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Abstract: This paper seeks to uncover the impact of negative rainfall shocks on household social
network relationships. I leverage the uncertainty generated from fluctuating long-term rainfall
patterns across India, to estimate the impact of heightened climate risks on investments in social
network relationships. In so doing, I attempt to disentangle the “direct” and “adaptive” impacts of
climate shocks on social network relationships. I found that households that experience higher than
average negative rainfall shocks (lower than average rainfall levels over the long term) tend to invest
more in family–caste and vertical or linked network relationships. These network relationships were
also found to be associated with greater access to financial credit, credit sourced specifically from
family members, higher reported collaboration, more diversified businesses, and the use of private
irrigation technologies, all of which are key to mitigating the negative impacts of climate shocks.
Unlike past research, these results suggest that households’ decisions to invest in social networks
may be an adaptive response to higher climate risk. In terms of policy implications, these results
highlight the importance of strengthening and supporting family-based and linked networks (such
as links to local governmental agencies and extension services) in the face of higher climate risks.

Keywords: social networks; climate shocks; India

1. Introduction

The Inter-Governmental Panel on Climate Change (IPCC) estimates that, on average,
global temperature levels will increase by 1.5 to 4.5 degrees Celsius (with high confidence)
relative to pre-industrial levels by the end of the 21st century [1]. The IPCC also suggests
that such profound changes in the climatic system during the 21st century will likely be
felt hardest by households in developing countries, which strongly depend on agricul-
tural production (IPCC, 2013, 2014). Significant empirical research has been undertaken
examining the impact of negative climate shocks on key economic and social outcomes,
such as economic growth, productivity, health, crime, and conflict, to name a few (see Dell,
Jones [2] and Carleton and Hsiang [3] for detailed reviews). Very few studies have analyzed
the impact of climate shocks on social network relationships. This paper, therefore, seeks to
bridge this research gap, by assessing the impact of climate shocks on the social networks
of households in rural India. Investments in social networks are important for mitigating
the negative impacts of climate shocks [4–9]. Social capital and social networks have also
been found to be positively associated with better environmental and natural resource
management [10]. However, to date, no research has been found examining the extent that
investments in social networks may be an adaptive response by individuals to heightened
climate risk. In general, investments in social networks are particularly useful for people
living in rural and marginalized communities, where formal market-based and institutional
solutions remain limited. Flora [11], Fafchamps and Minten [12], Bloch et al. [13], and
Bloch and Dutta [14] have found a positive association between investments in social
networks and information transfers, enforcement of social and contractual obligations, and
the provision of social assistance, such as emergency credit, all of which become crucial in
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times of crisis. Unlike past studies, this paper aims to examine the extent to which climate
shocks and other negative climate events may act as a trigger for a person to join social
networks, as a risk-mitigation strategy, or to build resilience against future negative climate
events. Alternatively, negative climate events can also erode social network relationships,
either through forced migration, the destruction of homes and communities, and business
failure, or as a result of the increasing prevalence of illness and death among families.
It is hoped that this study can deepen our understanding of ways that negative climate
events influence human decisions to invest in social network relationships, which, in some
regions, become a key source of support in the face of negative climate events. Additionally,
given the nature of the survey, I can also differentiate which social networks become most
important in the face of heightened climate risks.

One of the challenges in assessing the impact of climate shocks is distinguishing
between “direct” and “adaptive” impacts of changing climate patterns [3,15]. “Direct”
impacts include instances where harmful climate events, such as droughts and high-
temperature levels, result in the loss of assets, livestock, business failure, illness, or even
death among households. Such events not only undermine a household’s social standing
in a community but also negatively impact social network relationships. On the other
hand, indirect or “adaptive” impacts are driven by expectations households develop,
either in response to past climate patterns or based on information about future climate
events [15]. This distinction is key to understanding climate shock impacts on social
network relationships. Indeed, in the case of the former, negative climate shocks can have
a “corrosive” impact on social network relationships, while in the case of the latter, the
experience of negative climate shocks during prior years can be “consensus building”, as
persons work together either to mitigate the impacts of future climate threats or repair
damage of past adverse climate events. In the latter case, individuals have an incentive
to increase investments in social network relationships, as a means of mitigating the risks
associated with possible future negative climate events [12,16].

To distinguish between possible “direct” and adaptive impacts on social network rela-
tionships, I leverage widely documented, fluctuating long-term rainfall patterns throughout
India. Specifically, Parthasarathy et al. [17] and Kripalani and Kulkarni [18] have docu-
mented constantly shifting long-term rainfall patterns (movements between periods of
heavy rainfall, followed by very dry rainfall patterns) over the last 100 years across the
continent of India. In this case, I argue fluctuating long-term rainfall patterns create a
degree of uncertainty in climate patterns among decision-makers and households. I hy-
pothesize that past realized rainfall trends are indicative of future rainfall patterns and, as
such, can shape a household’s expectations of future weather patterns, which ultimately
influence a household’s decision to invest in social network relationships. In this way,
this paper is most closely related to Taraz [19], who links past fluctuating weather pat-
terns in India to farmers’ decisions to adopt new irrigation technologies and select more
climate-resistant crops. In this case, I examine the extent that which households adapt
their portfolio of social network relationships in the face of heightened climate risks. I
also assume households make a rational choice in terms of which types of social network
relationships can better protect and support long-term consumption or production in the
face of possible future negative climate events. I also follow Woolcock [20], Adhikari [21],
Hawkins and Maurer [22], and Poortinga [23] by differentiating among three types of social
network relationships: (1) family/caste-based (bonding); (2) non-family (bridging); and
(3) vertical (linking). Finally, I examine the extent to which social networks are impacted by
repeated climate events. This analysis is used to assess the extent to which social network
relationships can also be eroded by negative climate events. Both approaches differ from
other climate impact studies, which utilize year-to-year changes in climate variables to
determine the impact on social and economic outcomes. While year-to-year variations in
climate patterns can uncover shorter-term impacts on social and economic outcomes, such
as crime and productivity, it overlooks a household’s adaptation and responsiveness to
past climate shocks or longer-term climate trends [2,15].
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Understanding the impact of climate shocks on social networks can be particularly
relevant to poor and vulnerable communities since these communities tend to rely heavily
on social network relationships for information, informal support, and collective action.
Poorer communities also tend to have less diversified sources of income, own fewer
productive assets, and are frequently located in areas that can be particularly vulnerable
to sudden climate shocks, such as floods or droughts. This implies that negative climate
events can have far-reaching consequences beyond the loss of assets, illness, or death. By
impacting both physical and social assets, negative climate shocks have the potential to
undermine the long-term resilience of already vulnerable communities, thereby pushing
them into a vicious cycle of poverty and underdevelopment. By understanding how
these social networks are impacted by negative climate events, it is hoped that policies
can be developed to strengthen network relationships, to build greater resilience among
climate-affected communities.

This paper is divided into four sections. Section 2 provides details of the data and
empirical strategy. The main results and discussions are presented in Section 3, as are the
robustness tests and extensions. Finally, concluding remarks and policy recommendations
are outlined in Section 4.

2. Data Sources and Methods
2.1. Climate Data for India

Historical weather data were taken from Terrestrial Temperature and Precipitation:
1901 to 2014, Gridded Monthly Time Serie Version 4.01 [24,25]. This dataset provides global
(terrestrial) monthly gridded temperature and precipitation estimates. Global grids are
spaced at 0.5◦ latitude and 0.5◦ longitude width (approximately 56 km × 56 km at the
equator). Values are interpolated for each grid node from an average of 20 nearby weather
stations, with corrections for elevation based on the spherical version of Shepherds distance-
weighting method. I extracted monthly district-level climate estimates by overlaying the
climate-gridded datasets onto the 2001 gridded India’s Census district boundaries [26], and
estimating the monthly averages of the nearest grid points located within each district.

