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Abstract: The global energy system is highly vulnerable to climate variability and change. This
results in a vast range of impacts on the energy demand sector and production and supply channels.
This article aims to estimate the impacts of variables such as heating and cooling temperatures,
income, population, and price on residential electricity demand in G7 countries. Methodologically,
this study uses the second-generation panel unit root and cointegration approaches (which are
robust in the presence of cross-sectional dependence), a panel fixed effects model with Driscoll–
Kraay standard errors, and a novel method of moments quantile regression (MM-QR) to determine
long-run elasticities. The results suggest that the residential electricity demand of G7 countries is
statistically and positively responsive to cold days rather than hot days. This study also presents
some policy-relevant issues based on the results.

Keywords: residential electricity consumption; temperature variation; heating degree days; cooling
degree days; Driscoll–Kraay standard errors; panel data; fixed effects; method of moment quantile
regression; G7 countries

1. Introduction

The global mean temperature has increased by approximately 1 degree Celsius (◦C) in
the last century; it could increase a further 1.8 to 4 ◦C within this century, based on how
greenhouse gas (GHG) emissions are handled [1]. Global warming will significantly impact
energy demand, which could account for a significant share of the total economic burden
due to climate change [2–5]. Conversely, the energy sector’s GHG emissions account for a
significant portion of global GHG emissions [1,6]. Consequently, energy demand affects
climate change on the one hand, and on the other hand, climate change and policy affect
energy demand. This study aims to investigate the effects of temperature variations on
energy demand with a focus on electricity.

The temperature–electricity nexus has been studied using various econometric mod-
els [4,5,7,8]. According to theory, demand for cooling processes rises once the temperature
exceeds a specific threshold; conversely, users may demand electricity for heating, and its
demand grows once the temperature drops below a specific threshold [2,4]. As a result, a
theoretical U-shaped link exists between electricity demand and temperature, and electric-
ity demand responds asymmetrically to temperature variations [2,4]. Users utilize heating
and cooling systems to maintain a comfortable temperature in their residences, directly
impacting electricity demand [4,5,7]. Choices made by individuals directly influence resi-
dential electricity demand [3,7,9]. Hence, the climate sensitivity of energy demand may be
readily demonstrated in this sector following the feedback mechanism.

The degree-day temperature measurement method has been proposed in recent studies
because of the properties of the temperature–electricity nexus. Degree days are founded
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on the idea that energy balance is attained when heat inputs into a structure equal to heat
loss, resulting in no latent load [10]. As a result, a balance point temperature (BPT) arises
when the exterior ambient temperature is sufficiently high (or low) to ensure that no further
heating (or cooling) is required. This BPT establishes the base temperature, an essential
component of the degree-day technique. Currently, the only parameter in the degree-day
methodology that may be changed to account for local conditions is the base temperature.
The BPT is used to calculate base temperatures, considering the building size, design, and
technology available in a particular geographic location [11]. As a result, base temperatures
are frequently a few degrees lower than the expected set points to adjust for the use of
external temperature. For instance, the first base temperature was 18.3 ◦C [12]. This was
calculated assuming a normal indoor comfort temperature of 21.1 ◦C, of which 2.8 ◦C may
be attributed to solar heat gain, residents, and other internal activities.

Base temperatures can often vary, subject to human preferences [13] and the individ-
ual building conditions that affect the BPT. Considering this lack of objectivity, it is not
surprising to find many base temperatures in the literature (see Azevedo et al. [14] for a
survey of based temperatures for HDD and CDD). As a result, even when the technique is
used in the same country, standardization is typically lacking. Overall, the choice of the
base value is rarely justified in the literature, highlighting the importance of further rigor
in its application [14].

There are two often-used indicators in this setting: heating degree days (HDD)
and cooling degree days (CDD), which are defined as: HDD = −min

(
0, tmp− b

)
and

CDD = max
(

0, tmp− b
)

, respectively, where tmp represents the daily mean temperature

and b is the threshold temperature. Regressing electricity demand on these temperature
variation indicators allows researchers to analyze the sensitivity of electricity demand
to climate change. These indicators have been used by recent studies investigating the
temperature–electricity demand nexus; see [4,5,7].

Many studies have analyzed the various sources of energy demand sensitivity to
temperature within specific conditions. It is common for these studies to include as many
socioeconomic and geographic variables as feasible. Micro-perspectives help evaluate pol-
icy initiatives or analyze the energy demand sensitivity to temperature variations in a single
country or region. However, this study focuses on cross-country analysis. Cross-country
data on variables such as energy demand patterns, technology, economic conditions, and
climates are more comprehensive and provide a basis for more exhaustive and robust anal-
ysis and decision-making. Thus, estimated relationships using such data provide a basis for
a robust projection of climate and economic conditions. To comprehensively understand
climate change’s impacts, it is essential to determine how much energy demand is affected
by temperature variations.

The primary aim of this study is to determine the temperature sensitivity of G7
residential electricity demand. Due to earlier studies demonstrating that energy demands
in the service and manufacturing sectors are weakly affected by temperature variations,
we focus on residential energy demand; see [9,15]. We extend the current literature by
incorporating theoretical developments of previous studies and introducing some novel
aspects. Heating and cooling degree days replace traditional methods for assessing the
energy demand impact of temperature variations. Additional factors that could affect
temperature sensitivity include income, population, and electricity prices.

As we have a sufficiently large number of data points, we can more confidently
estimate the relationships between variables. The G7 countries constitute the world’s
biggest economies, taking up about 40% of the global economy, consuming around 30% of
global energy, and producing about 25% of global energy-related CO2 emissions (including
2.7 Gt from electricity). The IEA [6] projects an increase of about 80% in G7 electricity
demand by the year 2050. This has enormous implications for the global energy system
decarbonization agenda. Thus, achieving net-zero emissions by 2050 will be impossible
without decarbonizing energy.
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Current literature using panel unit root and cointegration to investigate the long-run
nexus between energy demand (e.g., electricity demand) and climate change (e.g., temper-
ature) is dominated by the first-generation panel unit root and cointegration approaches
of Pedroni [16,17] and Kao [18]; see [8]. There is a dearth of studies using the second-
generation panel unit root and cointegration approaches. A key differentiating factor
between these two approaches is that the first generation is not robust in the presence of
cross-sectional dependence. A generation panel cointegration test based on error correction
was developed by Westerlund [19] and is robust even when the CSD is present. Thus,
without accounting for cross-sectional dependence, estimates from existing studies are
likely spurious. The Westerlund [19] panel cointegration test is used to investigate the
existence of a long-run relationship between residential electricity demand and its drivers.
A fixed effects model with Driscoll–Kraay standard errors [20] and the novel method of
moments quantile regression (MM-QR) [21] are used to determine long-run elasticities in
this study.

