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Abstract: The leaf nitrogen (N) and phosphorus (P) concentrations of terrestrial plants make large
contributions to ecosystem function and dynamics. The relationship between aridity and leaf N and
P has been established through experimental studies. However, few studies have focused on the
large-scale effects of aridity on the leaf N and P of terrestrial plants. In this paper, we used linear
regression models to test the effects of aridity on terrestrial plant leaf N and P and the N:P ratio based
on global datasets. We found that aridity had significant effects on the leaf N and P and the N:P ratio
of terrestrial plants. The strongest relationships were between fern leaf P, the fern N:P ratio, tree leaf
P, the tree N:P ratio, vine leaf N, and the tree N:P ratio. Aridity could be used to predict the P and N:P
ratio of terrestrial plants, particularly those of ferns and trees, on large scales in arid environments.
Our study contributes to maintaining ecosystem functioning and services in arid environments under
climate change.
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1. Introduction

The leaf nitrogen (N) and phosphorus (P) concentrations of terrestrial plants play
important roles in ecosystem function and dynamics [1–5]. Leaf N has significant effects
on ecosystem processes, for example, photosynthetic rate, litter decomposition, and plant
production [3,6–8]. Phosphorus is a vital element for the genetic material, energy storage,
and cell structure of terrestrial plant species [9–11]. The leaf N:P ratio is an indicator
of the nutrient condition limited to plant species growth and living [12,13]. Previous
studies [3,10,13] have explored the drivers of the leaf N and P of terrestrial plants on a
large scale. For example, Chen et al. found that the leaf N and P of woody plants vary,
depending on different environmental conditions (i.e., climates and soils) and growth
forms [10]. Therefore, leaf N and P are directly related to the physiological and ecological
processes of plants.

Aridity is characterized by a severe lack of available water to the extent of hindering
the physiology and ecology of plant life [3,14–17]. Experimental studies [18–21] have
demonstrated that aridity can regulate changes in the leaf N and P of terrestrial plants.
Aridity can affect growth rate and energy metabolism in leaves; on a small scale, aridity can
affect productivity, such as net primary production and net ecosystem production [22,23].
Furthermore, increased aridity may lead to the loss of ecosystem multifunctionality [24].
Leaf N and P may reduce the negative effects of aridity on ecosystem functions and services
as their key functional traits [23,24]. Large-scale studies [10,25–28] have shown that climatic
factors are the drivers of the leaf nitrogen and phosphorus concentrations of terrestrial
plants on a large scale. Reich and Oleksyn showed that the global patterns of plant leaf N
and P are related to temperature and latitude [29]. However, few studies have indicated
whether aridity could affect the leaf N and P of terrestrial plants on a large scale.

The main objective of our study was to explore the effects of aridity on the leaf N and
P of terrestrial plants on a large scale. Here, we proposed two hypotheses: (1) large-scale
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aridity affects leaf N and P, and (2) life forms regulate the effects of large-scale aridity on the
leaf N and P of terrestrial plants. Based on the testing of these two hypotheses, we aimed
to provide references for ecosystem services and biodiversity management. We obtained
global data on leaf N and P from Tian et al. [4] and global aridity data from Zomer et al. [30].
We used linear regression models to explore the effects of aridity on the leaf N and P of
terrestrial plants across different life forms.

2. Materials and Methods

We obtained a global dataset on the leaf N and P of terrestrial plants from Tian et al. [4].
This dataset includes leaf N and P and the N:P ratio belonging to 11,354 individual records
based on 1291 field sites; the dataset incorporates records from 201 families, 1265 genera,
and 3227 species on a global scale [4]. The species belong to five life forms, namely, ferns,
herbs, shrubs, trees, and vines [4]. We averaged the values of leaf N and P and the N:P
ratio across different plant species at each investigation site based on ferns, herbs, shrubs,
trees, and vines. Then, we used log10 transformation for leaf N and P and the N:P ratio for
further analysis. The distribution of the studied sites is shown in Figure 1.
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Figure 1. The distribution of studied sites [4]. Red plots represent the study locations for the leaf N
and P and the N:P ratio.

The global aridity data (Global-AI_ET0) were downloaded from the Global Aridity
Index and the Potential Evapotranspiration (ET0) Climate Database v3 [30] (https://doi.
org/10.6084/m9.figshare.7504448.v3; (accessed on 15 Octorber 2022)). Global-AI_ET0 is
available annually as one grid layer over the period from 1970 to 2000 [30]. This dataset
shows moisture availability for the potential growth of reference vegetation and excludes
the impact of soil-mediating water runoff events [30]. The spatial resolution of the aridity
index is 30 arc seconds (~1 km at the square). The aridity index ranges from 0 (arid) to 1
(humid) [30]. Furthermore, we selected the bioclimatic variables, including the annual mean
temperature, temperature seasonality (standard deviation × 100), annual precipitation,
and precipitation seasonality (Coefficient of Variation; https://www.worldclim.org/data/
index.html; (accessed on 15 Octorber 2022)).