For each month, longer-term climate averages (precipitation and temperature levels)
were generated by the district over the period 1981 to 2010. Figure 1 represents the spatial
distribution of long-term rainfall patterns by districts throughout India. It is important
to mention that given the size of India, there exists significant spatial variation across the
30 different meteorological subdivisions [19,27].
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I followed Dell et al. [28], Iyer and Topalova [29], Blakeslee and Fishman [30], and
others by calculating both the annual and monthly climate anomalies or shocks. For a
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given district, annual deviations from the long-term average were calculated by finding
the differences between the annual climate measures and long-term estimates (Both long-
term averages and standard deviation in climate measures for each district are based on
a 30-year time horizon (1981 to 2010)). Annual deviations can be negative or positive
across districts. Figure 2 summarizes the annual positive and negative deviations from the
long-term rainfall and temperature averages across all districts, for the years 2004 and 2011.
I utilized annual measures to calculate the three- and five-year averages in deviations from
the annual rainfall patterns for each district, such that

Average Rainfall Deviations = ΣT
t=1

Rain f all Devt

T
(1)
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Figure 2. Annual deviations from the long-term rainfall patterns, across India, for 2005 and 2012. Left:
The annual deviations (positive and negative) from the long-term precipitation patterns, across India,
2005 and 2012. Right: The annual deviations (positive and negative) from the long-term temperature
patterns, across India, in 2005 and 2012.

Secondly, monthly deviations from the long-term climate averages were also calculated
and divided by the standard deviation in climate measures for the corresponding month in
each district. Climate shocks or anomalies were measured as the total number of months
each year the rainfall levels are more than one standard deviation above (positive shock)
or below (negative shock) the long-term average [30,31]. Total annual anomalies (positive
and negative) were then calculated for each district in a given year. Annual climate shocks
were used to generate the three- and five-year average anomalies and lagged values for
each district, which were used to represent the information impacts of the climate events. I
also estimated the impact of lagged climate events up to the year of the last survey. I found
that lags six and seven years before the survey year became small or insignificant in terms
of the impacts of social network relationships (Table A1) (This implies that households may
not use information on past rainfall patterns as far back as six and years in their decision
making today).

In terms of repeated climate events, I identified the districts that have been impacted
by successive climate shocks at least two years before the start of the survey period (see
Appendix A Figure A1). Specifically, I differentiated between districts that have experienced
consecutive shocks over a three- and five-year period. To measure the intensity of the
climate shocks, I calculated the total number of climate shocks occurring over a three- and
five-year period and used this as an intensive measure of repeated climate events.

2.2. Understanding India’s Fluctuating Interdecadal Rainfall Patterns

Apart from year-to-year fluctuations, researchers have widely documented longer-
term regional fluctuations, based on interdecadal rainfall patterns [32,33]. Figure 3 high-
lights all of India’s interdecadal rainfall patterns over the period 1900 to 2012, which
provide evidence of deviations from the long-term historical average in rainfall patterns
based on a 31-year moving average. Clear patterns emerge of “dry” spells in rainfall over
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the periods 1900 to 1920 and 1989 to 2010, where rainfall averages are more than four
standard deviations below the long-term average. There are also clear periods of “wet”
spells over the periods 1930 to 1950 and 1965 to 1985. I argue this variation in long-term
rainfall patterns creates uncertainty among households in terms of which rainfall regime
they are experiencing in a given year.
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Figure 3. The 31-year moving average of the annual deviation from the long-term precipitation levels
across India from 1900 to 2012.

It is also important to note, again, that the rainfall patterns in India vary widely, both
spatially and temporally [27]. Indeed, there is also considerable spatial variation in rainfall
patterns across the study period (see Figure 4). Regions previously considered as having
wetter conditions based on three-year averages in 2000 can be considered as experiencing
“drier” conditions based on averages starting in 2005, and the converse is also true for
other areas.
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Figure 4. Spatial variation based on differences between the three-year and five-year average rainfall
deviation levels for 2000 to 2003 and 2007 to 2010. Left: The spatial variation in differences in
three-year rainfall shocks for 2007 to 2010 and 2000 to 2003. Right: The spatial variation in differences
in five-year average rainfall shocks for 2010 to 2005 and 2005 to 1998.
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I exploit this heterogeneity across regions and long-term variability to determine the
extent that locations with wetter (or drier) conditions based on long-term average deviation
in rainfall levels may influence a household’s decision to invest in social networks. I
assumed households can develop expectations of which rainfall regime they may be facing
based on current and past realized rainfall patterns, and this information can be used to
make a rational choice in terms of which types of network investments to make to mitigate
possible future rainfall risks.

2.3. Measuring Social Capital and Adding Key Control Variables

Measures of social network capital and the key household and village characteristics
were obtained from two waves of the Indian Human Development Survey (IHDS) con-
ducted in 2004/2005 and 2011/2012 across communities in India. Specifically, the IHDS is
a nationally representative survey, covering all States and Union Territories of India, except
for the smaller territories of Andaman Nicobar and Lakshadweep (see Figure 5).
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The survey was conducted by the National Council of Applied Research (NCAR)
and the University of Maryland and gathered the key socio-economic information on
households utilizing a two-stage sampling stratification process (see Desai et al. (2010) for
more details on the background of the survey). The first wave of IHDS covered 27,010 rural
households drawn from 1503 villages and 13,126 urban households drawn from 971 urban
blocks (see Figure 1). For the second wave (2011/2012), there was an 83 percent reinterview
rate, with follow-up interviews among split households (if they were located in the same
villages). For the purposes of this study, I focused on rural households interviewed
during both waves of the survey so that I can track changes in social network patterns
and other key household characteristics over time. Following Narayan and Pritchett [34],
Narayan [35], and Putnam [36], I measured the social capital and, by extension, investment
in social networks primarily in terms of membership in local and regional community-based
organizations, as well as based on the composition of a households’ network. I also followed
Woolcock and Narayan [37], Szreter and Woolcock [38], and Urwin et al. [39], differentiating
among three key forms of social networking capital: bonding (family-based), bridging
(non-family-based), and linking (hierarchical-or-power-based). Bridging capital (Bridge)
measures the number of non-family-based organizations households report being members
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of. This includes non-governmental organizations (NGOs), sporting clubs, cooperatives,
and self-help groups (see Exhibit A1—Sample Household Questionnaire). To boost the
strength of the network measures beyond formal membership-based network relationships,
I developed two alternative measures of informal social network relationships: “Linking”
capital (Link), which measures the proportion of a household’s network contacts with
persons of authority, such as doctors, senior government officials, and school principals or
teachers; and “FamilyNet”, or bonding (Bond) capital, which is measured in terms of the
percentage of a household network that is made up of the same family or caste. Overall,
between both waves, I observed increases in non-family/caste relationships (Bridging),
linking networks (Link), and family-based relationships (FamilyNet) between the 2005 and
2012 waves (see Table 1). As a final step, I found the standardized values of all measures to
ensure a common interpretation based on the results of the overall sample. I also explored
the relationship between social network investments and the potential benefits of network
participation, such as household access to credit (number of loans), number of loans coming
from family members, the level of reported collaboration, and access to private tubular
wells (Table 1). Finally, over the sample period, I found rainfall patterns in the year before
the survey period 2012 to be drier than the lagged rainfall patterns in the 2005 survey
period. However, in terms of our key determining variables, overall, the average rainfall
patterns (three years and five years) in the years leading up to 2012 were found to be much
“wetter” relative to the three-year and five-year averages leading up to 2005 (Table 1).