A review of the relevant empirical literature is provided in the next section. Using the
concept of heating degree days, we illustrate how we model the electricity demand drivers
and present our data in Section 3. The results and discussion of the heating and cooling
effects, and the results of covariates, are presented in Section 4. Section 5 brings the study
to a close by outlining the study’s policy implications and limitations.

2. Review of Related Empirical Literature

A critical yet complex subject is how climate change affects people’s lives and the
economy. Several studies have been conducted to answer this question in the last few years.
An in-depth review of weather data, climate models, and their application to the social
sciences is provided by Auffhammer [22]. A summary and synthesis of recent innovations
in theoretical and empirical methodologies employed to analyze the socioeconomic impacts
of climate change is provided by Hsiang [23]. More specifically, this study is related to
recent research on the effects of temperature on energy demand, which has focused on
the residential sector. Research has shown that residential electricity demand is more
responsive to temperature variations than the industrial sector; see [9,15]. The demand
for space cooling in the residential sector is driven by the fact that consumers desire
stable comfort conditions [7]. The energy–temperature nexus is commonly considered a
hypothetical U-shape in literature [4,5]. The threshold is the temperature at which heating
and cooling are equally balanced. Increased cooling demand is expected if the temperature
rises over the threshold, whereas increased heating demand is expected if the temperature
falls below the threshold.

The HDD and CDD are commonly used to measure temperature in the literature. Al-
though the HDD represents the cumulative degrees below the threshold temperature across
specified time intervals (e.g., hourly, daily, monthly, among others), the CDD represents the
cumulative degrees above the threshold temperature [3]. Several studies have extensively
utilized these measures; see [2,4,5,7,24–26]. These studies commonly set a threshold tem-
perature of 18.3 ◦C (or 65 ◦F). Some studies argue against the 18.3 ◦C temperature threshold.
According to Kaufmann et al. [27], the 18.3 ◦C threshold biases statistical estimates in the
context of global warming. Other research suggests that the thresholds should be based on
building characteristics and other non-temperature parameters [28,29].

Tol et al. [2] studied the impact of temperature changes on energy use in 62 countries
from 1978 to 2002. Their results showed that electricity demand declines with increasing
temperatures due to a reduction in the demand for energy for heating, even though the rate
of reduction decreases as temperature increases. Additionally, they found that temperature
did not affect the demand for cooling energy. Li et al. [5] estimated the climatic impacts
on residential energy consumption in China from 1985 to 2000. Their results suggested
a warmer summer would have a more significant effect than a colder winter, meaning
an increase in annual electricity usage due to global warming. Yating et al. [30] used
a fixed effects panel model of Chinese households to investigate the effects of climate
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change on electricity demand. Their results showed that, on cold days, an increase in
temperatures of 1 ◦C lowered electricity consumption by 2.8%, and on warm days, an
increase in temperature of 1 ◦C increased electricity consumption by 14.5%. Trend analysis
and time series data from 1975 to 2013 were used by Thornton et al. [31] to examine the
influence of temperature on Great Britain’s electricity demand variability and extremes.
Their results showed that mean electricity demand exhibited low-frequency variability
and was linked primarily to the influence of variable socioeconomic factors. However,
they also showed that electricity demand and temperature had a high negative correlation
(r = −0.90) when the variability of socioeconomic factors was removed.

One area of research examines how climatic influences affect energy usage in different
regions. Emodi et al. [7] used an autoregressive distributed lag (ARDL) model to investigate
the short- and long-run effects of temperature variations due to climate change on energy
demand in six Australian states and one territory. Future climate change impact on electric-
ity demand was also investigated in their study. Their results projected that the summer
peak demand for electricity would rise, whereas the demand in the winter was projected to
rise because of increasing temperature. Using a panel data model and California residents
between 2003 and 2006, Aroonruengsawat and Auffhammer [32] analyzed how household
electricity usage differed among climate zones. Their findings showed that electricity
demand rises substantially across climate zones as temperatures rise. A similar study by
Pilli-Sihvola et al. [33] investigated the impacts of a warmer climate on heating and cooling
demand in five European countries using an econometric multivariate regression model.
According to their findings, there is a predominant reduction in heating due to climate
change in Central and Northern Europe, and as a result, electricity costs will decrease.
In Southern Europe, climate change and the resulting increase in cooling and electricity
demand exceeds the decline in heating demand. Consequently, costs also increase.

Another strand of the literature has looked at the nexus between energy demand
and temperature with the various seasons. Several models, including log-linear, semi-
parametric, and non-parametric models, have been used to analyze the energy consumption
effects of climate change. According to Du et al. [4], residential electricity usage is more
likely to increase in hot weather than in cold weather due to climate change. According
to Thornton et al. [31], seasonal variations in electricity demand lead to an increased
correlation between temperature and electricity demand. Taking annual temperature and
demand cycles out of the equation, we get a correlation, r, of 0.60. Temperature and demand
are closely linked in winter, with a 1% rise in demand for electricity for every 1 ◦C decrease
in daily temperature.

Accounting for socioeconomic factors, the marginal effect of CDD on electricity con-
sumption first increases with an increase in income, as shown by Du et al. [4]. However,
when income increases further, the marginal increase curve turns flat. Yating et al. [30]
showed that as income rises, the sensitivity of households to extreme weather conditions
does not change for hotter summer days, but it does rise for colder winter days. Panel
cointegration was employed by Narayan et al. [8] to analyze the impact of income and
price on electricity demand in the G7 countries. Results from the G7 countries revealed that
income and price are critical factors in the demand for electricity caused by temperature.
Additionally, Emodi et al. [7] found that in some Australian states, there was a signif-
icant relationship between temperature-induced electricity demand and income, price,
and population.

Table A1 in Appendix A summarizes the previous studies on the relationship between
climate change (with a focus on temperature), electricity demand, and other key influencing
variables. We also highlight key methodological areas of concern that have been treated or
are yet to be treated in existing studies and report the key findings.

