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Abstract: Drought, the major limiting factor for plant growth and crop productivity, affecting several
physiological and biochemical processes, is expected to increase in duration, intensity, and frequency
as a consequence of climate change. Plants have developed several approaches to either avoid or
tolerate water deficit. Plants as a response to drought stress (DS), close stomata, reducing carbon
dioxide (CO2) entry in the leaf, thus decreasing photosynthesis which results in reduced synthesis
of essential organic molecules that sustain the life on earth. The reduced CO2 fixation, decreases
electron transport rate (ETR), while the absorbed light energy overdoes what can be used for photo-
chemistry resulting in excess reactive oxygen species (ROS) and oxidative stress. Current imaging
techniques allow non-destructive monitoring of changes in the physiological state of plants under
DS. Thermographic visualization, near-infrared imaging, and chlorophyll a fluorescence imaging are
the most common verified imaging techniques for detecting stress-related changes in the display of
light emission from plant leaves. Chlorophyll a fluorescence analysis, by use of the pulse amplitude
modulation (PAM) method, can principally calculate the amount of absorbed light energy that is
directed for photochemistry in photosystem II (PSII) (ΦPSII), dissipated as heat (ΦNPQ), or dissipated
by the non-radiative fluorescence processes (ΦNO). The method of chlorophyll a fluorescence imaging
analysis by providing colour pictures of the whole leaf PSII photochemistry, can successfully identify
the early drought stress warning signals. Its implementation allowed visualization of the leaf spatial
photosynthetic heterogeneity and discrimination between mild drought stress (MiDS), moderate
drought stress (MoDS), and severe drought stress (SDS). The fraction of open reaction centers of PSII
(qp) is suggested as the most sensitive and suitable indicator of an early drought stress warning and
also for selecting drought tolerant cultivars.

Keywords: chlorophyll fluorescence imaging; plant phenotyping; photosynthetic heterogeneity;
climate change; reactive oxygen species; mild drought stress; moderate drought stress; severe
drought stress; acclimation; abiotic stress

1. Introduction

Plant growth and development experience a non-stop exposure to biotic and abiotic
stresses conditions. Photosynthesis is the device of crop productivity, but besides it is a
complicated process that is highly responsive to biotic and abiotic stresses with a complex
association to plant growth [1]. In this review article we present the impact of water
deficiency on plants and the drought avoidance and drought tolerance mechanisms of
plants. We discuss on the drought stress effects on photosynthesis with special emphasis
on the light reactions of photosynthesis and the production of reactive oxygen species in
photosystems I (PSI) and II (PSII). We present a theoretical background of the method of
chlorophyll fluorescence analysis that is used for the evaluation of photosynthetic function
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under abiotic and biotic stress conditions and we mention some other imaging techniques
that allow a non-destructive monitoring of changes in the physiological state of plants
under drought stress. As an application example of the method of chlorophyll fluorescence
imaging analysis in drought stress phenotyping, we selected the model plant Arabidopsis
thaliana as the most suitable plant species, and we provide colour pictures of the whole leaf
PSII photochemistry that can be used successfully as early drought stress warning signals.

Drought is one of the major limiting factors for plant growth and crop productivity
because it affects several physiological and biochemical processes [2–5] and is expected to
increase in duration, intensity, and frequency as a consequence of climate change [6–10],
reaching to alarm level by now days [11–13]. Drought stress (DS) is the main issue amongst
all environmental situations associated with the forecast effects of climate change that
will detrimentally influence global crop production [14,15]. Water deficit impairs plant’s
cell division, elongation and differentiation, osmotic adjustment, causing loss of turgor,
and harms photosynthetic rates and growth, disturbing energy balance, and eventually
decreases plant productivity [16–18].

As a response to DS, plants close stomata to reduce water loss (transpiration) in order
to prevent dehydration, but this results in limiting CO2 to penetrate the leaf, thus affecting
detrimentally photosynthesis [2,3]. Thus, stomatal aperture must be strictly regulated to
play a dual role, preventing dehydration while sustaining photosynthesis [2,3]. Photo-
synthesis is fundamental to plant growth, functioning and fitness, however the plant’s
capability to acquire and retain highest photosynthetic capacity greatly relies upon the
environmental conditions [19,20]. Photosynthesis of food crops under DS has been consid-
ered to be a real challenge for plant scientists and crop breeders in order to fulfill the huge
demand for food in the world [21,22]. Photosynthetic capacity and plant productivity are
frequently superior in environmental conditions with higher water availability since H2O
accomplishes an essential role in photosynthesis [3,20]. The oxidation of H2O molecules
in Photosystem II (PSII), that uses the light energy, provides protons (H+), and electrons
(e−) that result in the formation of ATP and reducing power (reduced ferredoxin and
NADPH) (Figure 1), for the synthesis of essential organic molecules that sustain the life on
Earth [23–25]. PSII supramolecular complex consists of a water-splitting system (oxygen
evolving complex, OEC), a light-harvesting chlorophyll protein complex (LHCII) and a
reaction center (RC).
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Figure 1. Light energy capture and utilization in the thylakoids of chloroplasts. The electron
transport chain from photosystem II (PSII) to photosystem I (PSI) and finally to ferredoxin (Fdx) to
form NADPH, is depicted. Detail explanation in the text (Adopted from [26]).
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Light-harvesting complex of PSII (LHCII) absorbs light energy and transfers it to the
RC of PSII. When there is an excess light energy, creation of singlet oxygen (1O2) via the
triplet state of chlorophyll (3chl*) occurs [27] (Figure 1). At PSII the oxidation of water, at
the water-splitting complex, results to O2, H+, and e− (Figure 1). The e− are transferred
from H2O to NADP+, while accompanying this e− transfer, a proton gradient is established
across the membrane that is utilized for the synthesis of ATP by the ATP synthase [28]. At
the RC of PSII the excitation of specially bound chlorophyll molecules results in transfer
of an e− from H2O oxidation to quinone A (QA). The fully reduced quinol molecule
(PQH2) picks up two H+ from the stroma and is oxidized to a quinone (PQ) and while
the e− are transferred through cytochrome b6f, to plastocyanin (PC) and to PSI, H+ are
transferred from the stroma to the chloroplast lumen [28] (Figure 1). The structures of the
soluble proteins ferredoxin (Fdx) and ferredoxin-NADP+ reductase (FNR), on the stromal
side, that transfer the e− to NADP+ to form NADPH, are also shown in Figure 1. As a
result of DS, stomatal closure, limits CO2 entry to the leaf, and since NADPH is not used
in Calvin–Benson–Bassham cycle, NADP+ is not available. Under such circumstances,
e− are transferred to molecular oxygen (O2) forming superoxide anions (O2