Table 1. Summary statistics of the key outcome variables and key climate variables.

Outcome 2005 2012 %

Key Variables Mean/sd Mean/sd Change
Bridge 0.06 0.08 42.7%

(0.07) (0.07)
Link 3.69 4.21 14.2%

(1.76) (1.46)
Bond 3.12 3.75 19.9%

(1.26) (1.39)
Number of loans 1.57 1.98 26.1%

(0.39) (0.39)
Percentage of loans from family members 12.63 18.82 49.0%

(0.33) (0.39)
Number of businesses 1.09 1.11 1.8%

(0.31) (0.34)
Reported collaboration 58.33 73.51 26.0%

(26.46) (18.71)
Reported conflict 15.40 14.63 −5.0%

(9.87) (9.33)
Private tubular wells 0.18 0.22 22.2%

(0.39) (0.41)

Climate Shocks

Key Variables mean/sd mean/sd Change

Average Temperature Deviations −12.38 5.00 −140.4%
(22.05) (20.75)

Average Rainfall Deviations 0.26 −0.01 −105.4%
(0.33) (0.27)

Average Rainfall Deviations (3 Years) 0.73 1.10 50.0%
(0.53) (0.57)

Average Positive Rainfall Deviation (3 Years) 15.36 25.46 65.8%
(8.03) (14.36)

Average Negative Rainfall Deviation (3 Years) 0.86 0.77 −10.4%
(0.56) (0.64)

N 20,941 20,941
Source: Estimates were derived from IHDS Survey Waves I and II, while the climate measures were extracted
from Terrestrial Temperature and Rainfall: 1901 to 2014; Gridded Monthly Time Series Version 4.01 [24].

2.4. Empirical Strategy

Testing for Network Adaptation to Climate Shocks
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In terms of our empirical strategy, I estimated the household fixed-effects models,
which assess the impact of changes in short- and long-term deviations in rainfall patterns
at least one year before the survey period on households’ investments in social network
relationships. Specifically, in Model 1, I examined the impact of deviations in rainfall and
temperature patterns in the year immediately before the survey period on household social
network decisions. Additionally, I also tested the impact of longer-term deviations in
rainfall patterns measured based on 3- and 5-year average rainfall deviation levels, taken
two years before the survey period. In this model, I include village controls, year (t), and
month of survey (δi) as fixed effects.

SCijkt = β1Rain f all Shockkt−1 + ϕ1Temperature Shockkt−1 + β2 Ave Rain f all Deviationskt−2
+γ1Village Controlsjkt + δi + t + eijkt

(2)

In Model 2, we differentiate between positive and negative deviations in long-term
average rainfall patterns.

SCijkt = β1Rain f all shockkt−1 + ϕ1Temperature Shockkt−1 + β2 AveNegative Rain f all Shockkt−2
+β3 Ave Positive Rain f all Shockskt−2 + γ1Village Controlsjkt + δi + t + eijkt

(3)

In this case, β2 and β3 capture the adaptative or “information” impact of longer-term
climate shocks on a household’s decisions to invest in social network relationships. If
current social network decisions are in no way influenced by prior experiences of climate
shocks, I expect β2 = β3 = 0. It is also important to mention that the coefficient values can
be positive or negative, depending on the extent to which climate shock has a “consensus-
building” or “corrosive” impact on social network relationships.

One key advantage of this study is that I can also distinguish among the three main
types of social network relationships—family (FamilyNet), non-family (Bridging), and
linked (Link)—that households participate in, and, as such, I can determine which network
relationships will likely be more important in the face of negative climate events.

To test the impact of repeated climate events on social networks, I estimated Model
3; specifically, after controlling for climate shocks occurring in the year before the survey
periods. I identified the districts that have been impacted by successive negative climate
anomalies over three years, beginning in 2003 and 2010, respectively (As a robustness test,
I also estimated the impact of the average, positive and negative, and repeated climate
shocks, over a five-year period) (see Appendix A Figure A1). For these districts, I assigned
a value of 1 (and 0 otherwise) to classify these areas as repeated climate-impact districts.
I calculated a more intensive measure of repeated climate shocks as the total number of
negative precipitation anomalies affecting these repeated-impact districts.

SCijkt = β1Rain f all Shockkt−1 + ϕ1Temperature Shockkt−1 + β2Repeated “ − ”Rain f all Shockkt−2
+γ1Villjkt + δi + θk + t + eijkt

(4)

I also tested the extent that ethnic or altruistic motives influence network relationships
and leveraged caste composition at the village level. Specifically, I differentiated between
villages that have greater homogeneity in caste status among village members, focusing on
villages that have a concentration of higher and lower caste groups. I assumed villages,
where there exists a greater homogeneity in caste status, norms, and values, will likely
be more uniform, and altruistic motives will be greater. Additionally, monitoring and
enforcement of network obligations in these communities more likely will be effective [40].
I consider this classification important for testing “peer” effects and possible altruistic
motives that influence continued investments in social network relationships. I adapted
Model 1 by adding a dummy variable taking a value of 1 for households living in villages
where more than 50 percent of the village population are reported to be of the same caste
status during the base period in 2005. I also differentiated between villages comprising
primarily of lower Scheduled Castes and Scheduled Tribes (SCSTs) and villages where
Higher Caste (HC) groups predominate (Higher caste groups include Brahims and the
High Caste grouping).
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Given the granularity in the survey data available, I also tested the importance of
“pooled” income on investments in social networks (In the context of this study, pooled
income is measured in terms of average village income. I also tested for the importance
of individual as opposed to village income in investments in social networks). I measure
“pooled” income as average earned income at the village level and differentiate between
high- and low-income-earning villages. High-income villages are villages where the aver-
age income levels are 75 percent or more than the sample average. Conversely. low-income
villages are villages where the average income levels are 50 percent or less than the sample
average. Additionally, since households may respond to climate shocks based on where
their main source of income are from, I also tested for differences based on the key earning
sources of households. Finally, given the spatial resolution of the data, it is important to
carefully consider the spatial correlation of the error term. Standard errors are therefore
estimated with spatial HAC correction that allows for cross-sectional spatial correlation
and location-specific correlation, applying the method developed by Conley [41].

3. Results

Table 2 outlines the results of household fixed effects (FE) models. Firstly, I found
a negative association between the average rainfall deviation patterns on measures of
linking social capital (vertical network relationships) and the percentage of informal family-
based networks (FamilyNet). Specifically, a one standard deviation increase in the average
rainfall levels above the long-term average was associated with lower investments in
vertical (power-based) and informal family-based networks by approximately 0.14 and 0.17
standardized points. This suggests that households living in locations that experienced
higher than average longer-term rainfall patterns recorded lower investments in vertical and
family-based networks. I also found increases in the average rainfall deviations above the
long-term average, associated with higher investments in non-family or bridging networks,
approximately 0.08 standardized points more than the sample average. I was also able to
distinguish the impact of positive and negative rainfall shocks on investments in social
network relationships. Not surprisingly, I found a positive association between the average
negative rainfall shocks on measures of linking social capital (vertical network relationships)
and the percentage of the informal family/caste-based (FamilyNet) networks. Specifically,
for each additional month, negative annual rainfall shocks were recorded (based on three-
year averages) and investments in vertical (power-based) networks were found to be
approximately 0.16 standard deviations higher than the sample average. We also find a one-
month increase in the average negative rainfall shocks, associated with higher investments
in informal family/caste-based networks, approximately 0.14 standardized points higher
than the sample average. Interestingly, the converse is also true; that is, the occurrence of
positive rainfall shocks over the long-term is associated with lower levels of investments
in linked and family-based networks, as well as increasing investments in non-family
(bridging) networks. These results point to greater investments in vertical (linked) and
family/caste-based networks among households located in regions that experience negative
rainfall shocks much more frequently (I also tested for the impact of long-term temperature
shocks but found these shocks to have no significant impact on social network variables.
This may be due to the fact that households may find it particularly difficult to adapt to
temperature shocks through social network relationships).
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Table 2. Results assessing the impacts of climate shocks (3-year averages) on the key measures of
social capital.

