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Abstract: Runoff plays an essential part in the hydrological cycle, as it regulates the quantity of water
which flows into streams and returns surplus water into the oceans. Runoff modelling may assist
in understanding, controlling, and monitoring the quality and amount of water resources. The aim
of this article is to discuss various categories of rainfall–runoff models, recent developments, and
challenges of rainfall–runoff models in flood prediction in the modern era. Rainfall–runoff models
are classified into conceptual, empirical, and physical process-based models depending upon the
framework and spatial processing of their algorithms. Well-known runoff models which belong
to these categories include the Soil Conservation Service Curve Number (SCS-CN) model, Storm
Water Management model (SWMM), Hydrologiska Byråns Vattenbalansavdelning (HBV) model,
Soil and Water Assessment Tool (SWAT) model, and the Variable Infiltration Capacity (VIC) model,
etc. In addition, the data-driven models such as Adaptive Neuro Fuzzy Inference System (ANFIS),
Artificial Neural Network (ANN), Deep Neural Network (DNN), and Support Vector Machine (SVM)
have proven to be better performance solutions in runoff modelling and flood prediction in recent
decades. The data-driven models detect the best relationship based on the input data series and the
output in order to model the runoff process. Finally, the strengths and downsides of the outlined
models in terms of understanding variation in runoff modelling and flood prediction were discussed.
The findings of this comprehensive study suggested that hybrid models for runoff modeling and
flood prediction should be developed by combining the strengths of traditional models and machine
learning methods. This article suggests future research initiatives that could help with filling existing
gaps in rainfall–runoff research and will also assist hydrological scientists in selecting appropriate
rainfall–runoff models for flood prediction and mitigation based on their benefits and drawbacks.

Keywords: rainfall–runoff; data-driven modelling; hydrological models; machine learning; process-
based modelling; flood mitigation

1. Introduction

Hydrology is concerned with the earth’s water, its occurrence, circulation, and distribu-
tion, as well as its chemical and physical properties and interaction with the environment,
particularly its relationship with living organisms [1]. Hydrology is also concerned with
the interaction of water with the environment at each stage of the hydrologic cycle. The
hydrological cycle contains several interrelated components; for example, streamflow is
connected with precipitation [2]. Surface runoff occurs when rainwater does not infiltrate
into the soil due to the saturated condition of the soil, and the water flows over the land
surface into surface waterways such as rivers, streams, reservoirs, and lakes [3]. Surface
runoff is a key component of water resource monitoring as well as resolving water quality
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and quantity issues like flood predictions and ecological and biological connections in
the aquatic environment [4]. Runoff is also a major contributor to contaminant transport
because surplus nutrients and pesticides from agricultural lands are transported into rivers
by runoff events [5]. Information about pollution caused by runoff is necessary for water
managers to take preventive measures for safe water resources. Variations in hydrologic
systems have been observed due to a rapid increase in urbanization including deforesta-
tion, land cover change, industrialization, irrigation, etc. [6]. Climate change and soil
heterogeneity also have a serious influence on the surface flows of many rivers globally [7].
Runoff modelling is essential for better understanding the impact of all the changes on
hydrological phenomena [8].

Runoff models depict what happens in water systems as a result of changes in imper-
vious areas, vegetation, and weather events. Devia et al. [9] describes a runoff model as a
series of equations that help in the calculation of the quantity of rainfall that converts into
runoff as a function of several parameters used to characterize the watershed. Modelling
runoff is an extremely difficult process due to the convoluted interaction of various inter-
connected elements [2,10]. Runoff modelling is utilized to better understand watershed
productivity and reactions as well as to predict water availability, track changes over time,
and forecast extreme disasters (floods and droughts) [11]. For example, the hydrological
model Hydrological Simulation Program-Fortran (HSPF) predicts nutrients, sediment loads,
toxic chemicals, pesticides, and other water quality concentrations from the runoff as part of
its capabilities [12]. There are many distinct types of rainfall–runoff models available across
the world; however, none of them fit into a single category because they were built for
diverse objectives [13]. According to Moradkhani and Sorooshian [14], the optimal model is
one that produces results near to reality while using the fewest parameters and least model
complexity. The most important inputs required for rainfall–runoff models to simulate
runoff include rainfall, temperature, watershed topography, vegetation, hydrogeology, and
other physical parameters [9].