Most of these studies have focused on the demand for electricity in the general frame-
work of household production theory, in which a household purchases a composite energy
commodity by combining capital assets and electricity. Consequently, purchased electric-
ity and appliance capital stock determine the output of a composite energy commodity.
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Barring data constraints, Narayan et al. [8] suggested accounting for other factors such as
electricity price (either own price, substitute energy source, or both), household income,
or any other variables that may affect household preferences, including temperature or
the cost of household appliances [8]. There is still a dearth of studies accounting for these
explanatory variables. Electricity demand or energy consumption has been modelled as a
function of a single explanatory variable or two variables, such as income or temperature;
see [8]. Only a few studies have examined the relationship between electricity demand and
variables such as temperature, income, and the cost of producing the energy itself; see [7].

The present study adopts a second-generation panel unit root and cointegration
framework that considers the time-series and cross-sectional dependence properties of the
data. Recently, researchers have used a panel unit root and cointegration framework to
investigate the long-run relationship between energy demand (including electricity) and
variables such as temperature [8]. Still, there is a dearth of empirical evidence accounting
for cross-sectional dependence in estimates of the residential electricity demand equation.
Some studies have estimated household electricity income and price elasticity in a panel
design by pooling cross-sectional and time-series data from G7 countries. The findings from
these studies are spurious because these studies did not initially check if the panel data
were stationary and cross-sectionally dependent using the second-generation panel unit
root and cointegration tests. Residential electricity demand and its drivers were examined
using the panel cointegration test of Westerlund [19], which allows for cross-sectional
dependence. Long-run elasticities were estimated by using a combination of fixed effects
regression with Driscoll–Kraay (D–K) standard errors [20] and a novel method of moments
quantile regression (MM-QR) [21] estimation techniques.

The G7 countries were chosen for a few reasons. In 2020, G7 member countries
constituted the world’s biggest economies, taking up about 40% of the global economy,
consuming around 30% of global energy, and producing about 25% of global energy-related
CO2 emissions (including 2.7 Gt from electricity) (G7 member countries include Canada,
France, Germany, Italy, Japan, the United Kingdom, the United States (plus the European
Union)). The IEA projects an increase in G7 electricity demand of over 80%, a sharp
departure from the recent decade of stagnation [6]. This increase is linked to the rapid
electrification of space heating, mobility, and industrial processes. This would increase the
share of electricity in the final energy demand from about its current 22% to approximately
55% by 2050. Electricity decarbonization is essential to achieving net zero emissions by
2050 [34,35]. To achieve net-zero emissions, the G7 countries have agreed on policies and
targets that aim to phase out or reduce coal-fired electricity while growing renewables,
hydrogen, and carbon capture technologies. G7 country governments have committed
more than $500 billion to renewable energy to help countries recover from the COVID-19
pandemic, 17% of which has been allocated to the electricity sector.

Furthermore, Emodi et al. [7] note that a shift will occur such that cooling demand will
increase in temperate zones by the end of the century, whereas heating demand will steadily
decline. This point suggests that more frequent peaks in demand for cooling services, such
as electricity, should be expected. Consumers may switch to electricity, which is more
efficient over time for heating. During the summer and winter, the electricity demand will
be at its highest. Fossil fuel power stations have helped meet some of these seasonal peak
demands [36]. One of the primary causes of climate change is the widespread usage of
fossil fuels. As the demand for thermal comfort rises, so does the amount of money people
are willing to spend, despite the measures in place to address climate change [37].

3. Model Specification, Data, and Method of Estimation
3.1. Selection of the Variables and Hypotheses

Identifying the key factors influencing electricity consumption is crucial before unit
root testing. This type of identification guarantees consistency between theory and the
research literature. There are two distinct types of electricity consumption in a building:
baseload and weather-dependent [7]. In contrast to baseload consumption, the litera-
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ture shows that weather-dependent consumption is more prevalent. Furthermore, be-
cause consumers might not switch out their appliance stock during the year, baseload
consumption may stay constant; however, temperature changes significantly impact
electricity consumption.

Using the degree-day methods mentioned in Section 1 and illustrated in Equations (2)
and (3) below, it is possible to determine the impact of temperature changes on electricity
demand. This approach has been widely used in literature that examines how climate
change affects energy demand [2,4,5,7,24–26,33]. These studies lead us to exclude other
weather factors from the final model, including rainfall, relative humidity, and wind speed.
In addition, recent research indicates that rainfall has a negligible effect on energy use;
see [7,9].

Socioeconomic factors such as population are crucial determinants in forecasting
energy consumption changes. According to Ahmed et al. [38], total energy consumption
would change in line with a population change, even if per capita energy consumption
remained constant over time. Studies have revealed a positive elastic relationship between
income and energy consumption in terms of income level. A change in income is linked
to an increase in energy consumption, suggesting that energy is regarded as a normal
good [4,8,30]. Additionally, some studies discover a co-integration between national energy
consumption and gross domestic product (GDP); see [39,40].

As price impacts general energy and electricity policies, price is a critical indicator
in energy demand assessment. According to Narayan et al. [8], there is a long-term
relationship between total electricity demand and price, and this relationship is price elastic.
These studies support the selection of the chosen variables—GDP, population, price, CDD,
and HDD—as significant drivers of electricity demand in the G7 countries.

The functional relationship and hypotheses are presented next. To guide the empirical
investigation, the following equation was developed based on the justification for the
selection of variables:

ln ELDi,t = ϕ0 + ϕ1︸︷︷︸
(±)

ln TMPi,t + ϕ2︸︷︷︸
(+)

ln GDPi,t + ϕ3︸︷︷︸
(+)

ln POPi,t + ϕ4︸︷︷︸
(−)

ln PRCi,t + εi,t (1)

where ELD represents the total annual residential electricity demand in petajoules, TMP
represents the temperature, GDP represents the income, POP represents the population,
and PRC represents the domestic electricity price. ϕ0 is the intercept of the functional
relationship and ϕ1, . . . , ϕ4 are the explanatory variable coefficients that explain the various
effects of the variables on ELD. The functional relationship also includes the idiosyncratic
error term ε, the country index i, and the time index t as additional parameters. The ln sign
implies that all variables have been specified in natural logarithmic form. Furthermore, we
assume strict exogeneity across the model variables.

