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Abstract: Extreme weather events are expected to increase in frequency and intensity due to global
warming. During disaster events, up-to-date relevant information is crucial for early detection and
response. Recently, Twitter emerged as a potentially important source of volunteered geographic
information of key value for global monitoring systems and increasing situational awareness. While
research on the use of machine learning approaches to automatically detect disaster events from social
media is increasing, the visualization and exploration of the identified events and their contextual
data are often neglected. In this paper, we address this gap by proposing a visual analytics pipeline for
the identification and flexible exploration of extreme weather events, in particular floods, from Twitter
data. The proposed pipeline consists of three main steps: (1) text classification, (2) location extraction,
and (3) interactive visualization. We tested and assessed the performances of four classification
algorithms for classifying relevant tweets as flood-related, applied an algorithm to assign location
information, and introduced a visual interface for exploring their spatial, temporal, and attribute
characteristics. To demonstrate our work, we present an example use case where two independent
flooding events were identified and explored. The proposed approach has the potential to support
real-time monitoring of events by providing data on local impacts collected from citizens and to
facilitate the evaluation of extreme weather events to increase adaptive capacity.

Keywords: visual analytics; machine learning; text classification; NLP; social media; extreme weather
events; flooding

1. Introduction

Extreme weather events are expected to further increase in frequency and intensity
as a result of global warming [1]. Flooding, in particular, is recognised as one of the most
common and destructive natural disasters, resulting in health and security impacts and
causing more than USD 40 billion annually in damage worldwide [2,3]. The effort to rapidly
and accurately detect floods is crucial to reduce impacts on humans, the environment, and
infrastructure. Real-time monitoring with tide and river gauges is extensively used to
detect fluvial flooding caused by consistent rain or snow melt, and coastal floods caused
by storm surges related to, e.g., tropical cyclones or typhoons. However, extreme weather
events, including heavy precipitation and storms, as well as rising sea levels aggravate
the early detection of pluvial and fluvial floods. Thus, there is an urgent need for novel
methods and techniques to support the early detection of flood events and local impacts,
as well as to increase awareness of the situational conditions during such events.

As a response to this need and due to the nature of such extreme events where the
collection and communication of relevant first-hand information is a key challenge [4],
researchers have been exploring the potential of volunteered geographic information (VGI)
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and citizen science [5,6]. By means of social media platforms, such as Twitter, citizens
are contributing, often in real-time, with observations and information on local impacts
and can, thus, provide volunteered up-to-date information to support the early detection
and response during extreme events. Such information is often both temporally and
geographically referenced, making it extremely relevant for gaining localised input and
understanding the situation in affected areas during extreme weather events. In fact, social
media has become an increasingly important source of information for disaster event
detection and monitoring [7,8].

Researchers have been exploring the use of natural language processing (NLP) and
machine learning to automatically detect disaster events from social media [9–11]. Most
proposed approaches, however, focus mainly on the algorithmic detection of the events and
not on the visualization and exploration of the identified events and their surrounding data.
With the work presented in this paper, we address this gap by combining machine learning
algorithms for text classification with interactive visualization techniques and aim to
contribute to the improvement and assessment of weather warnings. We contribute a visual
analytics (VA) pipeline for the identification and flexible exploration of extreme weather
events, in particular floods, from Twitter data. We tested and assessed the performance
of four classification algorithms (two classic and two neural network-based) for detecting
flood-relevant tweets, and we introduce a VA interface for the exploration of their spatial,
temporal, and attribute characteristics. This VA pipeline could facilitate the exploration of
contextual real-time data during extreme weather events, but also support the validation
of issued warnings to improve the precision of weather warning systems. Enabling site-
specific evaluations of events might further support the assessment and implementation of
adaptation measures.

The remainder of this paper is structured as follows. Section 2 outlines the scope
and objective of this work. Section 3 provides a short overview of related work. Section 4
describes the characteristics of the data used in this study. Section 5 outlines the VA
pipeline proposed and details its composing parts: text classification (Section 5.1), location
extraction (Section 5.2), and interactive visualization (Section 5.3). In Section 6, a use case is
provided, exemplifying our proposed pipeline and visualization interface. A discussion of
the proposed approach and its limitations is included in Section 7; finally, conclusions and
future work are outlined in Section 8.

2. Scope and Objectives

The work presented in this paper contributes to the field of visual analytics, which
is a field of research at the intersection of visualization, algorithmic data science, and
human–computer interaction [12,13]. The aim of our work is to combine machine learning-
based text classification with interactive visualization and create a VA pipeline for the
semi-automatic identification of extreme weather events (particularly flooding events) from
social media text data (particularly Twitter data) and the exploration of the occurrence,
density, and spread of these events over space and time. A flooding event, in this context,
is characterised by a high concentration of flood-related tweets referring to a limited
geographic area and appearing over a narrow temporal window.

The VA pipeline proposed is composed of three key steps outlining an overall analyti-
cal process for the analysis of the data at hand. These steps are (1) text classification for
identification of flood-related texts, (2) location extraction for the assignment of geographic
references to the texts, and (3) interactive visualization for exploration of the spatiotemporal
characteristics of the identified flood-related texts. To realise the proposed VA pipeline,
in this work, we introduce and implement a set of specific methods and solutions for
performing each of these steps. As such, the contribution of this work is twofold:

• We formulate a visual analytics pipeline for the semi-automatic identification of
extreme weather events from social media texts and the extraction and exploration of
their spatiotemporal characteristics.
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• We propose concrete methods for applying the visual analytics pipeline and present a
prototype system that implements it.

3. Related Work

This work is concerned with a visual analytics pipeline for the identification and
exploration of extreme weather events from social media text entries. As such, we provide
a short overview of relevant research work in closely related fields; text analytics for event
identification from social media, interactive visualization, and visual analytics of social
media events.

Over the past decade, a considerable body of work has focused on the potential of us-
ing VGI and social media for detection and monitoring of disaster and/or extreme weather
events. Zook et al. [14] were amongst the first to make use of VGI and crowdsourcing for
disaster relief during the Haiti earthquake in 2010. They used crowdsourcing platforms
to collect text-based geo-tagged reports from victims, organise rapid responses across
agencies, and identify locations where relief actions were needed.