Hydrological models are classified into empirical models, conceptual models, physical
process-based models, and data-driven models [2,9,15]. Traditional empirical models
such as the Rational Method, Horton’s Model, Curve Number Model, the Agricultural
Catchment Research Unit (ACRU), and the Green Ampt Infiltration Model have been
utilized in order to simulate runoff [16–20]. The main drawbacks of these models are
that they rely on field observations that are not always accessible. The physical process-
based models follow the principles of physical processes in modelling runoff, and these
models represent catchment behavior in terms of differential equations in both space and
time [9]. They work by describing mass and momentum balance for each sub-catchment
and employing mutual boundary conditions to connect sub-systems [21]. The physical
process-based models do not need large meteorological and hydrological datasets for
calibration. On one hand, these models need the assessment of a large number of physical
characteristics that determine watershed morphology [9,15]. The most widely used physical
process-based models to simulate hydrological processes include the Systeme Hydrologique
European (SHE) model, Soil and Water Assessment Tool (SWAT), Institute of Hydrology
Distributed Model (IHDM), etc. [21,22]. According to Chiew et al. [23], physical process-
based models include a lot of parameters and have data limitations. Conceptual models
define a catchment as a collection of connected storage units, and the flow movement
between them is specified by mathematical functions. They include simple time series
models, the Sacramento Model, the 17-Parameter Stanford Model, the Hydrologiska Byråns
Vattenbalansavdelning (HBV) model, the GR4J Model, etc. [24–26]. A major restriction
of these models is that their parameters cannot be directly assessed from the catchment,
and thus they must be calibrated [27]. These downsides of empirical, physical-based, and
conceptual models urge the use of advanced data-driven models, such as machine learning
(ML) and deep learning (DL).

In recent decades, data-driven models have gained considerable attention from hy-
drologists in rainfall–runoff modelling. The most commonly used data-driven models in
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rainfall–runoff modelling include machine learning, time series models, probabilistic mod-
els, regression models, and hybridized models [28]. Safari et al. [29] used the Multivariate
Adaptive Regression Splines (MARS), Radial Basic Function (RBF), and Reproducing Ker-
nel Hilbert Space (RRKHS) methods to simulate runoff in Turkey. Mohammadi et al. [30]
demonstrated that ML models can accurately simulate streamflow series in four rivers in
the United States and Canada. The main advantage of data-driven models is that they
statistically formulate rainfall–runoff nonlinearity solely based on historical data and do
not require any knowledge of fundamental physical processes [15].

Flooding is among the most destructive natural calamities resulting in fatalities and
can endanger multiple sectors [31]. The three main types of flooding are river floods, coastal
floods, and flash floods. A flash flood is the result of runoff from excessive rainfall which
raises the water level in a stream or normally dry channel over a short period (mostly
less than 6 h). Among the three types of flooding, flash floods accounted for the highest
flood-induced deaths globally [32]. Researchers and decision-makers are in agreement
that flash flood risk management is vital for reducing different losses [33]. Understanding
rainfall–runoff modelling plays a crucial role in identifying the regions of high flood risk.
Though hydrologic and hydraulic modelling is much appreciated globally, the outputs
from these models need more attention in order to realize true watershed flow dynamics.
Hence, selecting the right category of models or knowledge-based integration of different
models could be an effective tool in flood risk assessment [31–35].

The main objectives of this review are: (1) to give an overview of different rainfall–
runoff modelling approaches and their recent applications, (2) to describe the performance
of rainfall–runoff models for flood prediction.