•−) that are
converted by the superoxide dismutase (SOD) to hydrogen peroxide (H2O2) that is reduced
by ascorbate peroxidase (APX) to H2O and O2 [29,30] (Figure 1). Ascorbate peroxidase
uses electrons from ascorbate (AsA) that is oxidized, but through monodehydroascorbate
reductase (MDAR), AsA is reduced from NADPH, contributing to NADP+ availability [29]
(Figure 1).

2. Drought Stress Impact on Plants

Plant metabolism is accomplished with water involvement, and adequate water is an
important circumstance for growth and development [31]. Drought stress that negatively
impacts plant growth is the major constraint to crop production and a growing concern for
crop yields as a result of global climate changes that involve increased DS periods [32,33].
Plants are subjected to DS conditions when either the water supply to the roots is restricted
or the water loss through transpiration is extreme [34]. Thus, the imbalance from a reduced
water uptake with an excessive water loss, and the oxidative damage stimulated by the in-
creased ROS generation, that are induced by water deficiency, result in noteworthy changes
in plant growth, biomass production, photosynthesis, and enzymatic activities [34–40].

Drought stress impairs osmotic adjustment of plants and harms photosynthesis and
growth [17,41,42], resulting in reduced crop yields that affect food security worldwide [7,43,44],
with up to 21 and 40% yield reductions in wheat (Triticum aestivum L.) and maize (Zea mays L.),
respectively [45]. Stomatal closure, as a response to water deficit, reduces excess water
loss (transpiration) to prevent desiccation, but also limits CO2 to penetrate the leaf, thus
harmfully affecting photosynthesis [46]. Due to this compromise, stomatal aperture must
be strictly coordinated [33,47].

The unfavorable conditions of climate change are contributing to development of
extended water deficit areas and consequently on the plant growth and crop productivity.
Although a positive impact of elevated CO2 on crop yield by increasing photosynthesis is
suggested by some researchers, it is debated by some others showing that increased CO2
does not counteract the effect of severe drought on photosynthesis and yield [46,48].

3. Plant Tolerance to Drought Stress

Plants have developed several energetic approaches at the morphological, physiological
and biochemical levels, permitting them to avoid and/or tolerate water deficit [9,42,46,49,50].
Avoidance mechanisms are mainly morphological and physiological adjustments that
provide an escape to the water deficit, e.g., by increased root system, increased leaf thickness,
decreased leaf area, reduced stomatal number and conductance, and leaf rolling or folding
to minimize evapotranspiration [46,51,52]. Drought tolerance traits are correlated with
maintenance of the plant water status throughout osmotic adjustment by the accumulation
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of osmoprotective substances, for example, proline, glycine betaine and sugars, that help the
plants to preserve their water status [41,42,53–56], and to acclimate to water deficit [9,42,57].

Drought stress can develop in a wide range, from mild drought stress (MiDS), to
moderate drought stress (MoDS), and to severe drought stress (SDS), thru which plants
experience dehydration and wilting, which ultimately leads to death [9,58]. Numerous
studies have focused on SDS, although, MoDS is developing more frequently in actual
circumstances [58]. Current studies have confirmed that plants employ diverse approaches
to manage MiDS, compared to MoDS or to SDS [9,58–63]. For instance, in Arabidopsis
young leaves photosynthetic efficiency is recovering under MoDS, but not in MiDS [38,64],
while plants that were defined to be tolerant to SDS do not withstand MiDS [61].

Plant responses to DS commonly fluctuates from species to species depending on plant
growth and developmental stage and also from other environmental factors [32,36,38,64].