1 2 3 4 5 6 7 8 9

BridgeStd LinkStd FamilyNetStd BridgeStd LinkStd FamilyNetStd BridgeStd LinkStd FamilyNetStd

Average Rainfall
Deviations −0.026 −0.130 * −0.064 ** −0.021 −0.150 ** −0.080 *** −0.024 −0.148 ** −0.077 **

(0.031) (0.067) (0.031) (0.032) (0.072) (0.031) (0.032) (0.073) (0.033)
Average

Temperature
Deviations

0.039 −0.181 *** −0.026 0.034 −0.186 *** −0.030 0.046 −0.198 *** −0.043

(0.037) (0.057) (0.029) (0.037) (0.058) (0.031) (0.037) (0.059) (0.032)
Rainfall

Deviations (3 Yr
Average)

0.079 ** −0.142 ** −0.172 ***

(0.034) (0.056) (0.035)
Positive Rainfall

Shocks
(3 Yr Average)

0.005 ** −0.005 * −0.005 **

(0.002) (0.003) (0.003)
Negative

Rainfall Shocks
(3 Yr Average)

−0.037 0.162 *** 0.138 *** −0.039 0.166 *** 0.141 ***

(0.039) (0.061) (0.032) (0.040) (0.063) (0.033)
N 40,419 40,419 40,419 40,419 40,419 40,419 40,419 40,419 40,419

adj. R–sq 0.011 0.039 0.020 0.011 0.042 0.019 0.009 0.040 0.017

Notes: Table 2 reports the results of the impacts of climate shocks on key measures of social network relationships.
Lagged climate shocks represent temperature and precipitation anomalies occurring in the year before the survey
period. Average climate anomalies represent average positive temperature anomalies and negative precipitation
anomalies occurring over the periods 2000 and 2003 and 2007 and 2010. Village controls, as well as time and
household fixed effects, are included in the model. Errors were generated using spatial HAC correction based on
Conley [42]. Standard errors are in parenthesis. * p < 0.10; ** p < 0.05; *** p < 0.01.

3.1. Assessing the Impact of Repeated Climate Shocks

I also tested the impact of repeated negative climate shocks on household social
network relationships. Specifically, after controlling for climate shocks in prior periods, I
identified the districts that have been impacted by consecutive climate shocks (negative
rainfall anomalies) over three years (Table 3). I found investments in (non-family/caste)
bridging networks to be lower in regions that have experienced repeated climate events
(three years), approximately 0.02 standard deviations below the sample average. However,
I continued to find higher investments in linked and family-based networks in regions
repeatedly impacted by consecutive negative precipitation shocks. This indicates the
continuing resilience of vertical and family-based networks in the face of repeated negative
climate events. I found negative precipitation lags (one to three-year) to be positively
associated with investments in Linking and FamilyNet.

Table 3. Results assessing the impacts of lagged and repeated rainfall shocks on key measures of
social capital.

1 2 3

BridgeStd LinkStd FamilyNetStd

Average Rainfall Deviations −0.017 −0.147 ** −0.075 **
(0.031) (0.070) (0.033)

Average Temperature Deviations 0.050 −0.202 *** −0.045
(0.035) (0.058) (0.032)

Repeated Negative Rainfall Shocks −0.018 *** 0.035 *** 0.027 ***
(3 Yr) (0.005) (0.009) (0.007)

N 40,419 40,419 40,419
R–sq 0.012 0.042 0.018

adj. R–sq 0.011 0.041 0.018
Notes: Table 3 reports results assessing the impacts of lagged and repeated rainfall shocks on key measures of
social network relationships. Repeated rainfall shocks are districts in India that have experienced consecutive
years of negative rainfall shocks over 3 years. For these districts, I estimated the total number of anomalies over
the period 2000 (1998) and 2003 and 2007 (2005), and 2010. Rainfall and Village controls, as well as time and
household fixed effects, are included in the model. Errors were generated using spatial HAC correction based on
Conley [42]. Standard errors are in parenthesis. ** p < 0.05; *** p < 0.01.
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3.2. Tracing Heterogeneous Impacts

I also examined the possible heterogeneous responses to climate shocks based on
differences in community characteristics. Firstly, to explore the extent altruism can influence
investments in social network relationships, I explored the impact among households
where more than 50 percent of the same village members are of the same caste grouping, as
per the Scheduled Castes and Scheduled Tribes (SCSTs) and High Caste (HC) groupings,
using the information on village characteristics extracted from the 2005 survey. SCSTs
are considered the lowest of the caste groupings in India. I found households located in
villages where SCSTs make up more than 50 percent of the village population in 2005 tend
to have marginally lower investments in vertical networks in the face of negative climate
shocks. Interestingly, I found similar results among villages dominated by High Caste
groupings (Appendix A Table A2).

I also find that households residing in rural communities with a higher average village-
level income (I defined high-income villages as villages where the average income levels are
75 percent or more than the sample average) will invest approximately 0.206 standardized
points more in Linked capital relative to households living in villages with lower levels
of income (Appendix A Table A3), suggesting that wealth rather than caste status is a
significant determinant of access to vertical-based networks. I also found the converse
is true, where for households residing in lower-income villages, investments in linked
capital tend to be eroded first in the face of repeated negative rainfall shocks, further
reinforcing wealth as a key influence in terms of the household’s access to linked capital
(see Appendix A Table A4).

3.3. Extensions and Robustness Tests

Understanding Possible Motives for Investments in Social Networks
An additional step will be to determine the possible motives for investing in social

networks. Based on the literature, social networks can be particularly useful for securing
emergency credit, social insurance, facilitating technology adoption, social cooperation,
and resolving conflicts, all of which become critical in the face of negative climate events.
Using survey-based responses, I estimated the impact of investments in key social network
relationships on variables such as access and sources of credit, the number of businesses
owned and managed by households, reported instances of cooperation among households,
and access to private wells (Table 4). Specifically, I found a positive association between
investments in linking and bridging capitals and the log number of loans (Ln(#Loans))
received by households. Investments in bridging and linking networks increase the proba-
bility of obtaining an additional loan by about 5 and 8 percent, respectively. There is also a
positive and significant relationship between investments in linked network capital and
loans obtained from family members. Investments in linked capital are also positively
related to the number of non-farm business households involved, indicating that vertical
relationships are important contributors to having a more diversified portfolio of non-farm
businesses. Investments in linking capital are also positively associated with reported
collaboration among households. Finally, investments in informal family-based networks
are positively associated with increasing access to private tubular wells.