2. Overview of Rainfall–Runoff Modelling Approaches

A variety of rainfall–runoff models have been developed and deployed for the manage-
ment of water resources. Rainfall–runoff models are broadly classified into conceptual models,
physical process-based models, and empirical models [36]. A schematic diagram of conceptual
models, physical process-based models, and empirical models is shown in Figure 1.
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Figure 1. Schematic diagram of rainfall–runoff models: (a) conceptual model, (b) physical process-
based model, (c) empirical model [34,37,38]. 
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features, has therefore been implemented with varying degrees of success, from small ba-
sins to large catchments, encompassing both ungauged and gauged catchments [37]. Fur-
ther, each model has various downsides such as large data requirements, complexity in 
parameter estimation, and less user-friendliness. Detailed characteristics of conceptual 
models, physical models, and empirical models are provided in Table 1. 
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with a physical basis. 
3. Parameters are derived from cali-
bration and field data. 
4. Simple and can be easily imple-
mented on computers. 
5. Require large hydro-meteorologi-
cal data. 
6. Calibration involves curve fitting 
and makes physical interpretation 
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ple model structure. 
2. Calibrate with lim-
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for large catchments. 
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1. Suffer from scale 
related problems. 

2. Large number of 
parameters and 
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Figure 1. Schematic diagram of rainfall–runoff models: (a) conceptual model, (b) physical process-
based model, (c) empirical model [34,37,38].

This classification is based on model input and its parameters as well as the extent
to which physical concepts are implemented in the models. Each model, with its own set
of features, has therefore been implemented with varying degrees of success, from small
basins to large catchments, encompassing both ungauged and gauged catchments [37].
Further, each model has various downsides such as large data requirements, complexity
in parameter estimation, and less user-friendliness. Detailed characteristics of conceptual
models, physical models, and empirical models are provided in Table 1.
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Table 1. Detailed description of conceptual, physical process-based, and empirical models.

Categories Characteristics Models Strengths Weaknesses Related
Studies

Conceptual
model

1. Parametric or grey box model.
2. Include semi-empirical equations with a
physical basis.
3. Parameters are derived from calibration
and field data.
4. Simple and can be easily implemented
on computers.
5. Require large hydro-meteorological data.
6. Calibration involves curve fitting and
makes physical interpretation difficult.

HBV, GR2M, ABCD,
TANK, GR4J, SM

1. Easy to calibrate, simple
model structure.
2. Calibrate with
limited data.
3. Need less computation.

1. Does not consider
spatial variability
within catchment.

2. Not recommended for
large catchments.

[6,39–42]

Physical
process-based

model

1. Mechanistic or white box model.
2. Based on spatial distribution,
Evaluation of parameters describing
physical characteristics.
3. Complex model and requires human
expertise and computation capability.
4. Requires data about initial state of
model and morphology of catchment.
5. Represents different hydrological
processes through mass, momentum, and
energy conservation equations

TOPMODEL,
SWMM,

HEC-HMS,
WATFLOOD

1. Incorporates spatial
and temporal variability,
very fine scale.
2. Valid for wide range
of situations.

1. Suffer from scale
related problems.

2. Large number of
parameters and

calibration needed;
site specific.

[43–47]

Empirical or
data driven

model

1. Data based or metric model.
2. Involve mathematical equations, derive
value from available time series.
3. Little consideration of features and
processes of system.
4. Cannot be generated to
other catchments.
5. Valid within the boundary of given
domain

SCS-CN,
ANN, UH

1. Small number of
parameters needed.
2. Limited data
requirement.
3. Can be used in
Ungauged catchments.

1. No connection between
physical catchment, input

data distortion,
or Black-box.

2. High computation cost
and time.

[8,48–50]

2.1. Conceptual Models

Dooge [51] defines conceptual models as “models formed on the basis of a simple
arrangement of a relatively limited number of components, each of which is itself a simple
representation of a physical connection”. Conceptual models depict the water balance
equation with the transformation of rainfall to runoff, evapotranspiration, and subsurface
water as expressed in Equation (1) [52].