Several approaches have been proposed for detecting high-impact disaster events from
Twitter data. Tweet4act, for example, seeks to detect and classify crisis-related messages
into pre-incident, during-incident, and post-incident classes [15]. The Twitter Earthquake
Detector extracts a tweet-frequency time-series and uses a short-term-average over long-
term-average (STA/LTA) algorithm for detecting earthquake events [16]. Sakaki et al.
proposed an event detection and classification system, Toretter, which was able to detect
earthquakes and announce them faster than the Japan Meteorological Agency [9]. The first
system that focused on helping victims during flooding disasters based on their Twitter
data was developed by Singh et al. [10]. Barker et al. [17] proposed a national-scale Twitter
data mining pipeline for detecting flooding events and improving situational awareness
across Great Britain. Their system uses location filtering to collect tweets from at-risk areas
and employs a classification approach based on logistic regression to detect flooding events.
Overall, the above-mentioned approaches have mainly used keyword or location filtering
in combination with classical NLP and text mining approaches for identifying the events.
Moreover, if they use any visualization for displaying the identified events, it is in the form
of static map representations showing their location and/or density distribution. Following
the example of these works, we also experimented with classical NLP approaches for
detecting flooding events; however, we attempted to compensate for the representation
shortcomings of previous work by applying more sophisticated interactive visualization
techniques for the exploration of the identified events.

In more recent years, methods have appeared to make use of more sophisticated
machine learning approaches. One of the most elaborate systems for automatic flood
event detection from Twitter data is the Global Flood Monitor (GFM) developed by de
Bruijn et al. [18]. The GFM system detects flood events by continuously scraping and
analysing tweets in 11 languages based on a set of pre-defined keywords and classifies them
using a transfer learning-based algorithm. A simple visualization interface is available
for displaying the identified events, historic and real-time, as area overlays on a map,
and a time slider makes it possible to explore events over time. Clicking on a detected
event area pops up a panel displaying all the relevant tweets. Feng and Sester [11] used
location filtering for collecting Twitter data for a geographic area of interest, in this case,
Western Europe, and employed a deep learning solution for tweet classification followed
by spatiotemporal clustering for flood event extraction. Similar to the GFM system, simple
visual representations are used for exploring the detected flood events, such as maps with
the identified events (clustered tweets) displayed using markers, and choropleth maps for
displaying tweet frequency per region over a given time period.

These approaches pave the way for employing modern classification approaches,
based on deep and transfer learning, for disaster event detection and improving the
accuracy of detection results. However, these systems provided only limited functionality
for visualizing, interactively exploring, and better understanding the detected events. The
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available functionality is almost exclusively limited to separate (often static) representations
of the locations and density of the detected disaster events on a map. In our work, we
draw inspiration from this research and apply neural network-based approaches for tweet
classification. To address the existing visualization limitations, we further propose the
integration of these approaches into a visual analytics system for improving the interaction,
exploration, and understanding of the identified results.

Visual analytics (VA) is defined as the science of analytical reasoning facilitated by
interactive visual interfaces [12] and aims to tightly integrate the interpretation and decision-
making skills of humans and the computational power of algorithms [13]. So far, a number
of visual analytics systems have been proposed that focus on the visualization and ex-
ploration of crisis events from social media data. SensePlace2 [19] was amongst the first
web-based geovisual analytics systems proposed for identifying and analysing Twitter data
to support situational awareness during crises. The work focuses on a place–time–entity
conceptual framework, which, based on a user-formulated keyword query, identifies rele-
vant tweets, extracts their time and geographical references, and logs the frequencies of the
identified tweets. An interactive visual interface is created for allowing a user to identify
and explore events of interest in multiple coordinated views providing geographic, tem-
poral, and thematic overview and detail. A similar visual analytics system, Twitinfo [20],
allows a user to define events by specifying keyword queries, extracts tweets matching this
query, and creates event timelines, i.e., time series based on the frequency of these tweets
over time. The tweets, event timelines, and additional related metadata are then displayed
in a visual interface composed of multiple linked views allowing a user to interactively
explore different aspects of the data. Along similar lines, Chae et al. [21] proposed an
interactive visual analytics approach for spatiotemporal microblog data analysis aimed at
improving emergency management, disaster preparedness, and evacuation planning. In
addition, their system implements a topic modelling approach for extracting and following
topics from the microblog texts. Cerutti et al. [22] proposed an approach for the identifi-
cation of disaster-affected areas from Twitter data based on data mining and exploratory
visualization. This approach also uses keyword-based filtering for extracting relevant
tweets and analyses their spatiotemporal characteristics for identifying disaster events.
In contrast to the previous mainly algorithmic approaches to event identification, all of
these systems, while providing sophisticated methods for the flexible exploration of spatial,
temporal, and contextual/attribute characteristics of social media data, use mostly simple
keyword-based filtering for the identification of relevant data for exploration. In doing
so, they rely entirely on the human user to both accurately define an appropriate query
and to assess and discard irrelevant posts, which may be creating a false impression of the
situation. In this paper, we combine and balance the algorithmic classification approaches
reviewed previously and the visualization-driven approaches described.

This short review of the related work makes it apparent that most approaches that
aim to identify crisis/disaster events from social media data either focus on the automatic
classification and algorithmic extraction of events and lack in the exploration of results, or
concentrate on user-driven identification of events through visual analyses with the risk of
inaccurate detection and overloading the human user. Our work aims to bridge this gap by
proposing a visual analytics pipeline, combining NLP and interactive visualization, for the
identification and exploration of extreme weather events from social media text entries, in
particular from Twitter data.

4. Data Acquisition and Characterisation

The approach proposed in this paper builds on the use of Twitter data for the identifi-
cation and exploration of flooding events. Collecting and manually labelling data sets was
out of the scope of our work, and we have, therefore, used publicly available Twitter data
sets on the topic of crisis events and flooding.

Two data sets were used for this study, one obtained from the CrisisLex.org repository
containing crisis-related social media data [23], and one from Harvard Dataverse data
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repository (https://dataverse.harvard.edu, accessed on 30 June 2022). The first data set,
CrisisLexT6 (https://crisislex.org/data-collections.html#CrisisLexT6, accessed on 30 June
2022), is composed of labelled tweets. A subset of it was used for training the different text
classification models. The second data set, Flood Tweet IDs [18], includes unlabelled tweets
and was used for testing the proposed pipeline.

As the Twitter API’s terms of service does not allow making large amounts of raw
Twitter data available online, the data sets were dehydrated, such that each tweet was only
represented by its tweet ID. The tool Twarc (https://scholarslab.github.io/learn-twarc/,
accessed on 30 June 2022) was used to rehydrate the data sets with the current content on
Twitter. As a result, two comprehensive data sets were obtained as JSON objects with root-
level attributes as well as child objects, all described in the Twitter Developer Platform’s
data dictionary (https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/
object-model/tweet, accessed on 30 June 2022).