4. Photosynthetic Function under Drought Stress

Drought stress significantly decreases photosynthetic activity and disrupts plant
productivity [65]. The decreased photosynthetic activity is linked to both stomatal and
non-stomatal effects, which are not totally understood [55,65–68]. Drought stress decreases
photosynthesis by reducing carbon dioxide availability through increased resistance to
carbon dioxide flow from stomata, disrupts either biochemical or/and photochemical
activity and increases leaf membrane lipid peroxidation [9,37,38,69–72]. The diminished
CO2 fixation under DS results in decreased electron transport rate (ETR) [73,74], while
the absorbed light energy that overdoes what it can be used for photochemistry results in
surplus reactive oxygen species (ROS) accumulation, that can harm the chloroplast, and
particularly damage photosystem II (PSII) [9,24,75–77]. However, damage of PSII can be
prevented by dissipation of excess light energy as heat, a process termed non-photochemical
quenching (NPQ), and typically estimated by chlorophyll a fluorescence analysis [9,78–80].
The NPQ mechanism is considered to be the principal photoprotective mechanism and is
more efficient in the combined existence of the PsbS (PSII subunit S) protein, and zeaxanthin
of the xanthophyll cycle [81,82]. NPQ by dissipating harmless the excess absorbed light
energy under DS, decreases ETR to prevent ROS formation, thus it can regulate to a level
ROS formation [83–85]. Our understanding of the NPQ process has been advanced by use
of the pulse amplitude modulation (PAM) fluorescence analysis that it is quantifying NPQ
photoprotective potential in addition to the classical chlorophyll fluorescence induction
analysis [86].

5. Reactive Oxygen Species Generation under Drought Stress

ROS, such as superoxide anion radical (O2
•−), hydrogen peroxide (H2O2), and singlet

oxygen (1O2), are continuously produced at basal levels, mainly in the light reactions of
photosynthesis, but are kept in a homeostasis by the antioxidative enzymatic and non-
enzymatic systems [17,30,79,87]. Drought stress breakdown the balance between the cre-
ation and elimination of ROS in plants [9]. Thus, during water deficit periods ROS creation
rises extremely [88], and this triggers oxidative stress causing membrane injuries, protein
degradation and enzyme inactivation that damage the cellular components [40,89,90]. To
prevent oxidative damage, beside the NPQ mechanism that is considered as the principal
photoprotective mechanism, plants have an effective antioxidant defence system, with
both enzymatic and nonenzymatic systems [40,91,92]. Efficient enzymatic antioxidants,
such as SOD, APX, MDAR, glutathione reductase (GR), glutathione peroxidase (GPX),
guaiacol peroxidase (GOPX), and catalase (CAT), and the non-enzymatic metabolites, such
as AsA, glutathione (GSH), a-tocopherol, carotenoids, phenolic compounds, flavonoids,
and proline [93–95], play critical roles in removing the water deficiency-induced exces-
sive ROS [96]. The ascorbate-glutathione (AsA-GSH) cycle is a crucial component of the
enzymatic antioxidant defence system in plants [97,98].

The most reactive of all ROS is the hydroxyl radical (OH•) that reacts with almost all
molecules but it is the shortest lived. The e− leakage to O2 at PSI results in O2

•− which
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is rapidly converted by SOD to H2O2 that is longer lived than O2
•−, which is shorter

lived than 1O2 but longer lived than OH•. Hydrogen peroxide is the most stable and
least reactive ROS with the longest lifetime, and is being able to easily diffuse through the
membranes [29,30,99–101].

ROS production in the process of light absorption and energy use in photosynthesis
confers an important biological function (plant growth and development, redox signal-
ing) besides generating oxidative stress [99–102]. The role of antioxidants (enzymic and
non-enzymic) in the photosynthetic apparatus is not to totally remove ROS, but rather
to accomplish an appropriate equilibrium among production and scavenging so as to
pair the process of photosynthesis, permitting an efficient spreading of signals to the
nucleus [103–105].

ROS function is not only to monitor electron transport and, consequently, prevent
over-reduction or over-oxidation, but also generate redox regulatory networks that allow
plants to sense and react to environmental stress conditions [88,104,106,107]. ROS trigger
plant’s protection mechanisms in order to manage oxidative stress, and are now considered
important signaling molecules for the regulation of plethora physiological functions and
the acclimation response [65,85,87,88,98,107–111].

Under DS, an excess accumulation of ROS can damage the chloroplast, with PSII
being especially exposed to damage [9,24,65,77]. Although ROS were primarily considered
to be toxic by-products it is now recognized that a basal level of ROS is fundamental to
sustain life [99,112,113]. A basal level of ROS is desirable for optimal plant growth, while
a little amplified level of ROS is beneficial for triggering stress defense responses, but a
high level of ROS out of the limits is considered harmful to plants [25,103]. Nowadays, the
consequences of global climate change request a better understanding of the relationship
between PSII photochemistry and ROS role as a molecule for photoprotection [101]. The
illumination of this interaction could assist to enhance agricultural sustainability under a
global climate change [101].