We used linear mixed-effects models to explore the effects of aridity on the leaf N and P
of terrestrial plants [31]. The leaf N and P and the N:P ratio were the response variables, the
aridity index was the exploratory variable, and the species group was the fixed factor [31].
The simple and mixed regression models defined the relationships between aridity and leaf
N and P and the N:P ratio with log10 transformation across different life forms (i.e., ferns,
herbs, shrubs, trees, and vines). We ran the mixed and linear regression models (unitary
regression models or bivariate regression models) in JMP 11 (SAS Institute, Cary, NC,
USA). We used a high R2 to quantify the large-scale effects of aridity on the leaf nitrogen
and phosphorus concentrations of terrestrial plants. We used unitary regression models
to explore the effects of other environmental factors (i.e., bioclimatic variables) on leaf
nitrogen and phosphorus concentrations.

3. Results

There were significant relationships between aridity and leaf N and P and the N:P
ratio on a large scale based on the linear mixed-effects models (p < 0.1). Furthermore, these
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relationships were significant for ferns, herbs, subshrubs, shrubs, trees, and vines (p < 0.1;
Table 1). The R2 values were higher based on the bivariate regression models than the
unitary regression models (Table S1). Based on the bivariate regression models, we found
that the significant relationships (p < 0.1; Table 1) between aridity and leaf N and P and the
N:P ratio depend on different life forms (Figure 2 and Table 1).

Table 1. The R2 of relationships between aridity and leaf N and P and N:P ratio based on bivariate
regression models.

Life Form
Leaf N Leaf P N:P Ratio

R2 p-Value R2 p-Value R2 p-Value

Fern 0.062 0.725 0.371 0.099 0.562 0.016
Herb 0.004 0.427 0.016 0.026 0.008 0.140
Shrub 0.010 0.032 0.071 0.000 0.082 0.000
Tree 0.030 0.065 0.110 0.000 0.117 0.000
Vine 0.173 0.071 0.031 0.648 0.218 0.032
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Leaf N was positively related to aridity for shrubs, trees, and vines (p < 0.1; Figure 1 and
Table 1). There were significant relationships between leaf P and aridity for shrubs, trees,
and vines (i.e., increasing and then decreasing), but the relationships were the opposite for
ferns (p < 0.1; Figure 2 and Table 1). Aridity had significant effects on the leaf N:P ratio of
ferns, shrubs, trees, and vines (p < 0.05; Figure 2 and Table 1). Positive and then negative
effects exist in ferns and vines, and the opposite effects exist for shrubs and trees (Figure 2).
The largest relationships for aridity were between fern leaf P (R2 = 0.154; p < 0.1; Table 1),
the fern N:P ratio (R2 = 0.562; p < 0.05; Table 1), tree leaf P (R2 = 0.148; p < 0.05; Table 1), the
tree N:P ratio (R2 = 0.140; p < 0.05; Table 1), vine leaf N (R2 = 0.173; p < 0.1; Table 1), and
the tree N:P ratio (R2 = 0.218; p < 0.05; Table 1). We found that bioclimatic variables had
larger effects on leaf N, leaf P, and the N:P ratio for ferns, shrubs, trees, and vines (p < 0.1;
Table S1). Annual mean temperature had the largest effects on vine N (R2 = 0.312; p < 0.05;
Table S1); temperature seasonality had the largest effects on tree P (R2 = 0.234; p < 0.05;
Table S1); and annual precipitation had the largest effects on fern P (R2 = 0.280; p < 0.1;
Table S1), followed by precipitation seasonality (R2 = 0.239; p < 0.1; Table S1).

4. Discussion

The significant relationships between aridity and leaf N and P and the N:P ratio
indicate that aridity has large-scale effects on nutrient acquisition. Furthermore, these
relationships depend on different life forms. The effects of aridity on leaf P and the N:P
ratio could widely exist across different life forms (e.g., ferns and trees), but such effects
may be weak for leaf N on a large scale. Numerous experimental and field analysis
studies [18–23] have shown that aridity may affect leaf N and P and the N:P ratio. Our
study provides modeled analysis evidence for the relationships between aridity and leaf
N and P for terrestrial plants on a large scale. Berdugo et al. indicated that aridity could
drive global ecosystem thresholds [32]. Hence, our study could support the assessment of
ecosystem functioning and services on a large scale under climate change.