The attributes user_name and user_location were extracted from the user object
whereas place_name, place_type, and place_bounding_box were extracted from the place
object. Together with the attribute geo, these were used in the process of obtaining geo-
graphic locations of the tweets. As the attribute retweet_count was not always reflecting
the exact count, it was redefined as the number of duplicated tweet texts when the initial
retweet indicator RT was ignored. The retweeted variable was set to True if it was the first
tweet posted in a series of duplicate tweets, and if something else, it was set to False. The
attribute original_tweet_id was defined as the tweet ID of the first tweet in the series of
duplicate tweets. Lastly, we added attributes for the hashtags present in the tweets as well
as for the hyperlink to a tweet.

4.1. Labelled Data

The first data set we used, CrisisLexT6, is a collection of labelled English tweets across
six large crisis events in 2012 and 2013. We selected all the flood events included in the data
set collection: the January–February 2014 flood event in Queensland, Australia, and the
June–July 2013 flood event in Alberta, Canada. The tweets in this data set were collected
using both location filtering by being geotagged with geographic coordinates inside affected
areas, and keyword filtering with the following keywords related to the flood events [23].

1. Alberta floods: alberta flood, #abflood, alberta floods, #yycflood,
#yycfloods, #yycflooding, canada flood, alberta flooding, canada flooding

2. Queensland floods: #qldflood, #bigwet, queensland flood, australia flood

The tweets were labelled through crowdsourcing according to relatedness being either
on-topic or off-topic. After the rehydration, the data set contained 12,770 tweets, of which
57% were labelled as relevant for the flood event in question.

4.2. Unlabelled Data

The unlabelled data from the Harvard Dataverse were collected by de Bruijn et al. [18]
to build the Global Flood Monitor. The data set contained the tweet IDs of 87,641,357 tweets
in 11 languages posted between 29 July 2014 and 20 November 2018. These were collected
only using keyword filtering based on a list of keywords related to floods in each of the
languages. We rehydrated a subset of 251,018 English tweets from 2016 to 2018 to use for
testing our approach and exemplifying it in the use case of this paper.

5. Visual Analytics Pipeline

In this work, we propose a visual analytics (VA) pipeline to enable the identification
and visual exploration of extreme flood events from Twitter data. The pipeline includes
three main steps (Figure 1):

1. Text classification for identifying whether a tweet is related to a flooding event
(Section 5.1).

2. Location extraction for assigning geographic references to the flood-related tweets
(Section 5.2).

https://dataverse.harvard.edu
https://crisislex.org/data-collections.html#CrisisLexT6
https://scholarslab.github.io/learn-twarc/
https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/object-model/tweet
https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/object-model/tweet
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3. Interactive visualization for exploring the spatiotemporal characteristics of the geo-
referenced flood-related tweets and reasoning around the occurrence of flooding
events (Section 5.3).

The steps of the proposed VA pipeline are described in detail in the following sections.

Figure 1. Proposed VA pipeline with the steps: (1) text classification, (2) location extraction, and
(3) interactive visualization.

5.1. Text Classification

The first step of the proposed VA pipeline is concerned with classifying a set of Twitter
data as relevant to flooding or not. As mentioned in Section 4 we used publicly available
data sets in our work, but Twitter data could be collected via the Twitter API using a
combination of keyword, location, and/or temporal filtering. Following the initial data
collection, we experimented with four machine learning algorithms for this classification
step, two classic supervised learning algorithms, one deep learning, and one transfer
learning. We used a subset of the CrisisLexT6 data set of labelled tweets that focused on
flooding, as described in Section 4.1, for training the algorithms.

After excluding duplicates caused by retweets, the data set was balanced with 51.5%
of the tweets belonging to the relevant class (i.e., flooding). The data set was partitioned
such that 80% of it was used for training and 20% for testing. As described in section 4.1,
the data collection process followed for creating this data set was based on the use of
explicit keywords for a set of crisis events [23]. This means that these keywords were,
unavoidably, present in a large number of tweets presenting a risk of biasing the model to
strongly associate flooding with these specific crisis events. To overcome such bias, in this
work, three different model variants were created and utilised. The first variant, original
tweets, included no transformation of the tweet texts. In the two other variants, the tweet
text was transformed to increase the classifiers’ ability to generalise to unseen tweets. A
model variant, remove keywords, was created where all occurrences of keywords specifically
related to the particular flood events in Alberta and Queensland were removed from the
text to avoid overfitting. A third variant of the model, replace places, was created where all
locations mentioned more than 0.5% of the size of the data set were replaced with the word
‘place’.

Prior to the classification, the tweet text was pre-processed using the Python library
scikit-learn [24] by performing tokenisation and lemmatisation as well as removing special
characters, punctuation, numbers, URLs, @mentions, and stopwords. A new attribute was
defined as a list of tokens for each tweet. These tokens were then converted to numerical
values or vectors that could be used as input features to the classification models. Different
encoding methods were used for the different classification algorithms, which are described
in the following sections.



Climate 2022, 10, 174 7 of 23

5.1.1. Classic Algorithms

Two classic supervised machine learning algorithms were employed as baseline mod-
els for the binary classification of the tweets as flood-relevant or not. The first one was
the simple but effective algorithm logistic regression and the second one was the flexible
ensemble learning method, random forest [25].

Both classifiers were implemented using the Python library scikit-learn [24]. The
tweets were represented numerically using term frequency–inverse document frequency
(TF-IDF) [26] encoding. The method is intended to reflect how important a token is, based
on both how frequent it is in the tweets and how rare it is overall in the collection of tweets.
scikit-learn’s ‘TfidfVectorizer’ was used to convert each token to a feature index in the
TF-IDF matrix, calculated as

X = t f id fi,j = t fi,j · log(
1 + N

1 + d f (i)
) (1)

where N is the total number of tweets, t fi,j is the occurrences of token i in tweet j, and d f (i)
is the number of tweets containing token i.

The logistic regression classifier represents each token with weights and the linear
combination of the input features z = β0 + β1X is passed through the sigmoid function
σ(z) = 1

1+exp(−z) , which assigns a probability of each tweet being relevant. As the clas-
sification task is binary, a threshold of 0.5 then classifies the tweets as either relevant or
non-relevant.

The random forest fits a number of decision tree classifiers, each trained with random
sub-samples of the input features. The classification is made by averaging the predictions
of the individual trees to increase the performance and avoid overfitting. The nodes in the
trees are chosen to look for the optimum split of the features based on the Gini impurity
criteria [27]. We chose to train 100 decision trees; since the classifier primarily was tested to
establish a performance baseline, the only parameter tuning performed was varying the
maximum depth of the trees, where a depth of 11 was ultimately selected.