P − ET − Qs ± GW =
∆S
∆t

(1)

where, P, ET, Qs, GW, and ∆S
∆t are precipitation, evapotranspiration, surface runoff, ground-

water, and change in storage, respectively.
Conceptual models employ semi-empirical equations, and model parameters are deter-

mined not only from field measurements but also through calibration [53]. The calibration
of conceptual models requires a large amount of hydro-meteorological data. Lumped hy-
drological models fall under the category of conceptual models. A watershed is treated as
a single homogeneous unit in a lumped conceptual rainfall–runoff model, which averages
total rainfall, its distribution over space, soil properties, overland flow conditions, etc. In
some situations, lumped rainfall–runoff models produce good results after calibration with
historical input–output data of watershed [54]. Numerous lumped rainfall–runoff models
have been developed and implemented, such as HBV, GR2M, ABCD, TANK, etc. [55–58].
Jehanzaib et al. [40] successfully employed a GR2M and ABCD model to reconstruct stream-
flow series in South Korean territory with good model performance. The primary purpose
of lumped conceptual models is to estimate runoff; nevertheless, they are often built to
simulate actual evapotranspiration in order to account for soil water balance, and they
have no direct interest in predicting surface energy fluxes [59]. The parameters of lumped
rainfall–runoff models are normally tuned such that the simulated runoff matches the
observed runoff as much as possible. To assure conformity between model simulations of
system behavior and observations, several model calibration procedures have been devised
and applied [60]. Lumped rainfall–runoff models are simple, require less input data, and
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their calibration cost is inexpensive compared to distributed models. These models are
quite easy to use and are important tools for hydrologic analysis. Vansteenkiste et al. [61]
conducted a comparative study of five hydrological models in a medium-sized catchment in
Belgium in order to check the accuracy of lumped and distributed models. They concluded
that the lumped hydrological models took less time for calibration and produced higher
model performance as compared to distributed models. Reed et al. [62] also compared the
performance of 12 distributed models with a lumped model and reported that the perfor-
mance of lumped models remained on the higher side as compared to distributed models,
but some distributed models perform better than a trained lumped model. In conclusion,
due to their simplicity and applicability, lumped models are still highly significant tools in
hydrological modelling, particularly for estimating runoff in ungauged catchments.

2.2. Physical Process-Based Models

Physical process-based models are idealized mathematical descriptions of real phe-
nomena. These are also known as mechanistic models, since they involve physical process
concepts. Distributed models lie in the category of physical process-based models. In a
distributed model, all the hydrological phenomena, including runoff generation, snow
buildup and melt, recharging to groundwater, evapotranspiration, soil moisture dynamics,
and routing in lakes and rivers, are interrelated [63]. The parameters of distributed models
reflect the spatial variation of characteristics across the watershed while also distinguish-
ing between changes in the hydrologic processes that occur throughout the watershed.
Every small element of the watershed is modeled separately to account for hydrological
connection with the adjacent element [64].

The distributed models may be utilized to estimate the influence of land use and land
cover changes on runoff and the availability of water [65]. These models are especially
important for watersheds with diverse climate and land surface conditions. In 1979, a
semi-distributed TOPMODEL was developed to describe the runoff generation process by
incorporating both infiltration and saturation excess according to a topographical index
derived from the digital elevation model (DEM) [66]. The TOPMODEL does not consider
the spatial variability of precipitation. After the development of TOPMODEL, three fully
distributed hydrological models, namely the System Hydrologic European (SHE), MIKE-
SHE, and the Soil and Water Assessment Tool (SWAT), were developed to take into account
increasingly complicated hydrological processes [22,67]. The United States Environmental
Protection Agency (EPA) developed the Storm Water Management Model (SWMM) [68].
SWMM is a dynamic rainfall–runoff model that can be used to simulate the quantity and
quality of runoff from metropolitan areas [46,47,69,70]. A well-known rainfall–runoff model,
the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) is widely
used in climate impact assessment studies [43,71]. Similarly, the Hydrologic Research
Center Distributed Hydrologic Model (HRCDHM), Waterloo Flood Forecasting Model
(WATFLOOD), Institute of Hydrology Distributed Model (IHDM), etc., have been used for
runoff simulation and flood modelling [44,72,73].