For the robustness tests, I examined the impact of rainfall shocks based on five-
year instead of three-year averages. Additionally, given the importance of agriculture to
earnings among rural households, I focused on the average rainfall shocks occurring during
India’s monsoon season. Once again, in both instances, I continued to find a positive and
significant impact of rainfall shocks on increasing investments in family-based networks
(see Appendix A Table A5). I also tested the extent to which the baseline results are not
driven by shocks occurring in one specific year. Therefore, I estimated the impacts of lagged
climate shocks on social network relationships and found the significance of shocks up to
seven years before the survey period (Appendix A Table A1). Thirdly, given that I argue a
household’s decision to join social networks is considered largely an adaptation strategy to
mitigate higher climate risk, one robustness test can include instances where households
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have more stable income sources, such as salaried households. Indeed, salaried households,
such as government workers, administrators, and office employees, may be less likely to be
affected by climate shocks relative to other groups such as farmers and business owners. As
expected, I found no significant relationship between past climate shocks and investment
in social networks among households who earn income from salary-based sources (see
Appendix A Table A6).

Table 4. Exploring the motives for investment in social networks.

1 2 3 4 5

Ln (# of
Loans)

Loans from
Family Members

Number of
Businesses Collaboration Access to

Private Wells

BridgeStd 0.0510 ** −0.0171 ** −0.0197 0.00495 0.000782
(0.021) (0.008) (0.016) (0.008) (0.005)

LinkStd 0.0868 *** 0.0250 *** 0.0364 *** 0.0388 *** 0.00629
(0.017) (0.006) (0.012) (0.009) (0.004)

FamilyNetStd 0.0130 −0.00446 −0.00201 0.000839 0.0121 ***
(0.014) (0.006) (0.018) (0.010) (0.004)

N 40,356 40,386 6553 40,386 40,138
R-sq 0.045 0.013 0.034 0.032 0.010

adj. R-sq 0.044 0.012 0.029 0.032 0.010
Notes: Table 4 reports the results exploring motives for investing in social networks, based on the survey responses.
Village controls, as well as time and household fixed effects, are included in the model. Errors were generated
using spatial HAC correction based on Conley [42]. Standard errors are in parenthesis. ** p < 0.05; *** p < 0.01.

As a test of the robustness of my channel analysis, I estimated the impacts of invest-
ments in social networks and simultaneously tested for the impact of long-term climate
shocks on the key socio-economic outcomes (Table A7). I found lagged average climate
shocks to have no impact on the key channel outcomes such as access to credit, number
of businesses, and access to private tubular wells. This result provides strong support
for the directional effect of climate shocks. Climate shocks trigger investments in social
network relationships, which bring with them positive socio-economic benefits to support
recovery efforts or insulate against future negative climate events. Finally, I tested the
robustness of the social capital measures to predict the key social outcomes, such as atten-
dance at public meetings and measures of trust. I found a positive association between
investments in Bridging, Linking, and FamilyNet, the probability that households will
attend a public meeting, and a positive association between linking the capital and reported
confidence/trust in key government institutions.

3.4. Discussion

Collectively, based on these results, I found households tend to be more reliant on
family-based networks when faced with higher-than-average rainfall anomalies. I also
found non-family (bridging) networks, such as membership in business associations and
NGOs, to be eroded in the face of repeated negative climate events. Perhaps an interesting
and new result to the literature is the growing importance of linked or power-based
networks, such as contacts with local government officials or senior state employees, which
tend to increase in the face of higher climate risk. This has significant implications in
terms of delivery of support and types of technical support provided by key development
organizations, which may have a greater impact and likelihood of success if they are
channeled through family or kin-based networks or local government agencies rather than
traditional non-profit organizations.

Another interesting finding is the importance of wealth rather than caste status as a
key factor associated with greater investment in power-based networks. Households that
are located in higher-income villages tend to register higher investments in linked networks,
particularly in the face of higher-than-average negative precipitation shocks, giving further
credence to the “pooled income” rather than “altruistic” motives for providing support in
social networks.
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Finally, when exploring the motives for investing in social networks, I found that
investments in linked and family-based networks were associated with greater access to
credit, also credit from family sources; increases in the number of businesses; increasing
access to irrigation wells; and higher reported collaboration. Directional tests confirmed
that households do not access these benefits in response to past negative climate events
but, rather, increase investments in social networks that are associated with these benefits.

4. Conclusions

Using long-term averages in negative rainfall shocks, as well as lagged climate shocks,
I found households that experience higher average negative rainfall shocks tend to have
greater investments in vertical and family-caste-based networks. I found investments in
linked networks to be marginally lower among villages dominated by SCSTs and also
High Caste groups, while households that reside in villages with a high village income
tend to have greater investments in linked networks. This result suggests wealth, rather
than caste status, increases households’ ability to access linked networks when faced with
higher-than-average negative rainfall shocks. Interestingly, I found little or no impact of
negative precipitation shocks on investments in social network relationships among house-
holds that generate most of their income from salary and wage sources. Finally, I found
investments in bridging (non-family networks) to be particularly sensitive to repeated
negative precipitation anomalies. Collectively, these results highlight the importance of
family/caste and linked network relationships in supporting households impacted by
higher than average and repeated negative precipitation shocks. Not surprisingly, I found
investments in vertical and family-based networks to be associated with greater access to
credit (and sourced from family members), greater diversification into non-farm businesses,
higher levels of reported collaboration, and increasing use of private irrigation technology,
all of which are key to mitigating the impact of negative climate shocks.

From a policy perspective, these results highlight the importance of supporting family
and vertical network arrangements through direct financial support, dissemination of
drought-support programs, or improvements in governance structures and accountability
frameworks within these communities. Such social support can extend the marginal social
benefit of participating in these network relationships, extending spillover benefits to
members, and also making these network relationships more resilient to repeated negative
climate events. Further research is required to understand possible channels through which
social networks are affected by climate shocks. This can be due to factors such as increasing
migration, loss of income, and illness or death of household members. It will also be
useful to trace possible outcomes of eroded social networks, in terms of increasing crime,
higher poverty levels, or more instances of implementation of poor climate mitigation
strategies, such as child marriages. Finally, I have also developed a theoretical risk sharing
model which captures households’ decision to join social networks as adaptive response to
increasing climate risk. The model also predicts household’s behavior in terms of continued
network participation in the face of more frequent and intense climate risk. Indeed, while
still preliminary, predictions of the theoretical model complement well the empirical results
found in this paper (see Supplementary Materials).

Funding: This research received no external funding.

Supplementary Materials: Refs. [42–44] are cited in the Supplementary Materials. The following
supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/cli1010014
9/s1. A theoretical framework based on a risk-sharing model with infinitely lived households has
been developed to model household behavior in the face of persistent negative climate shocks. In
general, the models predict that network members will continue to invest in network relationships,
once expected future benefits from network participation, exceed the opportunity costs of deviating
from the network arrangement. The model also predicts continued network participation in the
face of short-term (idiosyncratic) climate shocks. once network members are assured that net future
benefits can be gained from network participation. However, once climate shocks become persistent
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or are expected to be more widespread (systematic), the model predicts network members have a
greater incentive to deviate from network-sharing arrangements.
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Appendix A

Table A1. Assessing the impact of lagged climate shocks (seven-year) on key measures of social capital.