Two example branches from a decision tree in the remove keyword model variant are
seen in Figure 2. To the left, the decision node is split into two leaf nodes based on whether
the word ‘rescued’ is included in the tweet. If the TF-IDF score is above 0.191, which is only
the case if the word is included in the tweet, then it is classified as relevant. To the right,
the word ‘flooded’ instead determines the split. Hence, the examples show that the tree has
learned that the words ‘rescued’ and ‘flooded’ are typical for flood-relevant tweets.

Figure 2. Two branches from one of the decision trees in the random forest model variant remove keywords.

5.1.2. Deep Learning

The subfield of machine learning concerned with artificial neural networks has demon-
strated good results when it comes to the accuracy of text classifiers [28]. In this work,
we developed a Convolutional Neural Network (CNN), which is typically used for image
tasks. However, we hypothesized that the appearance of certain phrases or n-grams within
the tweet could indicate whether it was relevant. When applied to text classification, the
CNN performs a window-based feature extraction where the convolutional kernel captures
patterns in the word sequences, such as sentiments or grammatical functions. Building
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the CNN consisted of the following five main operations; (1) embedding, (2) convolution,
(3) non-linearity using a ReLU function, (4) pooling, and (5) classification through fully
connected layers.

An alternative to using TF-IDF encoding is to leverage word embeddings learned
elsewhere which are pre-trained on large amounts of data [29]. The Gensim library [30]
was utilised to obtain a Word2Vec [31] model trained on 100 billion words from Google
News representing the words with 300 features. The 1D convolutional kernel slides over
embeddings for multiple words to obtain an output value that captures the semantics
of that phrase. We considered five words or 5-grams at once. An example of how the
convolution produces a feature vector is presented in Figure 3. The ReLU activation
function zi = max(0, zi) then transforms each feature vector and the max pooling layer
finds the most important features through the maximum value.

Figure 3. Example of 1D convolution applied to word embeddings producing a feature vector
through using a ReLU function and a max pooling layer.

The output layer uses the sigmoid function to transform the inputs into probabilities
and the tweet is then classified as relevant or not.

The Python library Keras (https://keras.io/, accessed on 30 June 2022) was used to
implement the CNN architecture as presented in Figure 4. The Adam optimiser was used
to train the network over 10 epochs using 64 as the batch size and binary cross-entropy as
the loss function.

Figure 4. CNN architecture with an embedding layer, a convolutional layer using the ReLU function,
a global max pooling layer, a dense layer, and an output layer using the sigmoid function.

https://keras.io/
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5.1.3. Transfer Learning

Transfer learning involves using a pre-trained model on a new problem in order to
take advantage of the knowledge gained from a previous task. It recently improved the
state-of-the-art for a variety of NLP tasks [32] as whole models carefully designed by
experts can be utilized. We applied the Universal Language Model Fine-tuning (ULMFiT)
technique [33] as it is effective for smaller data sets as in our case. The ULMFiT model
was trained with modules from the fastai library (https://docs.fast.ai/, accessed on 10
November 2022).

ULMFiT consists of three main steps (1) pre-training of a general language model,
(2) fine-tuning the language model on a target task, and (3) fine-tuning the classifier on
the target task. A language model is first constructed by training on the data set WikiText-
103 [34] to ensure long-term dependencies are learned. Then, the language model is
adapted to the data used in our specific classification task using discriminative fine-tuning
with slanted triangular learning rates. Lastly, the classifier is fine-tuned through gradual
unfreezing [33]. The Softmax activation function zi =

exp(zi)
∑j exp(zj)

ultimately outputs the

probability of a tweet belonging to each of the two classes.

5.1.4. Evaluation of Classifiers

The classifiers were tested with a 20% subset of the labelled CrisisLexT6 data set. The
performances of the text classifiers were evaluated through different measures based on the
confusion matrix counting the true and false positives as well as true and false negatives.
The measure of accuracy was used as it simply represents the number of correct predictions
from all predictions. The precision was used to measure how many of the tweets classified
as relevant were actually relevant, whereas recall and sensitivity were used to measure
how many relevant tweets the classifier correctly predicted from all of the relevant tweets
in the data. The F1 score represents the harmonic mean of both precision and recall [35].

The accuracy and F1 score for the text classifiers using the three different model
variants are visualised in Figure 5.

LR RF CNN ULMFiT
Classifier
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A
cc
ur
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LR RF CNN ULMFiT
Classifier
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1.00

F1
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Original Tweets
Remove keywords
Replace places

Figure 5. Accuracy and F1 score for the four text classifiers using the three model variants, with the
average marked with a black line.

For both classic ML algorithms, the remove keywords model variant performed the best
with an accuracy of 93.9% using logistic regression and 92.5% using random forest. The
same model variant excelled for the deep learning approach where the accuracy and loss
obtained using the CNN with this model variant are presented in Figure 6.

https://docs.fast.ai/
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Figure 6. Validation and training accuracy as well as validation and training loss over 10 epochs for
the CNN model variant remove keywords.

The loss functions on the right-hand side illustrate that the optimal performance was
obtained after 4–5 epochs before the network started to overfit the training data. The
accuracy after retraining the CNN over 5 epochs resulted in 94.6% for the variant with
keywords removed. With the use of transfer learning through ULMFiT, both the variant
with original tweets and with keywords removed obtained a promising accuracy of 95.0%.

An overview of all the performance measures for the different classifiers can be
seen in Table 1 for the original tweets model variant and Table 2 for the remove keywords
model variant.

Table 1. Performance measures for the different classifiers with the model variant original tweets.

Accuracy Precision Recall F1 Score Confusion
Matrix

Logistic regression 0.9361 0.9516 0.9204 0.9357
[

996 50
85 983

]
Random forest 0.8841 0.9468 0.8165 0.8768

[
997 49
196 872

]
CNN 0.9432 0.9489 0.9363 0.9425

[
1010 53

67 984

]
ULMFiT 0.9499 0.9487 0.9522 0.9505

[
991 55
51 1017

]

Table 2. Performance measures for the different classifiers with the model variant remove keywords.

Accuracy Precision Recall F1 Score Confusion
Matrix

Logistic regression 0.9390 0.9563 0.9213 0.9385
[

1001 45
84 984

]
Random forest 0.9253 0.9470 0.9026 0.9243

[
992 54
104 964

]
CNN 0.9461 0.9399 0.9524 0.9430

[
999 64
50 1001

]
ULMFiT 0.9499 0.9512 0.9494 0.9503

[
994 52
54 1014

]

The models trained using transfer learning through ULMFiT achieved the best results,
closely followed by the CNN deep learning model, showing that the use of word embed-
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dings to represent the textual input improved the model’s ability to differentiate between
tweets that are relevant and non-relevant to flooding.