Several researchers demonstrated that no single model consistently performs well, but
rather that individual model performances fluctuate depending on the setting [62,74,75].
The selection of a distributed model depends on the study objectives, application, and
data availability. Despite the complexity of distributed hydrological models, they are
extremely useful for studying changes in hydrological processes induced by man-made
activities including urbanization, industrialization, deforestation, water extraction, etc.
Im et al. [45] used a calibrated SHE model to investigate the impact of land-use changes
on the hydrological response and predicted streamflow well within the Gyeongancheon
watershed in South Korea. Zhang et al. [76] also found the SHE model very useful to
understand the rainfall–runoff mechanism in northwestern China. Yin et al. [77] demon-
strated that the MIKE FLOOD model and the integrated SWMM and Cellular Automata
Dual-Drainage Simulation (CADDIES) 2D model performed similarly for runoff simula-
tion. Mobilia et al. [78] compared the performance of three hydrological models: the Nash
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Cascade Model, SWMM, and the HYDRUS-1D model. The findings suggested that the
SWMM model and HYDRUS model perform well with an average Nash–Sutcliffe effi-
ciency (NSE) 0.65, while the Nash Cascade Model was found to be superior with NSE 0.73.
The availability of extensive databases is one reason why distributed parameter models
have not been widely used. Future advancements in data collection, such as the use of
geographical information systems (GIS), will likely lead to greater usage of distributed
hydrological models.

2.3. Empirical Models

Empirical models are observation-based models which rely solely on current data
without taking into account the characteristics and processes of the hydrological system,
and these models are also known as data-driven models [53]. They use mathematical
equations generated from simultaneous input and output time series rather than physical
processes of the watershed. Majority of empirical models are black-box models, which
means that very little or no information about the internal process that generates runoff
results is known [2,79]. In empirical models, the governing equation for calculating runoff
is a function of inputs as expressed in Equation (2) [80]:

Runo f f = F(X, Y) (2)

where X and Y are precipitation and historic runoff.
Unit hydrograph (UH) and Soil Conservation Service Curve Number (SCS-CN) are

simple empirical models. Statistical-based empirical models employ regression and correla-
tion methods to determine the functional connection between inputs and target variables.
Machine learning approaches employ data-driven artificial neural networks (ANN) that
self-train to understand the relationship between rainfall and runoff. The empirical models
are best employed when no extra outputs are required; for instance, this type of model
cannot determine the distribution of runoff across upstream and downstream areas. Em-
pirical models perform good modelling results in ungauged watersheds owing to a lack
of particular knowledge about the watershed [81]. Empirical models can produce reliable
simulations in a variety of conditions, including longer time steps and reconstructing his-
torical runoff values, because they need few parameters [8]. Empirical models are selected
for a variety of reasons, including ease of implementation, quicker calculation speeds,
and cost efficiency [49]. Empirical models are data-driven, so input is the main source
of uncertainty; any misinterpretation of input data has substantial consequences on the
predicted output. One disadvantage of empirical models is that they may yield results that
differ from what accepted theoretical analysis would recommend [2]. The most prominent
limitation of empirical models is that their parameters cannot be directly determined from
the watershed, hence they need to be calibrated [27].

3. Machine Learning Methods for Rainfall–Runoff Modelling

It has been scientifically proven that the forecast of the river system and its runoff pat-
tern is particularly challenging owing to natural changes and physical processes associated
with the river system. In hydrological modelling, the desire to increase the accuracy and
reliability of hydrological variable predictions has received a great deal of attention [82].
Owing to model instability and runoff behavior, such as extreme episodes in historical
records, a substantial number of models are unable to provide reliable forecasts [83]. There-
fore, researchers have focused on developing more robust and sophisticated machine
learning (ML) methods for runoff modelling and flood prediction in recent years [84]. In
ML models, the association between hydrological cycle variables and runoff is examined
directly without regard for the actual processes involved [85]. However, such ML (black-
box) approaches are good enough at modelling runoff [86,87]. The most widely used ML
approaches in hydrologic research are K-nearest neighbor (K-NN), decision tree (DT), fuzzy
rule-based systems (FRBS), ANN, deep neural networks (DNN), adaptive neuro-fuzzy
inference system (ANFIS), and support vector machine (SVM), etc. Numerous researchers
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have utilized these ML models for rainfall–runoff analysis. The pros and cons of these ML
models are listed in Table 2.