(1) (2) (3)

BridgeStd LinkStd FamilyNetStd

Total Positive Temperature Shocks Lag1 −0.0228 −0.0741 *** −0.0495 ***
(0.0172) (0.0258) (0.0182)

Total Positive Temperature Shocks Lag2 0.00320 0.0530 ** 0.0369 **
(0.0182) (0.0260) (0.0160)

Total Positive Temperature Shocks Lag3 −0.0224 0.00378 −0.0497 **
(0.0216) (0.0350) (0.0203)

Total Positive Temperature Shocks Lag4 0.0558 *** −0.0457 * −0.00902
(0.0195) (0.0251) (0.0184)

Total Positive Temperature Shocks Lag5 0.00818 0.0467 0.00235
(0.0183) (0.0357) (0.0226)

Total Positive Temperature Shocks Lag6 0.0421 ** −0.00880 0.00170
(0.0171) (0.0223) (0.0139)

Total Positive Temperature Shocks Lag7 −0.0434 ** 0.0459 0.0705 ***
(0.0169) (0.0292) (0.0162)

Total Negative Rainfall Shocks Lag1 0.0218 0.0932 ** 0.0477 *
(0.0312) (0.0449) (0.0278)

Total Negative Rainfall Shocks Lag2 0.0202 −0.0178 0.0589 **
(0.0236) (0.0414) (0.0287)

Total Negative Rainfall Shocks Lag3 −0.0732 0.130 ** 0.0539
(0.0498) (0.0640) (0.0342)

Total Negative Rainfall Shocks Lag4 −0.00247 0.0445 −0.0523 *
(0.0357) (0.0504) (0.0284)

Total Negative Rainfall Shocks Lag5 −0.0504 ** −0.0669 −0.0370
(0.0196) (0.0434) (0.0245)

Total Negative Rainfall Shocks Lag6 0.0152 0.0507 −0.00871
(0.0320) (0.0543) (0.0327)

Total Negative Rainfall Shocks Lag7 −0.0000128 0.0410 0.0175
(0.0362) (0.0479) (0.0343)

N 40,384 40,384 40,384
R-sq 0.042 0.076 0.047

adj. R-sq 0.041 0.074 0.046
Notes: Tables A1 and A2 provide the results of the impacts of seven-year lagged negative rainfall shocks on social
networks. Village controls, as well as time and household fixed effects, are included in the model. Errors were
calculated based on Conley [42] to adjust for spatial autocorrelation. Standard errors are in parenthesis. * p < 0.10;
** p < 0.05.
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Table A2. Results assessing the impacts of the average climate shocks on social networks among
high-income villages.

1 2 3 4 5 6

BridgeStd LinkStd FamilyNetStd BridgeStd LinkStd FamilyNetStd

Average Rainfall Deviations −0.0238 −0.144 * −0.0749 ** −0.0253 −0.145 ** −0.0755 **
(0.032) (0.074) (0.034) (0.033) (0.073) (0.033)

Average Temperature Deviations 0.0455 −0.196 *** −0.0415 0.0443 −0.196 *** −0.0418
(0.037) (0.060) (0.032) (0.038) (0.058) (0.032)

Negative Rainfall Shocks −0.0395 0.200 *** 0.161 *** −0.0669 0.222 *** 0.168 ***
(3 Yr Average) (0.045) (0.064) (0.037) (0.055) (0.066) (0.041)

SCST Villages*Positive
Rainfall Shocks 0.000185 −0.156 ** −0.0901

(3 Yr Average) (0.059) (0.080) (0.062)
High Caste Villages*Negative

Rainfall Shocks 0.0610 −0.125 * −0.0603

(3 Yr Average) (0.066) (0.072) (0.067)

N 40,419 40,419 40,419 40,419 40,419 40,419
R-sq 0.010 0.041 0.018 0.010 0.041 0.018

adj. R-sq 0.009 0.041 0.018 0.009 0.041 0.017

Notes: Table A2 reports the results assessing the impacts of average climate shocks on social networks among
villages dominated by SCSTs in 2005. In this case, villages where SCST groups represent 50 percent or more of the
total village population take a value of 1, or 0 otherwise. Village controls, as well as time and household fixed
effects, are included in the model. Errors were generated using spatial HAC correction based on Conley [42].
Standard errors are in parenthesis. * p < 0.10; ** p < 0.05; *** p < 0.01.

Table A3. Results assessing the impacts of average climate shocks on social networks among high-
income villages.

1 2 3

BridgeStd LinkStd FamilyNetStd

Average Rainfall Deviations −0.0111 −0.138 * −0.0861 ***
(0.032) (0.072) (0.031)

Average Temperature Deviations 0.0482 −0.195 *** −0.0447
(0.037) (0.058) (0.031)

Positive Rainfall Shocks 0.0643 ** −0.0283 −0.0945 **
(3 Yr Average) (0.028) (0.052) (0.038)

Negative Rainfall Shocks −0.0288 0.113 ** 0.107 ***
(3 Yr Average) (0.038) (0.054) (0.032)

High Income Villages*Positive Rainfall Shocks 0.0353 −0.122 *** −0.0142
(3 Yr Average) (0.037) (0.032) (0.029)

High-Income Villages *Negative Rainfall Shocks 0.0467 0.206 *** 0.0385
(3 Yr Average) (0.053) (0.058) (0.038)

N 40,419 40,419 40,419
R-sq 0.013 0.041 0.021

adj. R-sq 0.013 0.041 0.020
Notes: Table A3 reports results assessing the impacts of average climate shocks on social networks among
high-income villages in 2005. In this case, high-income villages are villages where the average income levels are in
the third quartile range (75 percent and above) of all villages included in the sample. Village controls, as well as
time and household fixed effects, are included in the model. Errors were generated using spatial HAC correction
based on Conley [42]. Standard errors are in parenthesis. * p < 0.10; ** p < 0.05; *** p < 0.01.
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Table A4. Results assessing the impacts of repeated negative rainfall shocks on key measures of
social capital (low-income villages).

1 2 3 4 5 6

BridgeStd BridgeStd LinkStd LinkStd FamilyNetStd FamilyNetStd

Repeated Negative Rainfall Shocks 0.0112 0.0437 ** 0.0198 *
3 Yr (Total) (0.0110) (0.0186) (0.0110)

Repeated Negative Rainfall Shocks −0.00286 0.00673 0.0110
5 Yr (Total) (0.00936) (0.0158) (0.0115)

Low Income*Repeated Negative
Rainfall Shocks −0.00503 −0.0390 * −0.0102

3 Yr (Total) (0.0128) (0.0199) (0.0120)
Low Inc*Repeated Negative

Rainfall Shocks −0.00230 −0.00303 0.000191

5 Yr (Total) (0.0124) (0.0159) (0.0107)
N 40,384 40,384 40,384 40,384 40,384 40,384

R-sq 0.024 0.023 0.055 0.050 0.029 0.029
adj. R-sq 0.023 0.021 0.054 0.048 0.028 0.028

Table A4 reports result assessing the impacts of repeated negative rainfall shocks on key measures of social
network relationships. Repeated negative rainfall shocks are districts in India that have experienced consecutive
years of negative precipitation anomalies over a three-year (and five-year) period. Low-income villages are
villages where average income levels are 50 percent or lower than the average income of all villages included
in the sample. Village controls, as well as time and household fixed effects, are included in the model. Errors
were generated using spatial HAC correction based on Conley [42]. Standard errors are in parenthesis. * p < 0.10;
** p < 0.05.

Table A5. Results assessing the impacts of negative rainfall shocks on social networks based on
5-year (averages) and rainfall shocks occurring during India’s monsoon season.