To evaluate our VA pipeline further, the text classifiers for the two best-performing
model variants (original tweets and remove keywords) were also evaluated on the unlabelled
data set. The number of tweets and the percentage of tweets classified as relevant by each
classifier, by all classifiers, and by at least one classifier, are presented in Table 3 for the
years 2016–2018 and in total. The table is accompanied by Figure 7, which shows the values
in a bar chart for visual comparison.

Table 3. Number of tweets and the percentages of tweets classified as relevant by each classifier, by
all classifiers, and by at least one classifier from 2016–2018, and in total for the original tweets and
remove keywords separated with a forward slash.

2016 2017 2018 Total

Number of Tweets 80,933 74,386 95,699 251,018

LR (%) 51.1/73.6 44.6/68.0 40.7/65.8 45.5/69.1
RF (%) 64.3/67.8 58.9/65.1 57.0/63.3 60.1/65.4
CNN (%) 58.0/61.3 58.3/61.7 59.4/63.9 58.6/62.3
ULMFiT (%) 65.0/69.7 56.8/64.2 53.9/62.0 58.6/65.3

Rel. by all (%) 27.2/37.5 20.4/34.1 21.4/36.3 23.0/36.0
Rel. by at least one (%) 88.9/91.4 87.6/91.1 84.2/87.6 86.9/90.0

LR RF CNN ULMFiT All At least one
Classifier
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Figure 7. Total percentages of tweets classified as relevant by each of the classifiers, by all classifiers
and by at least one classifier for the original tweets and remove keywords. The average for the variants is
marked with a black line.

From Figure 7, it can be seen that around 90% of the tweets were classified as relevant
by at least one of the classifiers, whereas only 20–40% were classified as relevant by all
classifiers. This demonstrates that there are differences in the way individual tweets are
classified and implies that the same tweets are not necessarily classified as relevant by the
individual classifiers, which raises questions regarding the reliability of their predictions.

5.2. Location Extraction

As only a limited number of tweets are explicitly geotagged, we extract location
information from the tweets to enable geospatial exploration and analysis of potential
flood events. Locations were extracted from the tweets in four different ways, resulting in
four location types: (1) geotagged coordinates, (2) geotagged place, (3) geoparsed from the
tweet, and (4) registered user location.

Geotagged coordinates refer to tweets being already explicitly geotagged with the exact
coordinates, i.e., the most reliable location. If the attribute geo was not available, the center



Climate 2022, 10, 174 12 of 23

coordinates of the area from the place_bounding_box were used instead and referred to
as the geotagged place. The area could be a country, city, admin, neighborhood, or point of
interest (poi) that the tweet was associated with, making the obtained location less precise.

For tweets without geotagged information, we used geoparsing of the tweet texts
through toponym recognition and then toponym resolution. All entities within the tweet
with geographic references were found using the NLP python library spaCy (https://spacy.
io/, accessed on 30 June 2022) for the named entity recognition (NER). If more than one
location was found, the spatial distance amongst these was calculated and only the two
closest locations were kept for each tweet. The locations were considered too ambiguous
if the shortest distance was longer than a certain threshold. Hence, no location could
be related to the tweet. If the distance was shorter than the threshold, one location was
randomly chosen. A threshold for the appropriate distances for two locations to describe
the same event was set to 1500 km, corresponding to the approximate distance from east to
west of Queensland. If a location could not be found through geoparsing, we utilised the
registered origin of users in their profiles, i.e., the registered user location. These locations
were considered the least reliable location extraction approach as the registered locations
were not necessarily real or related to the tweets.

Geographic coordinates for the geoparsed locations or user locations were obtained
using the GeoPy (https://geopy.readthedocs.io/, accessed on 30 June 2022) geolocator.
To decrease the computation time, we created a look-up table with the coordinates of
the unique locations appearing more than a certain number of times. The threshold was
determined as the median of the distribution of the number of unique mentions of the
location, with locations only mentioned once excluded. The look-up table was used to
obtain coordinates for the geoparsed locations and user locations related to the individual
tweets. Lastly, some tweets could not be related to a location at all and could not be
visualised in the interactive interface.

To evaluate this part of the VA pipeline, the location extraction algorithm was applied
to unlabelled tweets that were classified as relevant to flood events by at least one of the
classifiers. Hence, locations were found for 59.17% of the tweets. Table 4 shows the number
of tweets found relevant by at least one classifier together with their distribution between
the four location types, over the years 2016–2018 and in total.

Table 4. The number of tweets classified as relevant by at least one classifier and percentages of these
tweets located by each of the location levels over the years 2016–2018, and in total.

2016 2017 2018 Total

Number of relevant tweets 45,282 45,219 58,022 148,527

Geotagged coordinates (%) 1.78 1.05 0.75 1.19
Geotagged place (%) 4.37 3.92 3.63 3.97
Geoparsed from tweet (%) 20.27 16.02 17.27 17.96
Registered user location (%) 73.58 79.01 78.35 76.88

As expected, only about 5% of the tweets were located based on the explicit geotag.
Despite the different levels of trust put in the location types, it is shown that by using
geoparsing, fewer flood-relevant tweets will be discarded.

5.3. Interactive Visualization

The third step of the proposed VA pipeline, following the classification of and location
extraction from the collected Twitter data, is concerned with the visualization of the data to
enable the identification, exploration, and assessment of flooding events. In particular, the
goals of this visualization step are to:

G1 Enable the identification of flooding events;
G2 Allow the exploration of the event’s context and severity;
G3 Make it possible to observe and assess the flooding event over time.

https://spacy.io/
https://spacy.io/
https://geopy.readthedocs.io/
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To meet these goals, a web-based visualization interface was designed for facilitating
visual exploration of spatial, temporal, and textual characteristics of flood-related tweets.
The visualization interface is composed of four linked views, as illustrated in Figure 8: a
control panel Figure 8A, a map view Figure 8B, a temporal view Figure 8C, and a textual
context view Figure 8D.

Figure 8. The visual interface organised in multiple coordinated views: (A). Selection pane, (B).
Spatial data, (C). Temporal data and (D). Textual data.

5.3.1. Control Panel

A control panel is placed to the left of the interface (Figure 8A), which allows a user
to configure the representations and apply filters. Choices are available to adjust the type
and style of the map view. The displayed data can be filtered depending on the type of
classification used to retrieve the relevant (flood-related) tweets. The default option is
‘unspecified’, which corresponds to tweets that were classified as flood-relevant by at least
one of the four implemented models introduced in Section 5.1. Alternatively, the user
can specify one of the available classification models. Other filtering options available are
Twitter type, which allows a user to choose whether to display only original tweets or to
also include retweets, and location type, which provides the option of selecting between the
different geoparsing techniques used to add georeferencing to the data. Finally, a search
option is available to filter the displayed tweets on any keyword or hashtag.