6. Plant Phenotyping for Drought Stress Tolerance

Climate change quickly turns-off into a climate crisis with huge worries for agricul-
tural production. Since water deficit is one of the key hazards for the future of agriculture
and the total worldwide population, assessing and investigating the ability of crops to grow
with restricted water is therefore essential [65,114]. In recent years, much effort has been
made to study plant responses to drought in order to address the present and future risks
associated with climate change [65,115,116]. The availability of diverse imaging techniques
has allowed real-time imaging analysis of physiological changes in plants under DS for
high-throughput screening [117–119]. The development of modern analytical techniques
has created huge inputs to high-throughput plant phenotyping providing various informa-
tion related to plant status [120]. Selecting the proper imaging sensors is fundamental in
designing phenotyping facilities, which depend on the special experimental objects [121].
These techniques allow the pre-symptomatic monitoring of plant stress, a long time before
any visible symptoms developed, enabling for high-throughput screening [117]. By the
time that visible symptoms of stress are displayed, the plant could have been already
adversely affected [117]. Current imaging techniques allow non-destructive monitoring of
changes in the physiological state of plants under DS [37,120,122]. Thermal imaging (also
called far-infrared thermal imaging) that determines energy loss from stomatal aperture
by the leaf temperature, hyperspectral imaging (visible and near-infrared) that can pro-
vide spatial information simultaneously, and chlorophyll a fluorescence imaging are the
most common verified imaging techniques for detecting stress-related changes from plant
leaves [117,121–128]. Crop monitoring using imaging techniques would allow us to relieve
stress at an early stage, avoiding permanent damage and thus considerably decreasing
yield losses [117,120,129].

Chlorophyll a fluorescence imaging uses blue and red fluorescence to detect the emis-
sion that results from absorbed light energy which is not dissipated as heat, or it is not used
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for the photosynthetic reactions in photochemistry [122]. The chlorophyll fluorescence
parameters that are measured can be decoded in terms of photosynthetic activity to acquire
knowledge about photosynthetic function and particularly of PSII [130,131]. The data of
chlorophyll a fluorescence measurements have been considerably used to probe the func-
tion of the photosynthetic apparatus and for screening different crops for plant tolerance to
numerous stresses [122,132–144]. Chlorophyll fluorescence imaging instruments offer the
option to evaluate photosynthetic function at the whole leaf surface and identify leaf spatial
heterogeneity [122,145,146]. Photosynthetic performance is extremely heterogeneous at
the leaf surface, especially under stress conditions [145,147–153]. Chlorophyll fluorescence
analysis is a quick, easy, non-invasive, cheap, and highly sensitive method that can de-
termine photosynthetic function accurately and sense the impact of different stresses on
plants [122,151,154].

7. Theoretical Aspects of Chlorophyll Fluorescence Analysis

Chlorophyll a fluorescence analysis, with the use of pulse amplitude modulation (PAM)
method can principally calculate the amount of absorbed light energy that is directed to PSII
for photochemistry, dissipated as heat through the non-photochemical quenching (NPQ)
mechanism, or it is dissipated by the less well characterized non-radiative fluorescence
processes, that are marked as ΦPSII, ΦNPQ, and ΦNO, respectively, with the sum of them to
be equal to one [122,155,156].

Chlorophyll fluorescence quenching analysis using the PAM method is based on the
principle that the leaf has to be in a dark-adapted state before the measurements, so as the
first stable acceptor of PSII, QA, is fully oxidized. This can be achieved by dark incubation
for several minutes [154]. In the dark-adapted state a “measuring light” is switched on
that is high enough to produce the minimal level of chlorophyll fluorescence, termed Fo
(Figure 2). A short-lived saturating pulse of light results in the formation of the maximum
yield of fluorescence, Fm. By subtracting Fo from Fm the variable fluorescence, Fv results.
The ratio Fv/Fm is indicator of the maximum quantum yield of PSII photochemistry. The
application of saturating pulses under actinic light illumination closes all the reaction
centers and provides the maximum fluorescence in the light-adapted state, that is termed
Fm’. The steady-state level of fluorescence in the light is the Fs and is calculated before
switching off the actinic light. Fo’ is measured directly after switching off the actinic light.
By subtracting Fo’ from Fm’ the variable fluorescence, Fv’ results. The ratio Fv’/Fm’ is
indicative of the efficiency of excitation energy capture by open PSII reaction centers.
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Fm, Fo’, Fm’ and Fs, are formed to measure chlorophyll fluorescence parameters. In the dark-adapted
state a “measuring light” of low light intensity is switched on to induce electron transport through
PSII and to elicit the minimal level of chlorophyll fluorescence, termed Fo. A brief saturating pulse
of light results in the formation of the maximum yield of fluorescence, Fm. The difference between
Fm and Fo is the variable fluorescence, Fm. The application of saturating pulses under actinic light
illumination closes all the reaction centers and provides the maximum fluorescence in the light-adapted
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state, termed Fm’. The steady-state level of fluorescence in the light is termed, Fs and is measured
immediately before switching off the actinic light. Fo’ is measured immediately after switching off the
actinic light. The difference between Fm’ and Fo’ is the variable fluorescence, Fv’ (Adopted from [26]).

Since photosynthetic performance is not homogeneous at the leaf surface, espe-
cially under DS conditions, it renders conventional chlorophyll fluorescence analysis non-
representative of the physiological status of the whole leaf [145,149,150]. The manufactured
new chlorophyll fluorescence imaging instruments that are capable of analysing the spatial
photosynthetic heterogeneity at the whole leaf surface offer new potentials that cannot
be obtained by conventional chlorophyll fluorescence analysis [126,127,138,145]. A list of
chlorophyll a fluorescence parameters used in studies of photosystem II photochemistry,
and in this review, together with their definitions, are given in Table 1.