The first step was identifying an appropriate temperature measurement, as there is
a non-linear relationship between temperature and energy demand [2,4]. According to
previous research, the relationship between climate change and electricity demand is a
U-shaped curve. Li et al. [5] indicated that the temperature-response curve of household
electricity consumption is flat when the temperature range is 18.3 ◦C, and electricity
consumptions increase with deviations from this comfort zone. For this investigation,
we followed existing studies [2,7,26] to set the temperature threshold at 18.3 ◦C and the
indicators of HDD and CDD were constructed as follows:

ln HDDi,t = −
N

∑
h=1

min(0, Tempi,t,h − 18.3) (2)

ln CDDi,t =
N

∑
h=1

max(0, Tempi,t,h − 18.3) (3)



Climate 2022, 10, 142 7 of 25

where the subscripts i, t, and h denote country, year, and hour, respectively. N represents
the total number of six hours in a year. Tempi,t,h represents the actual temperature recorded
every six hours in degrees Celsius. The HDD or CDD indicators capture the demand for
electricity needed to heat or cool buildings. The impacts of HDD and CDD are generally
found to be asymmetrical [4].

Thus, the DD in Equation (1) is expanded to account for the heating and cooling
effects of temperature, as formulated in Equations (2) and (3). This step yields the
following equations:

ln ELDi,t = ϕ0a + ϕ1a︸︷︷︸
(−)

ln HDDi,t + ϕ2a︸︷︷︸
(+)

ln GDPi,t + ϕ3a︸︷︷︸
(+)

ln POPi,t + ϕ4a︸︷︷︸
(−)

ln PRCi,t + εi,t (4)

ln ELDi,t = ϕ0b + ϕ1b︸︷︷︸
(+)

ln CDDi,t + ϕ2b︸︷︷︸
(+)

ln GDPi,t + ϕ3b︸︷︷︸
(+)

ln POPi,t + ϕ4b︸︷︷︸
(−)

ln PRCi,t + εi,t (5)

where HDD in Equation (2) denotes heating degree days or the heating effect and CDD in
Equation (3) denotes cooling degree days or the cooling effect.

3.2. Data Sources

The World Energy Balances database of the International Energy Agency [41] provided
information on electricity demand. Total home electricity demand measured in petajoules
(PJ) was the variable used. For G7 countries, IEA data on residential electricity demand
was available from 1971 to 2019. The King Abdullah Petroleum Studies and Research
Center (KAPSARC) database provided HDD and CDD data [42]. The degree-day data
were obtained by KAPSARC, utilizing satellite gridded datasets. The database provides
population-weighted degree days for 147 countries from 1948 to 2013 based on multiple
thermal comfort indices at different threshold temperatures. The database was primar-
ily created to examine the cross-country impact of weather on energy consumption; for
a detailed description, see [42]. Following previous research, we chose 18.3 ◦C as the
temperature threshold for deriving the HDD and CDD data. Thus, HDD and CDD were
derived from the plain temperature at 2 m elevation at a temperature reference point of
18.3 ◦C and a 6-hour frequency. However, only data up to 2013 were available. This study
employed the extrapolation method to extend data through 2015 to increase the number of
observations. Several recent studies have analyzed temperature–electricity demand using
KAPSARC data; see [43–45]. The Penn World Table version 10.0 provided information on
real income or real GDP [46]. The proxy variable chosen was the expenditure-side real GDP
at chained PPPs (in millions of 2017 U.S. dollars). The population data were obtained from
the FAO’s statistical database. Data on domestic electricity (own price) are IEA country
data for domestic electricity prices excluding taxes (in US cents per kilowatt-hour) collected
from the database of the UK Department of Business, Energy, and Industrial Services [47].
The database contains price information for France, Germany, Italy, Japan, and the United
Kingdom from 1979 to 2020. However, price information for North American countries
(Canada and the United States) was unavailable before 1990.

For this analysis, a balanced panel of G7 countries covering the period 1990–2015
was collected (26 years and 182 observations). Table 1 shows the variable definitions and
data sources.
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Table 1. Variable description and source.

Variable
Abbreviation Variable Description Variable Source

ELD Total residential electricity consumption (in PJ) (1 GWh = 0.0036 PJ) International Energy Agency [41]

HDD Heating degree days using plain temperature at 2 m elevation at the
temperature reference point of 18.3 ◦C and frequency of 6 hours World Average Degree Days

Database [42]
CDD Cooling degree days using plain temperature at 2 m elevation at the

temperature reference point of 18.3 ◦C and frequency of 6 hours
GDP Expenditure-side real GDP at chained PPPs (in million 2017 US$) Penn World Table version 10.0 [46]
POP Total population (in thousands) FAOSTAT [48]

PRC Domestic electricity prices in the IEA, excluding taxes (US¢/kWh) IEA, UK Department of Business,
Energy, & Industrial Services [47]

Source: Authors’ compilation.

Descriptive statistics of variables are presented in Table 2.

Table 2. Summary Statistics.

Variable Mean Median Standard Deviation Maximum Minimum

lnELD 6.457 6.199 0.880 8.557 5.246
lnHDD 9.464 9.399 0.263 10.049 8.956
lnCDD 7.011 6.992 0.766 8.101 4.883
lnGDP 14.920 14.729 0.754 16.755 13.703
lnPOP 11.281 11.046 0.656 12.679 10.223
lnPRC 2.443 2.484 0.486 3.303 1.552

Note: The number of observations for each variable is 182. Source: Authors’ compilation.

3.3. Estimation Methods

Preliminary steps were taken to identify the properties of the variables employed
and confirm the existence of singularities, which, if ignored, could result in inaccurate
inferences. Table 3 presents the crucial preliminary tests carried out in this study.

Table 3. Preliminary tests.

Test Source Description

Shapiro–Wilk Shapiro–Wilk [49] Checks for normality of the panel model

Skewness/Kurtosis D’Agostino and Belanger [50] Check for normality based on combining skewness and
kurtosis

Cross-sectional dependence Breusch and Pagan [51], Pesaran
[52] Pesaran [53] Check for the presence of cross-sectional dependence

Panel unit root Pesaran [52] Checks for the presence of unit roots

Westerlund panel cointegration Westerlund [19]
Checks for cointegration based on the presence of error
correction for individual model cross-sections and the

whole panel

Mundlak Mundlak [54] Check for individual heterogeneity and informs
suitability of random or fixed effects model

Source: Authors’ compilation.

Next, this study followed the methodological approach presented in Figure 1.
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3.3.1. Normality Test

Normality tests were used to determine the distribution of variables, including the
skewness/kurtosis [50] and Shapiro–Wilk tests [49]. The results of the normality tests are
shown in Table 4.