1 2 3 4 5 6

BridgeStd LinkStd FamilyNetStd BridgeStd LinkStd FamilyNetStd

Average Rainfall Deviations −0.0196 −0.140 * −0.0842 ***
(0.032) (0.072) (0.030)

Average Temperature Deviations 0.0309 −0.176 *** 0.00175
(0.037) (0.058) (0.028)

Positive Rainfall Shocks 0.00358 −0.00294 −0.0108 ***
(5 Yr Average) (0.003) (0.003) (0.003)

Negative Rainfall Shocks −0.0372 0.0969 0.0939 **
(5 Yr Average) (0.052) (0.078) (0.047)

Average Monsoon Temperature
Deviations 0.063 *** −0.103 *** 0.001

(0.02) (0.03) (0.03)
Average Monsoon Rainfall Deviations −0.03 0.087 0.112 *

(0.05) (0.08) (0.07)
Negative Monsoon Rainfall Shocks −0.186 *** −0.127 0.143 **

(3 Yr Averages) (0.06) (0.13) (0.06)

N 40,419 40,419 40,419 40,419 40,419 40,419
R-sq 0.010 0.037 0.020 0.014 0.029 0.015

adj. R-sq 0.010 0.036 0.020 0.014 0.029 0.015

Notes: Table A5 reports results assessing the impacts of average climate shocks based on five-year averages and
also the average rainfall shocks occurring during India’s monsoon planting season on social networks. Village
controls, as well as time and household fixed effects, are included in the model. Errors were generated using
spatial HAC correction based on Conley [42]. Standard errors are in parenthesis. * p < 0.10; ** p < 0.05; *** p < 0.01.
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Table A6. Results assessing the impacts of negative rainfall shocks on households earning salary
income.

1 2 3

BridgeStd LinkStd FamilyNetStd

Average Rainfall Deviations −0.0235 −0.146 * −0.0768 **
(0.031) (0.075) (0.033)

Average Temperature Deviations 0.0452 −0.195 *** −0.0422
(0.037) (0.059) (0.033)

Negative Rainfall Shocks −0.0435 0.152 *** 0.141 ***
(3 Yr Averages) (0.041) (0.055) (0.034)

Salaried Households* Negative
Rainfall Shocks 0.0599 0.0751 −0.0191

(3 Yr Averages) (0.078) (0.096) (0.059)

N 40,419 40,419 40,419
R-sq 0.009 0.037 0.017

adj. R-sq 0.009 0.037 0.017
Table A6 reports the results assessing the impacts of negative rainfall shocks on households earning salaried
income. Village controls, as well as time, month of survey, and household fixed effects, are included in the model.
Errors were generated using spatial HAC correction based on Conley [42]. Standard errors are in parenthesis.
* p < 0.10; ** p < 0.05; *** p < 0.01.

Table A7. Results assessing the impact of key measures of social capital and climate shocks (three-year
averages) on key measures of social outcomes.

1 2 3 4 5

Ln(#Loans)

Loans
Number of
Businesses

Reported
Collaboration

Private
WellsFrom Family

members

BridgeStd 0.0544 *** −0.0147 ** −0.022 0.00318 −0.000953
(0.016) (0.006) (0.017) (0.011) (0.006)

LinkStd 0.0763 *** 0.0240 *** 0.0365 *** 0.0327 *** 0.00451
(0.015) (0.006) (0.013) (0.011) (0.005)

FamilyNetStd 0.0193 −0.00419 −0.00434 0.00295 0.0109 **
(0.016) (0.007) (0.021) (0.011) (0.005)

Negative
Rainfall Shocks
(3 Yr Average)

0.0115 0.028 0.0245 0.00679 0.0112

(0.046) (0.018) (0.021) (0.035) (0.012)
N 40,354 40,384 6553 40,384 40,136

R-sq 0.113 0.039 0.046 0.108 0.024
adj. R-sq 0.112 0.037 0.038 0.107 0.023

Notes: Table A7 provides the results of the impacts of key measures of social capital and negative precipitation
anomalies (three-year averages) on key social outcomes. Village controls as well as time and household fixed
effects are included in the model. Errors were generated using spatial HAC correction based on Conley [42].
Standard errors are in parenthesis. ** p < 0.05; *** p < 0.01.

References
1. Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate

Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151.

2. Dell, M.; Jones, B.F.; Olken, B.A. What do we learn from the weather? The new climate–economy literature. J. Econ. Lit. 2014, 52,
740–798. [CrossRef]

3. Carleton, T.A.; Hsiang, S.M. Social and economic impacts of climate. Science 2016, 353, aad9837. [CrossRef] [PubMed]
4. Adger, W.N. Social Capital and Climate Change. 2001. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.580.5077&rep=rep1&type=pdf (accessed on 11 September 2017).
5. Adger, W.N. Social capital, collective action, and adaptation to climate change. In Der Klimawandel; Springer: Berlin/Heidelberg,

Germany, 2010; pp. 327–345.
6. Wolf, J.; Adger, W.N.; Lorenzoni, I.; Abrahamson, V.; Raine, R. Social capital, individual responses to heat waves and climate

change adaptation: An empirical study of two UK cities. Glob. Environ. Chang. 2010, 20, 44–52. [CrossRef]

http://doi.org/10.1257/jel.52.3.740
http://doi.org/10.1126/science.aad9837
http://www.ncbi.nlm.nih.gov/pubmed/27609899
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.580.5077&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.580.5077&rep=rep1&type=pdf
http://doi.org/10.1016/j.gloenvcha.2009.09.004


Climate 2022, 10, 149 19 of 20

7. Chen, H.; Wang, J.; Huang, J. Policy support, social capital, and farmers’ adaptation to drought in China. Glob. Environ. Chang.
2014, 24, 193–202. [CrossRef]

8. Abid, M.; Ngaruiya, G.; Scheffran, J.; Zulfiqar, F. The role of social networks in agricultural adaptation to climate change:
Implications for sustainable agriculture in Pakistan. Climate 2017, 5, 85. [CrossRef]

9. Abid, M.; Ali, A.; Raza, M.; Mehdi, M. Ex-ante and ex-post coping strategies for climatic shocks and adaptation determinants in
rural Malawi. Clim. Risk Manag. 2020, 27, 100200. [CrossRef]

10. Jones, N.; Clark, J. Social capital and climate change mitigation in coastal areas: A review of current debates and identification of
future research directions. Ocean Coast. Manag. 2013, 80, 12–19. [CrossRef]

11. Flora, C.B. Rural Communities: Legacy and Change; Lapping, M.B., Weinberg, M.L., Eds.; Westview Press: Boulder, CO, USA;
Oxford, UK, 1992; p. 17.

12. Fafchamps, M.; Minten, B. Returns to Social Network Capital among Traders. Oxf. Econ. Pap. 2002, 54, 173–206. [CrossRef]
13. Bloch, F.; Genicot, G.; Ray, D. Informal insurance in social networks. J. Econ. Theory 2008, 143, 36–58. [CrossRef]
14. Bloch, F.; Dutta, B. Formation of networks and coalitions. Handb. Soc. Econ. 2011, 1, 729–779.
15. Hsiang, S. Climate econometrics. Annu. Rev. Resour. Econ. 2016, 8, 43–75. [CrossRef]
16. Fafchamps, M.; Gubert, F. The formation of risk sharing networks. J. Dev. Econ. 2007, 83, 326–350. [CrossRef]
17. Parthasarathy, B.; Sontakke, N.; Monot, A.; Kothawale, D. Droughts/floods in the summer monsoon season over different

meteorological subdivisions of India for the period 1871–1984. J. Climatol. 1987, 7, 57–70. [CrossRef]
18. Kripalani, R.; Kulkarni, A. Climatic impact of El Nino/La Nina on the Indian monsoon: A new perspective. Weather 1997, 52,

39–46. [CrossRef]
19. Taraz, V. Adaptation to climate change: Historical evidence from the Indian monsoon. Environ. Dev. Econ. 2017, 22, 517–545.