Table 1. Chlorophyll fluorescence parameters used in studies of photosystem II photochemistry with
their definitions.

Parameter Definition Calculation

Fv/Fm Maximum efficiency of PSII photochemistry (Fm − Fo)/Fm
ΦPSII Effective quantum yield of PSII photochemistry (Fm’ − Fs)/Fm’
ΦNPQ Quantum yield of regulated non-photochemical energy loss in PSII Fs/Fm’ − Fs/Fm
ΦNO Quantum yield of nonregulated energy loss in PSII Fs/Fm

Fv’/Fm’ Efficiency of open PSII centers (Fm’ − Fo’)/Fm’

Fv/Fo Efficiency of the oxygen evolving complex (OEC) on the donor side
of PSII (Fm − Fo)/Fo

ETR Electron transport rate

ΦPSII × PAR × c × abs, where PAR is the
photosynthetically active radiation, c is

0.5, and abs is the total light absorption of
the leaf taken as 0.84

qp Photochemical quenching, representing the fraction of PSII reaction
centers in open state (puddle model) (Fm’ − Fs)/(Fm’ − Fo’)

NPQ Non-photochemical quenching reflecting the dissipation of excitation
energy as heat (Fm − Fm’)/Fm’

EXC Excess excitation energy (Fv/Fm − ΦPSII)/Fv/Fm

1−qL The fraction of PSII reaction centers in closed state (based on a “lake”
model for the photosynthetic unit) qp × Fo’/Fs

8. Chlorophyll Fluorescence Analysis for Drought Stress Tolerance

Chloroplasts throughout the procedure of photosynthesis play an essential role as redox
sensors of DS conditions and stimulate acclimatory or stress defense responses [38,157–160].
The redox state of QA has a critical influence on plant growth, development, and de-
fence [161], and is considered as a sensor of the energy imbalance under any stress con-
ditions [162,163]. If the excess energy can not be dissipated under stress conditions, over-
reduction of the photosynthetic electron transport chain (ETC) occurs [156]. Over-reduction
of the ETC can severely damage the chloroplast and the cell [164]. Excess excitation en-
ergy and consequently an imbalance between energy supply and demand outcomes in
increased ROS production [84,105,110], that causes damage to proteins, lipids, and nucleic
acids [156,165,166]. Photoinhibition is a product of this damage, and PSII is the primary
photoinhibition target [167]. Photoinhibition reduces the number of active PSII centers and
is widespread across species, light situations and habitats [168–170]. It can be estimated by
chlorophyll a fluorescence analysis, based on the ratio Fv/Fm, the maximum efficiency of
PSII photochemistry [167,169].

The redox state of QA, as estimated by the parameter 1 − qL, is representing the fraction
of PSII reaction centers in closed state (based on a “lake” model for the photosynthetic
unit) [155]. Changes in the redox state of QA are considered to act as a signal to the stomatal
guard cells [65,163]. A more oxidized QA pool under DS conditions matches to the lowest
stomatal opening and it is linearly correlated to stomatal conductance [65,171], that is a
measure of stomatal closure and is commonly used as a water stress index [172,173]. It is
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now broadly accepted that the redox signals are important regulators of plant metabolism
and also death [174,175].

Using the model plant Arabidopsis thaliana, that is considered as the most suitable for
the application of the method of chlorophyll fluorescence imaging analysis [37], the early
DS responses of photosynthesis were assessed (Figures 3 and 4). Between the chlorophyll
fluorescence parameters that have been used for evaluation, monitoring, and selection
of drought-tolerant plants, the maximum efficiency of PSII photochemistry (Fv/Fm) was
the one that was used most [72]. The photosynthetic efficiency of Arabidopsis thaliana
plants, whose watering stopped (i) twenty-four hours before sampling, characterized as
being at the onset of drought stress (OnDS); (ii) six days before sampling, characterized
as at mild drought stress (MiDS); and (iii) ten days before sampling, characterized as at
moderate drought stress (MoDS) [37], was evaluated by chlorophyll fluorescence imaging
analysis. The maximum efficiency of PSII photochemistry (Fv/Fm) decreased as soon as
24 h after the onset of drought stress (OnDS) (Figure 3b), while under MiDS decreased
further (Figure 3c). However, under further water deficit treatment (ten days, MoDS), the
maximum efficiency of PSII photochemistry recovered (Figure 3d). Further DS treatment,
characterized as severe drought stress (SDS), resulted in a significant diminished PSII
photochemistry [37]. Most authors did not find significant decreases in Fv/Fm under
MoDS [3,176,177], indicating that ETR is unaltered under MoDS [178]. The reduction status
of the plastoquinone pool (qp) in Arabidopsis thaliana decreased as soon as 24 h after the
onset of drought stress (OnDS) (Figure 4b) by 18%, while under MiDS by 66% compared to
well-watered Arabidopsis plants (Figure 4c). However, under MoDS qp was 34% lower
than well-watered Arabidopsis (Figure 4d). Photosystem II reaction centers are supposed
to be open (qp = 1) or closed (qp = 0) depending upon whether they are ready to accept
light energy from antennas to excite an electron (open), or unable to accept light energy
(closed). Based on the abovementioned data the fraction of open reaction centers of PSII
(qp), is a more sensitive parameter to probe DS effects compared to Fv/Fm. Recent studies
proposed that the fraction of open reaction centers of photosystem II (PSII) (qp), or in other
words the reduction status of the plastoquinone pool, is more sensitive than the Fv/Fm that
is traditionally used, and thus qp is a more proper indicator to probe the effects of biotic or
abiotic stresses on leaf photosynthesis [9,105,179], and to select drought tolerant cultivars
under deficit irrigation [65].
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Figure 3. Color-coded leaf images of the maximum efficiency of Arabidopsis thaliana PSII photochem-
istry (Fv/Fm). Fv/Fm decreased from the control value of 0.811 (a), with the onset of drought stress 
(OnDS) to 0.775 (b), and decreased further to 0.714 under mild drought stress (MiDS) (c); while 
under further water deficit treatment, Fv/Fm recovered to 0.743 at moderate drought stress (MoDS) 
(d). 