Table 4. Normality test.

Skewness/Kurtosis Tests Shapiro–Wilk Test

Variable Skewness Kurtosis Prob > Chi2 Prob > z

lnELD 0.000 0.066 0.000 *** 0.000 ***
lnHDD 0.004 0.455 0.016 ** 0.000 ***
lnCDD 0.003 0.623 0.015 ** 0.000 ***
lnGDP 0.000 0.409 0.000 *** 0.000 ***
lnPOP 0.000 0.768 0.003 *** 0.000 ***
lnPRC 0.063 0.000 0.000 *** 0.000 ***

Note: Number of observations for each variable is 182. *** and ** indicate statistical significance at 1% and 5%
levels, respectively. Source: Authors’ computations and compilation.

3.3.2. Cross-Sectional Dependence Test

Factors driving variations in the G7’s socio-econo-political and environmental con-
ditions probably have cross-sectional dependencies because of the strong links between
the G7 countries. As a result, we used cross-section dependence (CSD) methods to identify
the most suitable methodological techniques. This study relied on the CSD test results to
decide which panel data estimation technique to employ. It is likely for a study to yield
spurious results if the CSD test is not conducted [55]. This study conducted a robustness
review using the following three CSD tests to ensure that none of these complications
occurred: the Breusch and Pagan [51] LM technique, the Pesaran [52] CSD test statistic,
and the Pesaran [53] scaled LM CSD technique. As the temporal dimension (T) of the
dataset exceeded its cross-sectional dimension (N), this study focused on the Breusch and
Pagan [51] LM technique and the Pesaran-scaled LM test [53]. The CSD test approach is
presented in Equation (6).

CSD =

√√√√ 2T
N(N − 1)

N−1

∑
i=1

N

∑
j=i+1

ρ̂ij (6)
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where T represents the study period (1990–2015; 26 years), N represents the cross-sections
(7 countries) and ρ̂ij represents the correlation of errors between cross sections. The null
hypothesis for the CSD statistic was that there was no cross-sectional dependence.

3.3.3. Unit Root Test

To determine the unit root properties of the variables, we applied the panel unit root
test developed by Pesaran [52], which accounts for CSD. This approach extends the Dickey–
Fuller regression to address CSD. The cross-sectionally augmented Dickey–Fuller (CADF)
test is estimated as follows:

∆yi,t = αi + ρi ∗ yi,t−1 + byt−1 + b1∆yt + εi,t (7)

where yt represents the average value of y at time t across N observations. The CADF
equation is computed for each cross-sectional unit, after which the average of all the
cross-sections is determined, and the test statistic that is obtained is computed as follows:

CIPS =
1
N

N

∑
i=1

CADFi (8)

where CADFi is the statistic obtained from the CADF regression presented in Equation (7).

3.3.4. Cointegration Tests

This study employed the error correction-based cointegration test developed by West-
erlund [19], as follows:

∆Yi,t = µ′idt + ωi
(
Yi,t−1 − β′iXi,t−1

)
+

k

∑
j=1

∅ij∆Yi,t−j +
k

∑
j=1

γij∆Xi,t−j + εi,t (9)

ωi in Equation (9) is the coefficient of the error correction term, which indicates the
speed of correction towards equilibrium, and ∆ is the first difference operator. Equation (9)
yields four test statistics, as follows:

Gt =
1
N

N

∑
i=1

ω̂i
se(ω̂i)

(10)

Ga =
1
N

N

∑
i=1

Tω̂i

1−∑k
j=1 ωij

(11)

Pt =
ω̂i

se(ω)
(12)

Pa = Tω̂ (13)

where Gt in Equation (10) and Ga in Equation (11) test for cointegration in at least one
cross-sectional unit. Pt in Equation (12) and Pa in Equation (13) test for cointegration in the
whole panel. The null hypothesis states that no cointegration exists. Thus, this study will
reject the null hypothesis if one or both panel statistics show a statistically significant result.

3.3.5. Parameter Estimates

This study first employed the fixed effects regressions with Driscoll–Kraay (DK) [20]
standard errors to produce baseline estimates for Equations (2) and (3), which are robust
to cross-sectional and temporal dependence. Furthermore, this study employs the Mund-
lak [54] alternative to the Hausman [56] specification test to determine the suitability of the
random effects (RE) or fixed effects. The Mundlak approach, as opposed to the Hausman
approach, can be utilized in situations where the errors are heteroskedastic or exhibit an
intragroup correlation; for more information, see Wooldridge [57] and Pinzon [58]. The
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OLS/weighted least squares and fixed effects regression are used in the fixed effects D–K
regression approach, which also computes spatial correlation consistent standard errors
for linear panel models [59]. The standard errors of the coefficient’s estimates are adjusted
using these estimators to account for any dependence [60]. The D–K regression technique
can only model the conditional mean of the dependent variable and is, thus, limited. This
study employed the method of moments quantile regression (MM-QR), a technique that
incorporates fixed effects in panel quantile models, developed by Machado and Silva [21].
This study aimed to analyze other elements of the conditional distribution of electricity
demand (ELD). The effects of temperature, income, population, and prices on the lower,
median, and upper distributions of ELD in the G7 countries were analyzed with the help of
the MM-QR estimator. In the same vein as existing panel quantile regression approaches,
the MM-QR estimator generates reliable and valid estimates despite the absence of strict
distributional assumptions [61]. The MM-QR technique, on the other hand, produces
regression quantiles based on the conditional location-scale shift model. This makes it
possible for individual impacts to influence the distribution as a whole [62,63]. As a result,
MM-QR is more reliable and has emerged as the leading quantile regression technique in
the most current research [62,63]. The following is a general specification for the conditional
quantile QY(τ|Xit) estimation of the location-scale variant model:

QY(τ|Xit) = (αi + δiqi) + X′itβ + Z′itγq(τ) (14)

X′it is a vector of explanatory variables (i.e., degree days (HDD and CDD), real income
(GDP), population (POP), and domestic electricity price (PRC)). QY(τ|Xit) is the quantile
distribution of the dependent variable (ELD), conditional on the location of the explanatory
variable (Xit). αi(τ) = αi + δiq(τ) is the scalar coefficient of the quantile-τ fixed effect for
individual i, or the distributional effect at τ. q(τ) is the τ-th quantile resulting from the
following optimization function:

min
q ∑

i
∑

t
ρτ

(
R̂it −

(
R̂it + Z′itγ̂

)
q
)

(15)

where the following expression specifies the check-function, ρτ(A) = (τ − 1)AI{A ≤ 0}+
τAI{A > 0}. From the MM-QR model in Equation (15) and the functional relationship
in Equations (2) and (3), this study specifies the following quantile-based approach for
empirical investigation:

Qln ELDi,t [ τ|αi, vit, Xi,t] = αiτ + φ1τ ln HDDi,t + φ2τ ln GDPi,t + φ1τ ln POPi,t + φ1τ ln PRCi,t + vi,t (16)

Qln ELDi,t [ τ|αi, vit, Xi,t] = αiτ + φ1τ ln CDDi,t + φ2τ ln GDPi,t + φ1τ ln POPi,t + φ1τ ln PRCi,t + vi,t (17)

4. Empirical Results and Discussion

This section focuses on the empirical results of this study, starting with preliminary
tests and then presenting the model estimation results.