5.3.2. Map View

The main view of the interface is the map view (Figure 8B), which displays the spatial
distribution of the georeferenced flood-related tweets. Two map types are available in the
interface: (1) a scatter map displaying the spatial distribution of the tweets on the map, and
(2) a hexbin map displaying their density distribution per predefined areas.

In the scatter map, each individual geo-referenced tweet is displayed as a dot (scatter
point) and is coloured by type of location (i.e., the geoparsing approach used to assess the
location). Displaying the data in this manner enables separability by the position of the
points when zooming in, giving focus to the individual tweet positions. Mouse-hovering is
enabled to provide details on demand for each tweet.

A challenge of the scatter map is that large amounts of points can be overlapping in
the same regions. Moreover, since the locations of the tweets are estimated (using different
geoparsing approaches) many of the tweets were assigned identical locations. This increases
the amount of overlap and can give a false impression regarding the number of tweets at
each location. Even, rendering the dots with a high level of transparency underrepresents
the number of tweets present at each location. To reduce this effect, Gaussian noise was
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added to tweets with assigned identical coordinates. For the n identical points, noise was
added by drawing n sample points from a multivariate normal distribution

X ∼ Nn(µ, Σ), µ = (x0, y0), Σ =

[
0.7 0
0 0.7

]
(2)

where the random variable X = ((x1, y1), . . . , (xn, yn))T contains the updated points. The
mean of the noise is the original point itself µ = (x0, y0), where x0 is the latitude and y0 is
the longitude. The variance Σ was chosen based on visual inspection of the resulting noise
added to the points.

In addition to the scatter map and in order to better account for the density distribution
of the displayed tweets, an annotated hexbin map is available (Figure 9). This map type
aggregates the tweets into hexagon bins coloured based on the number of data points in
each. Upon hovering, the exact number of tweets in each bin is displayed in a popup.

Figure 9. Hexbin map visualising the spatial differences of the number of flood-relevant tweets.

5.3.3. Temporal View

The bottom view of the interface combines a timeline slider for filtering by time periods
and a histogram showing the temporal distribution of the flood-relevant tweets (Figure 8C).
By default, tweets are binned per day in the histogram. Upon hovering the number of
tweet per temporal bin are displayed in a popup. The temporal histogram enables the
identification of time periods with a large number of tweets, i.e., peaks, and allows a user
to select them for closer exploration.

5.3.4. Textual Context View

To the right of the interface, a treemap is included displaying the most frequent
hashtags in the tweets and a scrollable table displaying the original tweets and enabling in-
spection of their content (Figure 8D). This view provides additional contextual information
regarding the currently explored tweets.

5.3.5. Interaction and Usage

All the views composing the visualization interface are linked and selections and
filtering in one will be reflected in all of the others.

A user can start the exploration by specifying the desired configuration settings in the
control panel. The corresponding geo-referenced flood-related tweets will be displayed.
Spatial concentrations can be identified on the map view and explored closer by selecting
and zooming into regions of interest. The temporal and textual context views will be
updated accordingly. Similarly, temporal concentrations are identified as peaks in the
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histogram. These too can be put in focus by selecting and zooming in. The map and textual
context views will be updated accordingly.

Flooding events are identified in the interface as increased spatial and temporal
concentrations of tweets (G1). By zooming into spatial and temporal areas of interest,
details concerning the distribution of the data can be explored in the map view, and
contextual information regarding their content in the textual context view. Doing so gives
indications regarding the status and severity of the currently explored flooding event (G2).
The evolution of a flooding event can be explored by defining a temporal range in the
time slider and successively filtering the tweets by time. This way changes in the spatial
distribution and the content of the tweets can be explored over time (G3).

6. Use Case Scenario

To exemplify our proposed VA pipeline for flood event identification and exploration,
we applied it to a set of unlabelled Twitter data, different from the data used for training.
Particularly, we used a subset of English tweets related to flood events during 2017–2018
taken from the Global Flood Monitor data set by de Bruijn [18] as described in Section 4.2.
By default, all data are included that were successfully assigned a geographic location using
any of the available geoparsing methods and were classified as flood events by at least one
classifier (i.e., the Unspecified classifier option is chosen). To verify the observations made
through the VA prototype interface, the identified events were compared to real historical
records of flood events in the same period.

Figure 8 shows an initial overview after importing the data subset into our VA interface.
The figure displays 66,848 tweets in total as dots on a map with no filtering applied. The
temporal histogram shows peaks signifying high flood-related tweeting activity and the
most frequent hashtags displayed are visible in the treemap.

The displayed tweets in the map view are colour-coded by the type of location (i.e.,
geotagged coordinates, geotagged place, geoparsed location, registered user). The figure
shows that events with location-type registered user locations are the most prominent. This
location type, however, can be considered the least reliable spatial reference, hence, these
tweets are filtered out. Doing this yields 14,282, i.e., 21.4%, relevant tweets, and the regions
in the world with a large number of tweets can be detected.

6.1. Storm Doris

In the temporal histogram (Figure 8C), two distinct peaks are visible, one in Febru-
ary/March 2017 and one in February 2018. We select the first peak in February/March 2017
using the time slider. This results in the number of tweets being narrowed down to 9742,
i.e., 14.6%. Next, we continue our exploration by focusing on a spatial area of interest. We
focus our attention on the only significant European event visible on the map which is in
the UK (Figure 10).

Having narrowed our exploration to a certain time period and spatial area of interest,
we can explore further contextual aspects of the data in the treemap and tweet table. As all
views in the VA interface are linked, selecting a group of tweets on the map, the hashtag
content of the treemap and the tweet table are updated. Hovering over the individual
tweets displays details on demand. These details include the username, user location,
creation time, source, location time, and retweet count. Exploring the textual content of the
data subset of interest in this manner reveals that a frequent hashtag used in this area and
time period is ‘#stormdoris’ indicating that our pipeline and VA interface have allowed us
to successfully identify a flooding event potentially caused by a storm. These indications
are further confirmed when scrolling through the tweet text in the tweet table.
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Figure 10. Selection of peak in February–March 2017 on histogram and zoom to the UK area on
scatter map.

To further investigate this storm event and its consequences, the term ‘doris’ is used to
search the entire set of explored tweets (without filtering). The search results in 141 matched
tweets, 109 of which are located in the UK. Inspecting the histogram in Figure 11 displays a
clear peak on 23 February, indicating that the storm and resulting flood might have been
intense on this particular day.