Figure 3. Color-coded leaf images of the maximum efficiency of Arabidopsis thaliana PSII photochem-
istry (Fv/Fm). Fv/Fm decreased from the control value of 0.811 (a), with the onset of drought stress
(OnDS) to 0.775 (b), and decreased further to 0.714 under mild drought stress (MiDS) (c); while under
further water deficit treatment, Fv/Fm recovered to 0.743 at moderate drought stress (MoDS) (d).

The resulting increase in leaf spatial heterogeneity from well-watered (control plants)
to MiDS is reflected in the decrease of the fraction of open reaction centers (qp) integrated
over the leaf (Figure 4). The increase of the fraction of open reaction centers (qp) under
MoDS retained the leaf spatial heterogeneity. After exposure to DS, qp values decreased
differentially in different parts of the leaf. Under water deficit treatments qp values were
higher in the proximal (leaf base) compared to the distal (leaf tip) part (Figure 4). Under all
DS treatments, Fv/Fm decreased less in the leaf base than in the leaf tip (Figure 3). Decline
of the Fv/Fm ratio has been related to a decline in the ability of PSII to reduce the primary
electron acceptor, QA [180].

The spatiotemporal heterogeneity observed in A. thaliana leaves under DS implies that
pigment concentration and composition, water potential and stomatal function unquestion-
ably fluctuate in different cell regions of the leaf, contributing to spatial differentiations in
photochemical activity [181,182]. This spatial photosynthetic heterogeneity under DS may
reflect diverse zones of leaf anatomy and mesophyll development [37]. Blade maturation of
Arabidopsis leaves appears from the tip to the base of the leaf [37], the latter representing
younger cells in leaf anatomy [183], with not fully developed chloroplasts [184].
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While A. thaliana does not seem to activate any tolerance mechanism under MiDS,
it appears not to suffer under MoDS [37]. This tolerance mechanism under MoDS was
suggested to be activated by an antioxidant defense mechanism that activated ROS scav-
enging [9]. An early drought warning system is much more than a forecast for decision
making in response to a changing climate [185,186].
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Fo′]), representing the redox state of QA, in Arabidopsis thaliana leaves. The fraction of open PSII re-
action centres (qp) decreased from the control value of 0.635 (a), with the onset of drought stress 
(OnDS, 24 h DS) to 0.519 (b), under mild drought stress (MiDS) decreased further to 0.218 (c); while 
under moderate drought stress (MoDS), qp recovered to 0.416 (d). 

Figure 4. Color-coded images of the fraction of open PSII reaction centres
(qp = [Fm’ − Fs]/[Fm’ − Fo’]), representing the redox state of QA, in Arabidopsis thaliana leaves. The
fraction of open PSII reaction centres (qp) decreased from the control value of 0.635 (a), with the onset
of drought stress (OnDS, 24 h DS) to 0.519 (b), under mild drought stress (MiDS) decreased further to
0.218 (c); while under moderate drought stress (MoDS), qp recovered to 0.416 (d).

9. Conclusions

The method of chlorophyll fluorescence analysis has been widely used to monitor biotic
and abiotic stress effects on plants by using leaf photosynthesis attributes [130,135,137,154,187].
Recently, besides the above-ground parts of crops, a phenotyping method focused on the
rooting system and its activity was proposed [188]. The color pictures of PSII photochem-
istry that can be obtained by chlorophyll fluorescence imaging analysis [37,122] are suitable
to characterize and differentiate plant tolerance to DS by evaluating their photosynthetic
efficiency and produce also useful information that can be used effectively to phenotype
plants under water deficit, with the aim to identify the optimum irrigation conditions. The
method of chlorophyll a fluorescence imaging analysis by providing colour pictures of
the whole leaf PSII photochemistry, can successfully identify the early DS warning signals
allowing the pre-symptomatic monitoring of DS in a non-destructive way. It is an easy,
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quick, cheap, non-invasive, and highly sensitive method [122,187]. Its implementation
allowed visualization of the leaf spatial photosynthetic heterogeneity and discrimination
between mild drought stress (MiDS), moderate drought stress (MoDS), and severe drought
stress (SDS) [37]. The reduction status of the plastoquinone pool or in other words the
fraction of open reaction centers of PSII (qp) has been shown to be the most sensitive and
suitable indicator to probe photosynthetic function and determine the impact of biotic and
abiotic stresses on plants [37,105,189], and also to select drought tolerant cultivars under
deficit irrigation [65].
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Pawluśkiewicz, B.; Bąba, W.; Brestic, M. Exploration of chlorophyll a fluorescence and plant gas exchange parameters
as indicators of drought tolerance in perennial ryegrass. Sensors 2019, 19, 2736. [CrossRef]