4.1. Results from Preliminary Tests
4.1.1. Normality Test

Table 4 below shows the results from the normal distribution tests. The natural
logarithm of electricity demand (lnELD) was skewed, as shown in the results of the normal
distribution tests. This study rejected the null hypothesis that the variables were normally
distributed for the sampled countries during the study period, based on D’Agostino and
Belanger’s [50] combined skewness–kurtosis test. Additionally, the Shapiro–Wilk [49] test
supported the rejection of normality in variable distributions.

This study focused on the distribution of the dependent variable, ELD. The distri-
bution of ELD is shown in Figure 2 using histogram and kernel density plots. Figure 2
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shows that the ELD has a skewed and peaked distribution markedly different from the
normal distribution.
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4.1.2. Cross-Sectional Dependence Test

When T > N, De Hoyos & Sarafidis [64] recommend using the Breusch and Pagan’s [51]
Lagrange Multiplier (LM) test. In this study, the T is greater than the N dimension; thus,
we use the LM test for CSD. Furthermore, this study follows recent studies by including
the Pesaran [52] test statistic and the Pesaran [53] LM CSD test [see [55,64]]. Applying the
Breusch-Pagan LM and Pesaran CSD tests for the panel data (Table 5) showed the existence
of CSD in all model variables. The CSD tests suggested that the countries chosen for this
research have similar traits and shocks [65].

Table 5. Cross-sectional dependence tests.

Test Statistic p-Value

Breusch and Pagan [51] LM test statistic 58.41 *** 0.000
Pesaran [52] test statistic 12.09 *** 0.000

Pesaran [53] LM CD + 4.706 *** 0.000
Note: + two-sided test. *** indicates statistical significance at 1% level. The null hypothesis is cross-sectional
independence. Source: Authors’ computations using Stata 16.

4.1.3. Unit Root Test

This sub-section applied both a first-generation panel unit root test [66] and a second-
generation panel unit root test [52] to check the unit root properties and order of integration
of the model variables. We focused on Pesaran’s second-generation panel unit root test [52],
CIPS. Table 6 below shows the results. The CIPS test results indicated that the variables
lnHDD and lnCDD, with and without the trend, were stationary at level I(0). On the
contrary, the variable lnPOP was stationary at levels only without the trend, whereas the
variables lnELD, lnGDP, and lnPRC, with and without the trend, were stationary at first
difference I(1). However, all variables are I(1).
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Table 6. Unit root test results.

Variables
IPS CIPS

At Level At First Difference At Level At First Difference

C C&T C C&T C C&T C C&T Decision

lnELD −0.9962 5.1757 −6.1621 *** −7.9973 *** −1.849 −2.327 −4.424 *** −4.585 *** I(1)
lnHDD −4.0056 *** −3.2286 *** −11.1058 *** −9.5801 *** −2.687 *** −3.124 *** −4.650 *** −4.577 *** I(1)
lnCDD −4.3051 *** −3.8447 *** −13.8722 *** −12.3010 *** −2.655 *** −3.158 *** −5.402 *** −5.379 *** I(1)
lnGDP −1.1016 0.4438 −4.9474 *** −4.1409 *** −2.209 −2.003 −3.078 *** −2.955 ** I(1)
lnPOP 2.9720 5.6314 −5.5822 *** −10.4249 *** −2.940 *** −1.775 −3.228 *** −4.304 *** I(1)
lnPRC 0.9342 0.2908 −3.9564 *** −2.3453 *** −2.044 −2.869 * −3.037 *** −3.243 *** I(1)

Note: ln denotes variables in the natural logarithms. ***, **, * indicate significance at 1%, 5%, and 10% levels,
respectively. Source: Authors’ computations using Stata 16.

4.1.4. Cointegration Test

A model that includes I(1) variables suggests that cointegration between these vari-
ables should be tested. As a result, the panel cointegration test developed by Wester-
lund [19] was used in the investigation. The results of the cointegration test are shown in
Table 7 below.

Table 7. Westerlund (2007) cointegration test.

Error Correction Based

Model Specifications Gt
(Robust p-Value)

Ga
(Robust p-Value)

Pt
(Robust p-Value)

Pa
(Robust p-Value)

1 lnELD, lnHDD, lnGDP, lnPOP, lnPRC −2.725 ***
(0.000)

−6.618
(0.240) −6.695 ** (0.020) −7.924 * (0.070)

2 lnELD, lnCDD, lnGDP, lnPOP, lnPRC −2.946 ** (0.030) −9.310
(0.100) −9.346 *** (0.000) −12.812 *** (0.010)

Note: Stata’s xtwest command was used. H0: No cointegration; H1: Gt and Ga tested the cointegration for each
country individually, and Pt and Pa tested the panel cointegration. Robust p-values were obtained by specifying
100 bootstrap replications of the critical values. ***, **, * indicate significance at 1%, 5%, and 10% levels, respectively.
Source: Authors’ computations.

The results from Table 7 indicate that we could reject the null hypothesis and conclude
that cointegration exists among the model variables based on the statistical significance of
the Gt and Pt estimates.

4.1.5. Model Selection Tests

This study employed the Mundlak approach to compare the appropriateness between
the random and fixed effects model. The null hypothesis is that the there is no systematic
difference between coefficients, making the random effects model the more suitable esti-
mator [63]. The result in Table 8 suggests rejecting the null hypothesis, indicating that the
fixed effects model is appropriate. Furthermore, Equations (4) and (5) can best be estimated
using the fixed effects model (FE-DK) based on the Mundlak test.