Figure 11. Inspection of tweets related to Storm Doris in the scatter map, treemap, and scrollable
table.

The table of individual tweets reveals that eyewitnesses seemed highly affected by the
event stating ‘no WiFi, no electric, no heating’. Several of the tweets are also retweets from
the Guardian asking “Are you affected by Storm Doris and flooding in the UK?”.

These observations could be confirmed through a media search; information about the
storm Doris by the UK met office (https://www.metoffice.gov.uk/weather/warnings-and-
advice/uk-storm-centre/storm-doris, accessed on 30 June 2022) and the Guardian article,
published on 23 February 2017 (https://www.theguardian.com/uk-news/2017/feb/23
/are-you-affected-by-storm-doris-and-flooding-in-the-uk, accessed on 30 June 2022), both
match our findings from the temporal exploration.

https://www.metoffice.gov.uk/weather/warnings-and-advice/uk-storm-centre/storm-doris
https://www.metoffice.gov.uk/weather/warnings-and-advice/uk-storm-centre/storm-doris
https://www.theguardian.com/uk-news/2017/feb/23/are-you-affected-by-storm-doris-and-flooding-in-the-uk
https://www.theguardian.com/uk-news/2017/feb/23/are-you-affected-by-storm-doris-and-flooding-in-the-uk
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6.2. Coyote Creek Flood

Continued exploration in a similar manner of the same data allowed us to also detect
another significant event in California, USA, as follows.

We zoom out to a world scale again and we changed our filtering options to not
consider retweets, and only use the tweets classified as floods by the ULMFiT approach
(instead of an unspecified approach, such as the previous). In doing so, we pinpoint on
a global scale a high spike of generated tweets relating to flooding events occurring in
California and in particular in the Coyote Creek basin.

Zooming and panning to the California state boundaries on the map (Figure 12) and
applying a spatial filter over the area showing a higher concentration of data allows us to
direct our exploration on a focused subset of tweets. Hovering over points on the map
allows us to obtain details regarding specific entries (tweets).

Figure 12. Scatter map showing the concentration of tweets in relation to the Coyote Creek flooding.
The histogram shows the density of the tweets over time revealing a peak on 22–23 February.

The histogram below the map shows the temporal density distribution of the tweets
and gives indications of the timeline of the event. Here, we see tweet entries increasing from
February 18, reaching a high peak on 22 February, and then following a decreasing curve
after that. This behaviour indicates that the flooding event reached its highest impact on
22 February. Comparing this timeline with the hydrograph for Coyote Creek (https://www.
cnrfc.noaa.gov/images/storm_summaries/janfeb2017/hydrographs/CYEC1_hydro.png,
accessed on 10 November 2022) during that period confirms our assumption, the river level
successively increased reaching its highest level on 22 February (Figure 13).

The treemap view of hashtags and the tweet table view allow us to successively
obtain more contextual details regarding the extent and gravity of the event. Removing
the retweets has narrowed the explored data to include more useful tweets that described
possible impacts in the region and detect what was the media situation before, during, and
after the flooding occurred. Examples of selected tweets can be seen in Figure 14.

https://www.cnrfc.noaa.gov/images/storm_summaries/janfeb2017/hydrographs/CYEC1_hydro.png
https://www.cnrfc.noaa.gov/images/storm_summaries/janfeb2017/hydrographs/CYEC1_hydro.png
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Figure 13. Hydrograph of Coyote Creek for time period 1 January–28 February 2017. Image from Cal-
ifornia Nevada River Forecast Center (https://www.cnrfc.noaa.gov, accessed on 10 November 2022).

Figure 14. Example tweets revealing local aspects and impacts.

Due to location inaccuracies in the explored data, which are caused by the low number
of geotagged data entries and the method for geoparsing, it is not possible to detect and
explore the precise locations where flood impacts have occurred by only interacting with
the map view of our interface. However, interaction with the treemap and tweets view
makes it possible to detect additional relevant flood information concerning the event from
text entries mentioning specific local impacts and deviations (as seen in Figure 14).

These two example explorations show the potential of the proposed pipeline and tool
for the identification of flooding events and their spatiotemporal–contextual exploration.

7. Discussion

All classification models that we applied performed comparably in terms of predicting
tweets as flood relevant, with the best performance reached for the remove keywords model
variant with the original tweets variant performing very similarly, as seen in Section 5.1.4.
What needs to be noted, however, is that the high performance of the original tweets variant is
not representative. The reason for this is that, as mentioned in Section 5.1, the performance
of the classification models was evaluated with a subset of the CrisisLexT6 data set [23],
which was also used for training; 80% of the data were used for training and 20% for testing.
Due to this, the original tweets model variant developed bias to certain specific keywords
that were used for querying the tweets during data collection. As such, keywords, such
as ’yyc’ and ’Queensland’, became very likely indicative of a tweet being flood-relevant
and since these words were also present in the test data, a deceptively high performance
was obtained during this testing. This problem became apparent further when comparing
the predictions made for the unlabelled tweets by the models of the original tweets variant
compared to the models trained on the remove keywords tweets. The logistic regression
model, for example, for the original tweets variant only classified 51% of the unlabelled
English tweets in 2016 as flood relevant compared to 73% for the remove keywords variant.
Thus, more than 20% of the tweets potentially related to a flood event were excluded when

https://www.cnrfc.noaa.gov
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classifying with the original tweets variant. Consequently, we can conclude that the remove
keywords variant provides a less biased and more representative classification.

Moreover, in terms of accuracy, all classification models that we applied performed
comparably with accuracy measured between 92 and 95%. The ULMFiT transfer learn-
ing model achieved the best result of 95.0% accuracy, closely followed by the CNN deep
learning model with 94.6% accuracy. For the classic algorithms, the results demonstrated
accuracies of 93.9% and 92.5% for the logistic regression and random forest models respec-
tively. Thus, the use of word embeddings to represent the textual input seemed to improve
the models’ ability to differentiate between tweets that are relevant and non-relevant to
flood events. Accuracy, in general, is not always the best performance indication when
predicting relevant classes, especially for imbalanced data sets [35]. The training data
used in this work was balanced with a 51/49 split making the high accuracy more reliable.
Moreover, the F1 score was also between 92 and 95%, which indicated that no further
improvements were required. If these measures were not as high, the performance could
have improved by including more training data, tuning the model parameters, or using an
ensemble technique to combine multiple weaker models to obtain better results.

There can be different reasons for the text classifiers achieving so high scores on
the performance measures. One reason could be the specific nature of this narrow task.
Another likely reason could be our choice of data for training and evaluating the classifiers.
While the labelled training data set was collected using a combination of keyword and
location filtering, employing a single filtering approach might have led to a more focused
classification task.