69. Lawlor, D.W.; Cornic, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher
plants. Plant Cell Environ. 2002, 25, 275–294. [CrossRef]

70. Flexas, J.; Diaz-Espejo, A.; Galmeî, S.J.; Kaldenhoff, R.; Medrano, H.; Ribas-Carbo, M. Rapid variations of mesophyll conductance
in response to changes in CO2 concentration around leaves. Plant Cell Environ. 2007, 30, 1284–1298. [CrossRef]

71. Silva, E.N.; Ferreira-Silva, S.L.; de Vasconcelos Fontenele, A.; Ribeiro, R.V.; Viégas, R.A.; Silveira, J.A.G. Photosynthetic changes
and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha
curcas plants. J. Plant Physiol. 2010, 167, 1157–1164. [CrossRef]

72. Yao, J.; Sun, D.; Cen, H.; Xu, H.; Weng, H.; Yuan, F.; He, Y. Phenotyping of Arabidopsis drought stress response using kinetic
chlorophyll fluorescence and multicolor fluorescence imaging. Front. Plant Sci. 2018, 9, 603. [CrossRef] [PubMed]

73. Cornic, G.; Le Gouallec, J.L.; Briantais, J.M.; Hodges, M. Effect of dehydration and high light on photosynthesis of two C3 plants
(Phaseolus vulgaris L. and Elatostema repens (Lour.) Hall f.). Planta 1989, 177, 84–90. [CrossRef] [PubMed]
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110. Adamakis, I.-D.S.; Sperdouli, I.; Hanć, A.; Dobrikova, A.; Apostolova, E.; Moustakas, M. Rapid hormetic responses of photosystem
II photochemistry of clary sage to cadmium exposure. Int. J. Mol. Sci. 2021, 22, 41. [CrossRef]

111. Moustaka, J.; Panteris, E.; Adamakis, I.D.S.; Tanou, G.; Giannakoula, A.; Eleftheriou, E.P.; Moustakas, M. High anthocyanin
accumulation in poinsettia leaves is accompanied by thylakoid membrane unstacking, acting as a photoprotective mechanism, to
prevent ROS formation. Environ. Exp. Bot. 2018, 154, 44–55. [CrossRef]

112. Inupakutika, M.A.; Sengupta, S.; Devireddy, A.R.; Azad, R.K.; Mittler, R. The evolution of reactive oxygen species metabolism.
J. Exp. Bot. 2016, 67, 5933–5943. [CrossRef] [PubMed]

113. Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004,
9, 490–498. [CrossRef] [PubMed]

114. Cirillo, V.; D’Amelia, V.; Esposito, M.; Amitrano, C.; Carillo, P.; Carputo, D.; Maggio, A. Anthocyanins are key regulators of
drought stress tolerance in tobacco. Biology 2021, 10, 139. [CrossRef] [PubMed]

115. Gray, S.B.; Brady, S.M. Plant developmental responses to climate change. Dev. Biol. 2016, 419, 64–77. [CrossRef]
116. Gurrieri, L.; Merico, M.; Trost, P.; Forlani, G.; Sparla, F. Impact of drought on soluble sugars and free proline content in selected

Arabidopsis mutants. Biology 2020, 9, 367. [CrossRef]
117. Chaerle, L.; Van Der Straeten, D. Imaging techniques and the early detection of plant stress. Trends Plant Sci. 2000, 5, 495–501.

[CrossRef]
118. Furbank, R.T.; Tester, M. Phenomics technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011, 16, 635–644.

[CrossRef]
119. Tuberosa, R. Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 2012, 3, 347. [CrossRef]
120. Zhang, C.; Zhou, L.; Xiao, Q.; Bai, X.; Wu, B.; Wu, N.; Zhao, Y.; Wang, J.; Feng, L. End-to-end fusion of hyperspectral and

chlorophyll fluorescence imaging to identify rice stresses. Plant Phenomics 2022, 2022, 9851096. [CrossRef]
121. Yang, W.; Feng, H.; Zhang, X.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Xiong, L.; Yan, J. Crop phenomics and high-throughput

phenotyping: Past decades, current challenges, and future perspectives. Mol. Plant 2020, 13, 187–214. [CrossRef]
122. Moustakas, M.; Calatayud, A.; Guidi, L. Chlorophyll fluorescence imaging analysis in biotic and abiotic stress. Front. Plant Sci.

2021, 12, 658500. [CrossRef] [PubMed]
123. Peñuelas, J.; Filella, I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci.