Table 8. Estimates from the Mundlak test.

Model Specifications χ2 (4) Prob > χ2

1 lnELD, lnHDD, lnGDP, lnPOP, lnPRC 62.35 *** 0.000
2 lnELD, lnCDD, lnGDP, lnPOP, lnPRC 55.97 *** 0.000

Note: *** indicates statistical significance at 1% level. Source: Authors’ computations.

4.2. Empirical Results from Panel Regression Techniques

The model results are presented in Tables 9 and 10. Results in Table 9 assess the
heating effect, whereas those in Table 10 assess the cooling effect. The fixed effects D–K in
column 1 present the estimates of the mean effect. The MM-QR in columns 2–6 presents
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the estimates for distributional heterogeneity in the effects of both HDD and CDD in G7
countries. The estimated quantiles (Q.) are the 10th, 25th, 50th (median), 75th, and 90th
quantiles presented in both Tables 9 and 10.

Table 9. Heating effects results from D–K and MM-QR regression.

MM-QR

Variables D–K Q.10th Q.25th Q.50th Q.75th Q.90th

(1) (2) (3) (4) (5) (6)

lnHDD 0.260 ** 0.210 0.237 ** 0.265 *** 0.285 *** 0.300 **
(0.082) (0.158) (0.117) (0.095) (0.101) (0.117)

lnGDP 0.442 *** 0.454 *** 0.448 *** 0.441 *** 0.436 *** 0.433 ***
(0.056) (0.082) (0.061) (0.049) (0.053) (0.061)

lnPOP 0.532 ** 0.804 *** 0.659 *** 0.505 *** 0.395 ** 0.312
(0.159) (0.282) (0.209) (0.169) (0.180) (0.210)

lnPRC −0.076 ** −0.163 *** −0.117 *** −0.068 ** −0.032 −0.005
(0.030) (0.044) (0.033) (0.026) (0.028) (0.033)

Constant −8.421 *** −11.052 *** −9.650 *** −8.159 *** −7.089 *** −6.279 ***
(1.244) (2.748) (2.036) (1.652) (1.756) (2.049)

Obs. 182 182 182 182 182 182
Groups 7 7 7 7 7 7

Note: Standard errors are in parentheses. ***, ** indicate significance at 1% and 5% levels, respectively. Source:
Authors’ computations and compilation.

Table 10. Cooling effects results from D–K and MM-QR regression.

MM-QR

Variables D–K Q.10th Q.25th Q.50th Q.75th Q.90th

lnCDD 0.000 −0.014 −0.006 0.000 0.008 0.013
(0.025) (0.041) (0.030) (0.026) (0.029) (0.034)

lnGDP 0.435 *** 0.486 *** 0.458 *** 0.436*** 0.409 *** 0.393 ***
(0.052) (0.080) (0.059) (0.052) (0.057) (0.067)

lnPOP 0.535 *** 0.725 *** 0.621 *** 0.537 *** 0.437 ** 0.378 *
(0.138) (0.267) (0.199) (0.173) (0.192) (0.224)

lnPRC −0.062 * −0.145 *** −0.100 *** −0.063 ** −0.019 0.007
(0.031) (0.042) (0.031) (0.027) (0.029) (0.034)

Constant −5.926 *** −8.593 *** −7.129 *** −5.950 *** −4.536 *** −3.711 **
(0.873) (2.191) (1.628) (1.413) (1.562) (1.826)

Obs. 182 182 182 182 182 182
Groups 7 7 7 7 7 7

Note: Standard errors in parentheses. ***, **, * indicate significance at 1%, 5%, and 10% levels, respectively. Source:
Authors’ computations and compilation.

4.2.1. Heating Effect and Electricity Demand

Table 9 represents the model results of the fixed effects D–K regression and MM-QR for
heating effects on electricity demand. Based on the fixed effects D–K regression, an increase
in the HDD positively impacted electricity demand. More specifically, a 1% increase in HDD
caused a 0.26% increase in electricity demand in G7 countries (statistically significant at a
5% level). Furthermore, based on the MM-QR regression, an increase in the HDD positively
impacted electricity demand. Furthermore, the results across the quantile indicated that a
1% increase in the HDD caused electricity demand to increase by 0.24% in the 25th quantile,
0.37% in the 50th quantile, 0.28% in the 75th quantile, 0.3% in the 90th quantile (statistically
significant at the 5% level). The result also shows a positive but statistically insignificant
impact of HDD on electricity demand at the 10th quantile. Similar to existing studies
(see [2,7,67]), these results showed that HDD significantly increased electricity demand in
the G7.
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4.2.2. Cooling Effect and Electricity Demand

Climate change is expected to lead to an increase in cooling demand. Although one
of our stated objectives was to estimate the cooling effect, Table 10 shows zero evidence
of a significant cooling effect on electricity demand. Even when we estimated the cooling
effect separately from the heating effect, the outcome was the same. However, this does
not rule out the possibility of a cooling impact. Our data set covers a wide geographic
area, encompassing countries on multiple continents. It may have been difficult to detect
the cooling effect based on the current data because cooling is recent in the residential
sector. Data that spans many years may be necessary to detect any cooling effects. This
result is consistent with the findings of Tol et al. [2], who found no statistically significant
cooling effect for many countries and years. However, these results differed from Emodi
et al. [7], who found a significant positive cooling effect in summer and spring across
Australian states.

4.2.3. Effects of Covariates

Column 1 in Tables 9 and 10 represents the model results of the fixed effects D–K and
MM-QR regression for cooling effects on electricity demand. Based on the fixed effects D–K
regression, an increase in income positively impacted electricity demand. More specifically,
a 1% increase in income caused a 0.44% increase in electricity demand in G7 countries
(statistically significant at the 1% level). Furthermore, based on the MM-QR regression,
an increase in income caused an increase in electricity demand. Furthermore, the results
across the quantiles indicated that a 1% increase in income caused electricity demand to
increase between a low of 0.39% (Q.90th in Table 10) and a high of 0.49% (Q.10th in Table 10).
Thus, as recent studies [2,7,8,63] also concluded, an increase in income leads to increased
electricity demand.