Table 2. Advantages and limitations of ML models.

Model Advantages Disadvantages Related Studies

KNN 1. Tolerate noise and irrelevant attributes.
2. Capable of identifying past events.

1. Inability to discover input–output mapping.
2. It does not predict values higher than the
range of historical observations.

[88,89]

DT 1. Easy to understand
2. Fast learning and robust to noise

1. Needs substantial amount of data
2. Tends to overfit if tree length exceeds [90,91]

SVM

1. Through the regularization parameter, the
user can avoid overfitting.
2. Easy to solve complex problems with
appropriate Kernel

1. Selection of kernel function is not easy
2. Fine-tuning of hyperparameters is difficult [92,93]

FRBS

1. Ability to handle large amount of noisy data
from dynamic and nonlinear systems.
2. Fast model development with less
computation time.

1. Attempts to reduce the number of rules
generally decreases model
generalization ability.
2. Lacks an appropriate set of guidelines for
calibrating model parameters in a way that will
maximize model interpretability.

[94,95]

DLNN

1. Learn higher-level abstractions from
input data.
2. Detects nonlinear interactions and
approximates any arbitrary function

1. High computation cost and time.
2. Very complex black box model structure. [96–98]

ANN 1. Ability to work with inadequate knowledge.
2. Needs less formal statistical training.

1. Tends to overfit.
2. Time-consuming to train with
traditional CPUs.

[99–101]

ANFIS
1. Hybrid model with the strength of ANN
and fuzzy.
2. Fast convergence rate while training.

1. Computational complexity rise with an
increase in fuzzy rules.
2. Low interpretability of learned information

[102,103]

The schematic diagram of most commonly used ML models such as ANN, DNN,
ANFIS, and SVM is presented in Figure 2.
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3.1. Artificial Neural Network (ANN)

The ANN is a highly distributed parallel information processing model with certain
performance attributes analogous to the human brain [105]. The structure of ANN is
composed of three layers: (i) input layer, (ii) hidden layer, and (iii) output layer. The
ANN networks are trained through several learning algorithms such as feed-forward
back propagation (FFBP), radial basis function (RBF), and Generalized regression neural
network (GRNN). In engineering applications, the FFBP is the most extensively adopted
ANN for non-linear generic guesstimates [106]. ANN models have been utilized by many
previous studies [99–101,107]. Wu et al. [99] employed a multi-layer neural network for
runoff prediction (four steps ahead or 1 hour ahead) and concluded that as the number of
prediction steps rises, the model’s accuracy falls. Therefore, the findings of predicting one
step ahead are more accurate than the outcomes of two-step-ahead prediction. Kişi [101]
compared four different ANN training algorithms (backpropagation, Levenberg Marquardt,
cascade correlation, and conjugate gradient) in predicting short-term daily runoff and
concluded that the performance of the LM algorithm is better in terms of computation
time and accuracy than the other three algorithms. Jain and Kumar [107] proposed a
hybrid ANN model by incorporating a general modelling framework and reported that the
hybrid ANN model performs better than the traditional ANN. Similarly, Mutlu et al. [100]
compared the performance of two different types of ANN models including the MLP
and RBF in order to predict runoff at four distinct stations and confirmed the superiority
of the MLP model over the RBF model in predicting surface runoff. The deep neural
networks (DNN), convolutional neural network (CNN), long short-term memory (LSTM),
and recurrent neural network (RNN) are the advanced forms of ANN, and they are also
becoming common of late in rainfall–runoff modelling [96–98,108]. Contrarily, the ANNs
and DNNs have noticeable limitations including over-fitting issues, local minima, learning
rate processes, computation time, computation cost and simple manual interventions such
as training. However, experts can overcome all the aforementioned difficulties and achieve
high accuracy in the runoff modelling process by adjusting specific neural network settings.