1998, 3, 151–156. [CrossRef]
124. Chaerle, L.; Van Caeneghem, W.; Messens, E.; Lambers, H.; Van Montagu, M.; Van Der Straeten, D. Presymptomatic visualization

of plant-virus interactions by thermography. Nat. Biotechnol. 1999, 17, 813–816. [CrossRef] [PubMed]
125. Jones, H.G. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf

surfaces. Plant Cell Environ. 1999, 22, 1043–1055. [CrossRef]
126. Chaerle, L.; Van Der Straeten, D. Seeing is believing: Imaging techniques to monitor plant health. Biochim. Biophys. Acta 2001,

1519, 153–166. [CrossRef]
127. Chaerle, L.; Lenk, S.; Leinonen, I.; Jones, H.G.; Van Der Straeten, D.; Buschmann, C. Multi-sensor plant imaging: Towards the

development of a stress-catalogue. Biotechnol. J. 2009, 4, 1152–1167. [CrossRef]
128. Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early

onset of plant disease and stress. Plant Methods 2017, 13, 80. [CrossRef]
129. Song, P.; Wang, J.; Guo, X.; Yang, W.; Zhao, C. High-throughput phenotyping: Breaking through the bottleneck in future crop

breeding. Crop J. 2021, 9, 633645. [CrossRef]
130. Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications.

J. Exp. Bot. 2013, 64, 3983–3998. [CrossRef]
131. Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [CrossRef]
132. Kalaji, M.H.; Carpentier, R.; Allakhverdiev, S.I.; Bosa, K. Fluorescence parameters as an early indicator of light stress in barley.

J. Photochem. Photobiol. B 2012, 112, 1–6. [CrossRef] [PubMed]
133. Asfi, M.; Ouzounidou, G.; Panajiotidis, S.; Therios, I.; Moustakas, M. Toxicity effects of olive-mill wastewater on growth,

photosynthesis and pollen morphology of spinach plants. Ecotoxicol. Environ. Saf. 2012, 80, 69–75. [CrossRef] [PubMed]

http://doi.org/10.3390/molecules26102984
http://doi.org/10.1016/j.tplants.2011.03.007
http://doi.org/10.1105/tpc.105.033589
http://doi.org/10.1016/j.jhazmat.2020.124001
http://doi.org/10.3390/ijms23137038
http://doi.org/10.3390/ijms22010041
http://doi.org/10.1016/j.envexpbot.2018.01.006
http://doi.org/10.1093/jxb/erw382
http://www.ncbi.nlm.nih.gov/pubmed/27742750
http://doi.org/10.1016/j.tplants.2004.08.009
http://www.ncbi.nlm.nih.gov/pubmed/15465684
http://doi.org/10.3390/biology10020139
http://www.ncbi.nlm.nih.gov/pubmed/33578910
http://doi.org/10.1016/j.ydbio.2016.07.023
http://doi.org/10.3390/biology9110367
http://doi.org/10.1016/S1360-1385(00)01781-7
http://doi.org/10.1016/j.tplants.2011.09.005
http://doi.org/10.3389/fphys.2012.00347
http://doi.org/10.34133/2022/9851096
http://doi.org/10.1016/j.molp.2020.01.008
http://doi.org/10.3389/fpls.2021.658500
http://www.ncbi.nlm.nih.gov/pubmed/33936144
http://doi.org/10.1016/S1360-1385(98)01213-8
http://doi.org/10.1038/11765
http://www.ncbi.nlm.nih.gov/pubmed/10429250
http://doi.org/10.1046/j.1365-3040.1999.00468.x
http://doi.org/10.1016/S0167-4781(01)00238-X
http://doi.org/10.1002/biot.200800242
http://doi.org/10.1186/s13007-017-0233-z
http://doi.org/10.1016/j.cj.2021.03.015
http://doi.org/10.1093/jxb/ert208
http://doi.org/10.1093/jexbot/51.345.659
http://doi.org/10.1016/j.jphotobiol.2012.03.009
http://www.ncbi.nlm.nih.gov/pubmed/22561010
http://doi.org/10.1016/j.ecoenv.2012.02.030
http://www.ncbi.nlm.nih.gov/pubmed/22455663


Climate 2022, 10, 179 16 of 17

134. Guidi, L.; Calatayud, A. Non-invasive tools to estimate stress-induced changes in photosynthetic performance in plants inhabiting
Mediterranean areas. Environ. Exp. Bot. 2014, 103, 42–52. [CrossRef]

135. Guo, Y.; Tan, J. Recent advances in the application of chlorophyll a fluorescence from photosystem II. Photochem. Photobiol. 2015,
91, 1–14. [CrossRef]

136. Moustakas, M.; Malea, P.; Zafeirakoglou, A.; Sperdouli, I. Photochemical changes and oxidative damage in the aquatic macrophyte
Cymodocea nodosa exposed to paraquat-induced oxidative stress. Pest. Biochem. Physiol. 2016, 126, 28–34. [CrossRef]

137. Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J.
Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant.
2016, 38, 102. [CrossRef]

138. Sperdouli, I.; Moustaka, J.; Antonoglou, O.; Adamakis, I.-D.S.; Dendrinou-Samara, C.; Moustakas, M. Leaf age-dependent effects
of foliar-sprayed CuZn nanoparticles on photosynthetic efficiency and ROS generation in Arabidopsis thaliana. Materials 2019,
12, 2498. [CrossRef]

139. Moustaka, J.; Meyling, N.V.; Hauser, T.P. Induction of a compensatory photosynthetic response mechanism in tomato leaves upon
short time feeding by the chewing insect Spodoptera exigua. Insects 2021, 12, 562. [CrossRef]
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159. Gawroński, P.; Burdiak, P.; Scharff, L.B.; Mielecki, J.; Górecka, M.; Zaborowska, M.; Leister, D.; Waszczak, C.; Karpiński, S. CIA2
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