific areas with
non-sampled land-cover types (e.g., barren land, shrubland). This may also be the case
for dense urban environments because a large number of stations classified as urban in
the NLCD are located at airports or other areas where temperatures could be cooler than
expected in an urban core [55]. Our model results for Durham did not show temperature
underestimates in urban areas, but more validation efforts across cities would help bolster
these findings.

4.2. Implications for Evaluating Extreme Heat Risks

This study built upon previous research that assessed spatial differences in heat
exposure by analyzing LST [21,25]. LST is used as a proxy for heat exposure because
LST and air temperature are reasonably well correlated and LST observations are more
straightforward to obtain across larger areas and at higher spatial resolutions compared
to air temperature measurements [36,38]. Yet, LST is rarely the actual variable of interest
for human-centric assessments of extreme heat because it does not correspond to actual
ambient heat exposure [31]. Modeling approaches that directly output air temperatures
are more easily converted into metrics with distinct physiological thresholds (e.g., wet
bulb globe temperature) or those used in extreme heat communication (e.g., apparent
temperature, heat index warnings). Our results showed that LST data can be combined
with other spatial covariates to provide well-calibrated estimates of air temperature at an
equivalent spatial resolution. This opens up new opportunities for assessing hyperlocal
heat exposure and heat stress with metrics that require air temperature values.

The scalability of our modeling approach also makes it suitable for broader applica-
tions, including further downscaling of regional climate models or other global climate
model derivatives. As shown in Figure 5, our model results can be converted into thermal
anomalies that represent the temperature difference between a specific 30 m grid cell com-
pared to its surrounding area. By calculating these temperature differences with respect
to a downscaled global climate model grid, our model results could allow future monthly
gridded temperature estimates to incorporate our current understanding of microthermal
anomalies. Localizing climate projections, especially in conjunction with increased in
situ data collection, is an important step towards informing heat management planning
and advancing understanding on the differential impacts of climate-related hazards on
vulnerable population groups [6,25,56–58].
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Appendix A

Table A1. Covariate data layers and sources.

Variable Source Resolution

Elevation USGS National Elevation Database 10 m
Land Cover 2016 NLCD 30 m
Canopy Cover 2016 NLCD 30 m
Impervious Surface Cover 2016 NLCD 30 m
Surface Water JRC Global Surface Water, v1.3 30 m
Coastlines NOAA Composite Shorelines Vector

NLCD: National Land Cover Database; JRC: European Commission Joint Research Centre.

Table A2. Land cover reclassification.

Original Class Modified Class

Open Water Water
Developed, Open Space Developed
Developed, Low Intensity Developed
Developed, Medium Intensity Developed
Developed, High Intensity Developed
Barren Land Crops/Barren
Deciduous Forest Forest/Shrub
Evergreen Forest Forest/Shrub
Mixed Forest Forest/Shrub
Shrub Forest/Shrub
Grassland/Herbaceous Forest/Shrub
Pasture/Hay Crops/Barren
Cultivated Crops Crops/Barren
Woody Wetlands Wetlands
Emergent Wetland Wetlands

Table A3. Fitted model coefficients.

Parameter Mean SD 2.5% 50% 97.5%

Intercept −0.757 20.844 −41.900 −0.779 40.466
Elevation (km) −9.330 0.039 −9.407 −9.330 −9.252
Canopy 0.009 0.000 0.013 0.013 0.014
LULC, developed 78.087 0.445 77.204 78.088 78.960
LULC, planted 77.930 0.442 77.054 77.932 78.797
LULC, forest 78.195 0.443 77.318 78.197 79.063
LULC, water 77.161 0.438 76.293 77.162 78.019
LULC, wetlands 77.580 0.442 76.705 77.582 78.446
log(distance coastline (km)) 0.057 0.002 0.053 0.057 0.061
log(distance water (km)) 0.005 0.001 0.002 0.005 0.007
LST 0.112 0.001 0.087 0.089 0.092
Range for spatial field 23.53 3.741 16.92 23.28 31.60
Stdev for spatial field 16.40 2.580 11.81 16.24 21.92
Random Effects

Jun −1.218 0.4062 −2.016 −1.220 −0.411
Impervious (Jun) −0.001 0.002 −0.006 −0.001 0.003
Jul 1.854 0.406 1.057 1.852 2.661
Impervious (Jul) −0.001 0.002 −0.005 −0.001 0.004
Aug −0.024 0.002 −0.028 −0.024 −0.019
Impervious (Aug) 0.012 0.003 0.0063 0.012 0.017
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Table A4. Performance metrics averaged across the 10-fold cross-validation.

MAE RMSE Bias (◦F)

All Months 1.61 2.11 0.23
June 1.70 2.22 0.75
July 1.61 2.14 −0.01

August 1.51 1.97 −0.06
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