Although we found that the effects of aridity on leaf N were weak on a large scale,
aridity can play an important role in the regulation of the leaf N of terrestrial plants on
a large scale. Berdugo et al. showed that drastic reductions in leaf N concentration may
occur at levels of aridity lower than 0.65 [32]. Hence, we should pay attention to the
changes in leaf N in the drying lands around the world. Our results show that there were
significant relationships between aridity and leaf N for terrestrial plants on large scales.
Hence, the changes in leaf N have a large potential to affect ecosystem functioning and
services (e.g., climate regulation, nutrient cycling, and livestock production) in drying
regions [24,32–34]. To maintain the stability of ecosystem functioning and services, we
should monitor aridity levels, as per the suggestions of Berdugo et al. [32].

Our results demonstrate that there were significant relationships between aridity and leaf
P and the N:P ratio across different life forms on a large scale. Leaf P is directly related to the
physiology of terrestrial plant species and can affect the ability of terrestrial plant species to
adapt to aridity [9–13]. Nitrogen and phosphorus are widely recognized as the most important
limiting nutrients controlling plant growth, ecosystem functioning, and terrestrial ecosystems
dynamics [1,35,36]. Both leaf P and the N:P ratio are effective indicators of nutrient limitations
for terrestrial plant species along the aridity gradient [1,14,17,23]. Furthermore, these two leaf
indicators could be used to monitor the stability of ecosystem functioning and services [24]. For
example, Reich et al. showed that leaf P can play an important role in the relationships between
photosynthesis and nitrogen based on a cross-biome analysis on numerous species [37]. The
relationship between photosynthetic capacity and nutrients may be constrained by low P in
drying environments (Figure 2). Hence, the detection of leaf P and the N:P ratio is important
for modeling vegetation nutrient stocks and cycling in arid environments. Leaf nitrogen
concentration (LNC) is a key parameter of vegetation photosynthetic efficiency and yields, and
it can be applied for scientific guidance in nitrogen (N) fertilization management [37–42]. A fast
and accurate estimation of crops’ LNC is vital to indirectly understand crops’ growth status.
Similarly, nitrogen is also a component of the chlorophyll molecule, which enables a plant to



Climate 2022, 10, 171 5 of 7

capture sunlight energy by photosynthesis, driving plant growth and grain yield [40]. Nitrogen
plays a critical role within a plant to ensure energy is available when and where the plant needs
it to optimize yield [37,40–42]. In contrast, phosphorus promotes early root growth, winter
hardiness, and seed formation; stimulates tillering; and increases water use efficiency [40].

Furthermore, we found that the largest relationships existed between aridity and fern
leaf P, the fern N:P ratio, tree leaf P, the tree N:P ratio, vine leaf N, and the tree N:P ratio;
this indicates that aridity can affect leaf P and the N:P ratio for ferns, trees, and vines. The
photosynthetic capacity and nutrient content of ferns depend on climatic changes at temporal
and spatial scales [43,44]. Based on our results, the effects of climatic factors (e.g., annual mean
temperature, temperature seasonality, annual precipitation, and precipitation seasonality) on
the photosynthetic capacity and nutrient content of ferns were due to the limitation of leaf
P caused by aridity. Furthermore, leaf P and the N:P ratio could affect the photosynthetic
capacity and nutrient limitation of trees in arid environments [43–45].

Aridity is an important indicator of climate change [30]. Our results provide important
references for the impacts of climate change on species and ecosystems at a global scale.
Although temperature and precipitation are the drivers of plant functional trait distri-
bution under climate change, aridity could be applied as an assessment of the effects of
climate change on plant functions, closely associated with ecosystem functions and services,
and biodiversity management [26,27,30,43–46]. Therefore, aridity monitoring should be
widely used to evaluate ecosystem functions and services benefiting human beings under
climate change.

5. Conclusions

Aridity significantly affects the leaf N and P and the N:P ratio of terrestrial plants on
large scales. However, the effects are weak for leaf N and strong for leaf P and the N:P ratio.
Aridity could be used to model P and the N:P ratio of terrestrial plants, particularly for
ferns and trees on large scales in arid environments. Our study provides new evidence for
the relationships between aridity and leaf N and P and the N:P ratio for terrestrial plants
on large scales. These results contribute to monitoring ecosystem functioning and services
under climate change.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cli10110171/s1, Table S1: The R2 of relationships between environmental
variables and leaf N and P and N:P ratio based on unitary regression models.
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