3.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS is a prominent soft computing approach capable of estimating any real
continuous function is a compact set to any level of precision [109]. The ANFIS model com-
bines the strength of both fuzzy logic with neural networks to model uncertain situations
correctly. The ANFIS is a commonly used model for runoff simulation [102,103,110,111].
El-Shafie et al. [110] utilized the ANFIS model for monthly runoff forecasting and compared
its performance with ANN. The findings suggested that the ANFIS model was capable of
forecasting inflow with high accuracy, especially in severe inflow conditions, as compared
to ANN. Özger [111] employed the Takagi Sugeno Fuzzy Inference System (TS) to simulate
runoff series. The TS rule was based on a series of linear functions for predicting runoff.
The TS relationship function took into account all of the uncertainty and complexity of
the suggested model, and the correlation between the observation and prediction values
was found to be satisfactory. Pramanik and Panda [103] compared the performance of
two ML methods such as ANN and ANFIS that trained on upstream flow data in order to
predict downstream flow. The finding suggested that the neural network with a conjugate
gradient algorithm performs better than the LM and gradient descent algorithms, while
the ANFIS estimated outflow better than ANN. Sanikhani and Kisi [102] developed two
distinct ANFIS models (ANFIS with sub-clusters [ANFISSC] and ANFIS with separated
grids [ANFISGP]) for streamflow simulation at a monthly time scale. Both proposed models
were utilized to predict runoff 1 month ahead, but the performance of the ANFISSC model
was slightly superior to ANFISGP in predicting river flow. The widespread implementation
of ANFIS for rainfall–runoff modelling is due to the fact that the fuzzy inference system
can handle missing and convoluted data that characterize the runoff. Generally, it is diffi-
cult to characterize runoff precisely; an estimation approach (fuzzy set) was suggested in
ANFIS to produce reasonable results in runoff modelling. Several researchers highlighted
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the advantages of ANFIS, which enabled them to obtain high-accuracy results for runoff
modelling at various time scales.

3.3. Support Vector Machine (SVM)

The basic principle of SVM is to translate the original data from the input space to a
higher dimension space, so the classification problem becomes easy in that feature space. In
SVM, support vectors are used as selection criteria, and these support vectors produce the
optimal data categorization boundaries [112]. Many studies have recently investigated the
capability of SVM in the runoff modelling procedure. Bray and Han [113] highlighted the
use of SVM to determine the suitable model structure and associated parameters to simulate
runoff in the Bird Creek watershed. They created a flowchart for model identification in
order to investigate the interaction between various model structures such as kernels
(linear, sigmoidal, radial, and polynomial), scaling factors, and model parameters (cost and
epsilon), and input vector composition. Li and Cheng [93] utilized three ML approaches,
namely ANN, SVM, and an extreme learning machine (ELM), for runoff prediction for two
reservoirs in China. The findings suggested that all the ML methods simulated streamflow
quite efficiently, while the SVM simulated runoff with a high correlation value (0.91) in
the validation stage. Similarly, He et al. [114] compared the performance of three ML
techniques, namely ANN, ANFIS, and SVM, for modelling runoff in a semi-arid climate.
Various input combinations were tested, and the most appropriate input variables were
selected for streamflow modelling. The results showed that the performance of the SVM
model was superior as compared to the ANFIS and ANN models. These ML techniques
also have capabilities to decrease the generalized error of the model in addition to the
mean square error (MSE) of the training dataset. Most of the researchers reported that
the radial-based kernel function of SVM is most suitable for runoff modelling because
radial-based kernel has fewer adjustment parameters as compared to polynomial and
sigmoidal kernels. Using a radial kernel, the SVM model captures the situation wherein
the relationship between inputs and outputs is non-linear. The SVM model is more suitable
for long-term streamflow simulation in comparison to short-term streamflow simulation.