[CrossRef]
20. Woolcock, M. Social capital and economic development: Toward a theoretical synthesis and policy framework. Theory Soc. 1998,

27, 151–208. [CrossRef]
21. Adhikari, K.P. Bridging, linking, and bonding social capital in collective action. Collect. Action Prop. Rights CAPRi 2008, 1, 23.
22. Hawkins, R.L.; Maurer, K. Bonding, bridging and linking: How social capital operated in New Orleans following Hurricane

Katrina. Br. J. Soc. Work 2010, 40, 1777–1793. [CrossRef]
23. Poortinga, W. Community resilience and health: The role of bonding, bridging, and linking aspects of social capital. Health Place

2012, 18, 286–295. [CrossRef]
24. Matsuura, K.; Willmott, C. Terrestrial Air Temperature and Precipitation: 1900–2006 Gridded Monthly Time Series, Version 1.01.

University of Delaware. Available online: http://climate.geog.udel.edu/climate (accessed on 11 September 2017).
25. Da Rocha Júnior, R.L.; Cavalcante Pinto, D.D.; dos Santos Silva, F.D.; Gomes, H.B.; Barros Gomes, H.; Costa, R.L.; Santos Pereira,

M.P.; Peña, M.; dos Santos Coelho, C.A.; Herdies, D.L. An Empirical Seasonal Rainfall Forecasting Model for the Northeast Region
of Brazil. Water 2021, 13, 1613. [CrossRef]

26. IndiaMap 2001. ML Infomap: [New Delhi]. 2006. Available online: https://guides.library.upenn.edu/IndiaGISdatasets (accessed
on 11 September 2017).

27. Subbaramayya, I.; Naidu, C. Spatial variations and trends in the Indian monsoon rainfall. Int. J. Climatol. 1992, 12, 597–609.
[CrossRef]

28. Dell, M.; Jones, B.F.; Olken, B.A. Temperature shocks and economic growth: Evidence from the last half century. Am. Econ. J.
Macroecon. 2012, 4, 66–95. [CrossRef]

29. Iyer, L.; Topalova, P.B. Poverty and Crime: Evidence from Rainfall and Trade Shocks in India. Harv. Bus. Sch. Harv. Bus. Sch.
Work. Pap. 2014. [CrossRef]

30. Blakeslee, D.S.; Fishman, R. Weather shocks, agriculture, and crime evidence from India. J. Hum. Resour. 2018, 53, 750–782.
[CrossRef]

31. Fishman, R.M. Climate change, rainfall variability, and adaptation through irrigation: Evidence from Indian agriculture. In
Working Paper; Columbia University: New York, NY, USA, 2012.

32. Singh, N.; Ranade, A. The Wet and Dry Spells across India during 1951–2007. J. Hydrometeorol. 2010, 11, 26–45. [CrossRef]
33. Guhathakurta, P.; Rajeevan, M. Trends in the rainfall pattern over India. Int. J. Climatol. 2008, 28, 1453–1469. [CrossRef]
34. Narayan, D.; Pritchett, L. Cents and Sociability: Household Income and Social Capital in Rural Tanzania. Econ. Dev. Cult. Chang.

1999, 47, 871–897. [CrossRef]
35. Narayan, D. Social Capital and Economic Development: Well-Being in Developing Countries; Chapter 4: Bonds and Bridges: Social

Capital and Poverty; Edward Elgar Publishing: Cheltenham, UK, 2002.
36. Putnam, R.D. Democracies in Flux: The Evolution of Social Capital in Contemporary Society; Oxford University Press: Oxford, UK,

2002.
37. Woolcock, M.; Narayan, D. Social Capital: Implications for Development Theory, Research, and Policy. World Bank Res. Obs. 2000,

15, 225–249. [CrossRef]
38. Szreter, S.; Woolcock, M. Health by association? Social capital, social theory, and the political economy of public health. Int. J. Epidemiol.

2004, 33, 650–667.
39. Urwin, P.; Di Pietro, G.; Sturgis, P.; Jack, G. Measuring the Returns to Networking and the Accumulation of Social Capital: Any

Evidence of Bonding, Bridging, or Linking? Am. J. Econ. Sociol. 2008, 67, 941–968. [CrossRef]

http://doi.org/10.1016/j.gloenvcha.2013.11.010
http://doi.org/10.3390/cli5040085
http://doi.org/10.1016/j.crm.2019.100200
http://doi.org/10.1016/j.ocecoaman.2013.03.009
http://doi.org/10.1093/oep/54.2.173
http://doi.org/10.1016/j.jet.2008.01.008
http://doi.org/10.1146/annurev-resource-100815-095343
http://doi.org/10.1016/j.jdeveco.2006.05.005
http://doi.org/10.1002/joc.3370070106
http://doi.org/10.1002/j.1477-8696.1997.tb06267.x
http://doi.org/10.1017/S1355770X17000195
http://doi.org/10.1023/A:1006884930135
http://doi.org/10.1093/bjsw/bcp087
http://doi.org/10.1016/j.healthplace.2011.09.017
http://climate.geog.udel.edu/climate
http://doi.org/10.3390/w13121613
https://guides.library.upenn.edu/IndiaGISdatasets
http://doi.org/10.1002/joc.3370120606
http://doi.org/10.1257/mac.4.3.66
http://doi.org/10.2139/ssrn.2419522
http://doi.org/10.3368/jhr.53.3.0715-7234R1
http://doi.org/10.1175/2009JHM1161.1
http://doi.org/10.1002/joc.1640
http://doi.org/10.1086/452436
http://doi.org/10.1093/wbro/15.2.225
http://doi.org/10.1111/j.1536-7150.2008.00603.x


Climate 2022, 10, 149 20 of 20

40. Akerlof, G. The Economics of Caste and of the Rat Race and Other Woeful Tales. Q. J. Econ. 1976, 90, 599–617. [CrossRef]
41. Conley, T.G. GMM estimation with cross sectional dependence. J. Econ. 1999, 92, 1–45. [CrossRef]
42. Coate, S.; Ravallion, M. Reciprocity without commitment: Characterization and performance of informal insurance arrangements.

J. Dev. Econ. 1993, 40, 1–24. [CrossRef]
43. De Weerdt, J.; Fafchamps, M. Social identity and the formation of health insurance networks. J. Dev. Stud. 2011, 47, 1152–1177.

[CrossRef]
44. De Weerdt, J.; Dercon, S. Risk-sharing networks and insurance against illness. J. Dev. Econ. 2006, 81, 337–356. [CrossRef]

http://doi.org/10.2307/1885324
http://doi.org/10.1016/S0304-4076(98)00084-0
http://doi.org/10.1016/0304-3878(93)90102-S
http://doi.org/10.1080/00220388.2010.527952
http://doi.org/10.1016/j.jdeveco.2005.06.009

	Introduction 
	Data Sources and Methods 
	Climate Data for India 
	Understanding India’s Fluctuating Interdecadal Rainfall Patterns 
	Measuring Social Capital and Adding Key Control Variables 
	Empirical Strategy 

	Results 
	Assessing the Impact of Repeated Climate Shocks 
	Tracing Heterogeneous Impacts 
	Extensions and Robustness Tests 
	Discussion 

	Conclusions 
	Appendix A
	References