The advantage of location filtering is that the tweets using flood-related words out of
context are reduced. Some tweets collected this way will also be completely out of scope
and unrelated to flooding. This makes it easier for the classifier to separate the relevant
from non-relevant tweets based on single words, and consequently, more complex methods
incorporating semantics are not needed. The training data for this project included such
tweets that were completely out of context, which can then be a reason why using a CNN
or ULMFiT did not outperform the classic models by significant measures. If the data
are instead collected only through keyword filtering, there is an increased need for more
complex models that can understand different meanings of flood-related terms. In such
cases, models that use word embeddings to represent the relations between words to better
capture semantics are more applicable.

As becomes apparent, both filtering approaches used for data collection have clear
limitations. Location filtering includes only the few tweets that are geotagged, whereas
keyword filtering often results in many redundant tweets and false positive results. There
is, thus, a trade-off depending on whether the aim of the data collection is to obtain as much
data as possible to identify all potential events or to focus on ensuring that the collected
tweets are actually describing a sought event. To address both challenges, the location
extraction algorithm was constructed to compensate for the drawbacks of keyword filtering
and incorporate different levels of location certainty. Interestingly, through exploration
of the unlabelled Twitter data in the visualization interface, it became apparent that even
though only 5% of the tweets were explicitly geotagged, the estimated locations were
typically placed in the exact same areas as the geotagged tweets. This provides some
evidence that even tweets that were not explicitly geotagged can still provide important
location information. Hence, only using location filtering could prevent the collection of
many potentially relevant and informative tweets.

Another position-related aspect of Twitter data that requires consideration concerns the
correlation between population density and data volume in an area and how this can bias
the representation of an event. Low densities of data do not necessarily mean low-impact
events as sparsely populated areas risk having fewer reports on events. Similarly, high
densities of data can give the impression of higher impacts and urgency than actuality due
to a large number of reports. Approaches to balance the data are interesting to investigate
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in order to avoid such a biased view of events, as are representations of the uncertainty of
the presented data in order to inform the viewer of potential ambiguities.

The proposed visual analytic pipeline and visual interface were exemplified through
an interactive progressive exploration use case of a subset of English flood-related tweets.
In this use case, we identified and explored two independent flood events in the data
using the available functionality. In a few steps, we could easily detect flood events by
filtering and navigating through several data points, assessing the content on a regional
level. This use case provides promising initial results as to the potential of using such
an approach for discovering relevant events and exploring their spatial, temporal, and
contextual characteristics.

The proposed pipeline and prototype system aim to complement existing monitoring
systems with place-specific data volunteered by citizens, which can provide extended
perspectives on local impacts beyond the fixed location of sensors during ongoing flooding
events. They further have the potential to support the analysis of past events, contributing
to climate and climate adaptation research. The flexible, interactive exploration of the
occurrence, timing, and spatial extent of extreme weather events can, for example, enable
researchers and analysts to (1) obtain an overview of historic events, (2) identify and
compare events of similar scale and spatiotemporal characteristics, and (3) formulate
hypotheses for further analysis. Furthermore, VGI can provide details on local impacts, such
as information on the conditions of local infrastructure or specific responses, facilitating
the assessment of existing climate adaptation measures, and guiding the implementation
of new measures. Finally, weather warning systems could be enhanced by enabling the
validation of issued warnings, and the identification and exploration of impacts in areas
where no warnings were issued.

Overall, the proposed pipeline and prototype system could support the future ex-
ploration of flood event data for a broader spatial and temporal scope, and enable a first
evaluation with stakeholders that could be the potential users of such a system. Such
evaluations are envisioned to support the functional adjustment of the system and the
assessment of its usability and effectiveness to support flood risk management.

8. Conclusions

To conclude, this paper presented a visual analytics pipeline for the detection and
exploration of flood events from Twitter data. The proposed pipeline consists of three
main steps following data collection: (1) text classification, (2) location extraction, and
(3) interactive visualization.

Four different text classification models were applied and compared in this work; two
classic ones (random forest, logistic regression), one deep learning-based model (CNN), and
one transfer learning-based one (ULMFiT). For training and testing the classification models,
a data set of tweets labelled for two specific flood events was used [23]. For subsequent
evaluation and demonstration of the pipeline, another data set was used, which consisted
of unlabelled English tweets collected using flood-related keywords [18]. To extract and
assign location information to tweets, an algorithm was constructed to relate tweets to
a location with successive levels of reliability; based on explicit geotagged coordinates
if available, through geoparsing of tweet texts or as a last option through the registered
user location. Finally, an interactive visual interface was developed to provide a spatial,
temporal, and contextual exploration and analysis of the tweets detected as flood-relevant
by the classifiers. The VA pipeline and interface were exemplified through a use case using
unlabelled tweets.

The VA pipeline proposed in this study shows promising potential for the identification
and interactive exploration of flooding events through Twitter text data and has a number
of practical implications. It opens up for real-time monitoring of events and could thus
potentially provide support during ongoing events. The approach does not aim to replace
existing real-time monitoring networks but rather complements these with localised data
collected by citizens. The pipeline can also support an ex-post analysis to evaluate the
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impacts of earlier events, and to improve capacity building and implementation of adaptive
measures to prevent or reduce future impacts of extreme flood events. Allowing a spatially
explicit visual exploration of the event data further provides a novel perspective on local
events and the place-specific impacts such events can have, as well as extends insights
into the context and temporal features of flood events. There are, however, several further
improvements that would be of relevance to address in future work. First, the enhancement
of the pipeline to also consider volunteered image data for the detection of flooding
events is a subsequent step. Presenting images of local impacts, with precautions to
ensure GDPR compliance as a part of the exploration in the visual interface, could enhance
situation awareness and quickly convey impressions from eye witnesses potentially worth a
thousand words. Moreover, including additional data sources, such as meteorological data
in terms of, e.g., rainfall records or areas prone to flood events, could improve the pipeline
further [17]. De Bruijn et al. [36], for example, proposed a multilingual multimodal neural
network that could effectively use both textual and hydrological information for flood
detection. In addition to incorporating multiple information sources, several classification
models could be combined into a hybrid model as this would leverage the benefits from
individual models as well as increase the efficiency and accuracy of the results. Another
relevant future step of this work is to perform a more systematic evaluation of the visual
interface involving potential end-users, to optimise the usability and effectiveness of the
interface. Finally, the use of Twitter data for flood detection is attainable and useful and
has the potential to supplement traditional monitoring and risk management systems.
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