4. Flood Risk Assessment

Increasing greenhouse gas concentrations in the atmosphere are projected to result in
an increase in global average temperature as well as changes to precipitation and evapo-
transpiration rates. These climatological shifts may result in extreme natural disasters such
as floods and droughts [115]. Rainfall–runoff models were employed by many researchers
to examine water resource management on a regional scale, as well as to determine the
effects of climate change on hydrology. Sood et al. [116] implemented SWAT model using
climatic data to investigate the impact of climate change on floods in the Volta river basin,
West Africa, and found a 40% decrease in river flow. Mostafazadeh et al. [117] reported
that the HEC-HMS model was particularly useful for modelling various flood control
scenarios and estimating varying percentage of peak flood reduction. Peredo et al. [118]
adapted a semi-distributed hydrological model (GRSD) with modifications to simulate
flood events occurring under different conditions in the Mediterranean region and con-
cluded that the modified model performed better than the original model. Van den Honert
and McAneney [119] reported the failure of hydrological models in the prediction of floods
that occurred in Queensland, Australia in 2010. Similarly, numerical prediction models
were regarded as a step forward in deterministic computations, but they were found to be
unreliable due to systematic problems. [120].

Over the previous two decades, the continual progress in machine learning methods
has proved their applicability for flood forecasting with an acceptable rate of outper-
forming traditional approaches. Panda, et al. [121] compared the performance of ANN
with a physical process-based MIKE 11 model for water level prediction and concluded
that the performance of ANN was superior. Modaresi et al. [122] evaluated the predic-
tion ability of various ML models such as K-nearest neighbor (KNN), ANN, least-square
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support vector regression (LS-SVR), and generalized regression neural network (GRNN),
for flood detection in Karkheh Dam, Iran. They concluded that ANN performs best.
Sankaranarayanan et al. [123] used SVM, KNN, and Nave Bayes for flood forecasting in
Bihar and Oris-sa and compared their performance with DNNs. The results showed that
DNN had a higher level of accuracy. Modern studies [124–126] recommended that the
development of hybrid models by combining the strengths of conceptual models and ML
models will be beneficial for effective flood risk assessment.

5. Conclusions

A wide range of rainfall–runoff models with multiple applications ranging from small
watersheds to global-scale models are available. Some models are comprehensive and
rely on physical processes of the hydrological cycle and consider space and time during
analysis. These models are used to model gauged and ungauged watersheds, which assist
in water management, sedimentation and erosion management, water quality assessment,
nutrients circulation, climate change impact assessment, etc. Each model has its own set
of drawbacks such as a large number of data requirements, limited user accessibility, lack
of explanations about its capabilities, etc. Models must incorporate major developments
in remote sensing technology, risk assessments, and other areas in order to address these
shortcomings. New conceptual and physical process-based models should incorporate
advanced statistical techniques for simulating in gauged and ungauged watersheds.

Meanwhile, empirical models, particularly advanced ML models, have proven to
be valuable tools for runoff modelling and flood prediction in various regions with high
accuracy. The main advantage of ML models is their limited data requirement and easy
applicability. They utilize numerous non-linear mathematical theories in order to build
relationships between input and output data. Determining efficient input parameters
is critical to achieving optimal ML model performance. Furthermore, various studies
have identified that ML models should be utilized with caution due to their non-linear
character, which can lead to over-fitting issues. It is recommended that future potential
researchers utilize the latest optimization algorithms while training the ML models in
order to reduce these limitations. ML models have great potential to simulate runoff
accurately if these limitations are overcome. Meanwhile, a few modern studies have
developed hybrid models by integrating conceptual and ML models for flood prediction
and have recommended that hybrid models are highly suitable for runoff modelling
and flood prediction. Future researchers are encouraged to develop new hybrid-based
models that combine physical process-based models with machine learning models for
streamflow simulation investigations and flood risk predictions, as effective predictions
lead to successful mitigation measures.
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