For population, the fixed effects D–K regression results in column 1 of Tables 9 and 10
indicate that an increase in population positively impacts electricity demand. More specifi-
cally, a 1% increase in the population caused approximately a 0.53% increase in electricity
demand in G7 countries (statistically significant at the 1% level). Furthermore, based on the
MM-QR regression, an increase in income caused an increase in electricity demand; how-
ever, the results were insignificant in all the quantiles. The variable population positively
affected electricity demand in the 10th, 25th, 50th, and 75th quantiles of both Tables 9 and 10.
The result was statistically significant at the 1% level and 5% level in the Q.75th and positive
but not statistically significant (at the 5% level) in the Q.90th. Thus, as concluded by related
studies [68,69], an increase in the population increased electricity demand. However, this
result differs from recent studies, which found a negative effect of population on electricity
demand [7,70].

For the price elasticity of electricity demand, the D–K regression results in column 1 of
Tables 9 and 10 indicate that an increase in population causes a slight negative impact on
electricity demand. This result implies that a 1% increase in the domestic electricity price
causes approximately 0.08 (Table 9) and 0.06% (Table 10) decreases in electricity demand in
G7 countries. However, although the result in Table 9 was statistically significant at the 5%
level, the result in Table 10 was only statistically significant at the 10% level. Furthermore,
results based on the MM-QR regression indicated mixed effects across quantiles. In the 10th,
25th, and 50th quantiles, increases in the domestic electricity price caused a statistically
negative effect on electricity demand (at 1% and 5% levels). However, in the 75th and
90th quantiles, an increase in domestic electricity price caused a negative but statistically
insignificant effect (at any conventional level) on electricity demand.

Furthermore, in Table 5, the effects on domestic electricity demand in the 10th, 25th,
and 50th quantiles remain statistically negative at the 5% level. At the same time, they are
statistically insignificant negative and positive in the 75th and 90th quantiles, respectively.
Thus, households in G7 countries responded slightly proportionately to changes in the
electricity price. Consequently, as with similar studies [8,66], increased electricity prices
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caused a decrease in electricity demand. However, this differs from Emodi et al. [7], who
found mixed results across Australian states and seasons.

The graphical results of the MM-QR regression approach are presented in
Figures 3 and 4. The gray regions represent the 95% confidence intervals for the MM-QR re-
gression estimates. The y-axis displays the elasticities of the explanatory variables, whereas
the quantiles are displayed on the x-axis.
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4.3. Further Discussion of the Results

Temperature below the 18.3 ◦C threshold induces residential electricity consumers to
demand electricity for their heating needs, leading to the heating effect and the derivation of
the HDD. Conversely, temperatures above the 18.3 ◦C threshold induce residential electric-
ity consumers to demand electricity for their cooling needs, leading to the cooling effect and
the derivation of the CDD. Based on our findings, the HDD had a statistically significant
positive effect on electricity demand. On the other hand, the CDD has a statistically non-
significant positive effect on electricity demand. Also, HDD increased electricity demand
in the upper quartile countries, such as the United States and Japan. Thus, the estimated
results show that the temperature effects on electricity demand in the G7 countries were
driven by heating demand during the sample period. Following Tol et al. [2], we estimated
an individual country time series model for each of the G7 countries to investigate the
cooling effect. We found that only Japan exhibited a significant cooling effect. This suggests
that the cooling effect remained a regional concern.

Tables 9 and 10 show that the signs and significance for most control variables across
quantiles are consistent with previous results. The coefficient of GDP was positive and
suggested that an increase in income increased electricity demand. This result is consistent
with the existing literature. The population coefficient was positive and suggested that
an increase in the population increased electricity demand. Utility companies usually
respond to an increase in electricity demand by expanding generation capacity to provide
adequate electricity [7]. In this regard, the population is an important factor contributing
to changes in electricity demand. The findings from Tables 9 and 10 show that, in general,
an increase in population is associated with an increase in electricity demand. The price
elasticity of electricity demand ranged from a 0.06 to 0.16% reduction in electricity demand.
This indicated that residential electricity consumers responded slightly to changes in the
electricity price by reducing consumption. As we found a long-run relationship among the
variables, an elastic electricity demand suggests that residents make long-term adjustments,
such as a higher insulation rate in buildings, energy efficiency improvements, and a change
to other fuels or technologies [7]. According to Meier et al. [71], an increase in spending on
energy commodities due to changes in the energy price was associated with an increase in
household income in British households.

5. Conclusions, Policy Relevance, and Limitations

The contribution of this study was to employ a second-generation panel unit root
and cointegration framework and national-level panel data to investigate the impact of
temperature variations on residential electricity consumption in G7 countries. A noteworthy
point was that this study accounted for the asymmetric effects of temperature on electricity
demand. Thus, this study accounted for both the heating and cooling temperature effects.
Furthermore, it accounted for key covariates influencing residential electricity demand,
such as income (proxied by GDP), population, and domestic electricity prices.

From a methodological standpoint, we accounted for the distributional heterogeneity
of electricity demand using the MM-QR estimator, which does not strictly rely on the
assumption of a normal distribution and is appropriate for short data periods. Hence, a
significant advantage of the MM-QR estimator is that it allows us to capture the distri-
butional heterogeneity of the electricity at different conditional quantile distributions of
temperature and other control variables [21]. Additionally, the MM-QR estimator is useful
in situations where the panel data model is embedded with individual effects and when
the model possesses endogenous explanatory variables.

The empirical evidence from the panel results leads to the following conclusions about
the residential electricity demand of G7 countries: (1) They are positively responsive to
cold days rather than hot days. On average, a 1% increase in HDD will increase electricity
demand by 0.27%, which is less than proportional. (2) They are income inelastic. On
average, a 1% increase in income will increase electricity demand, less than proportionately,
by 0.44% (3) They are price inelastic. On average, a 1% increase in own price will decrease
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electricity demand, less than proportionately, by 0.11%. (4) They are positively responsive
to the population.

This kind of electricity demand study is relevant to practical and policy-related mea-
sures. Firstly, there is a hypothesized U-shaped relationship between temperature variation
and residential electricity demand. At the same time, climate change has been projected
to cause warming that will increase cooling demand. However, there is still no consensus
in the literature. This study found that the heating effect was the primary driver of the
temperature effect on residential electricity demand during the study period. Secondly,
consistent and unbiased estimates of income and price elasticities of electricity demand are
crucial information for public policy design aimed at energy sector reforms and demand
management plans by utility companies. Thirdly, the price elasticity of electricity demand
provides crucial information concerning pricing policy effectiveness in promoting efficient
energy use. The G7 countries are responsible for a large share of global energy consumption
and energy-related CO2 emissions. The relatively low values of domestic price elasticities
imply that deploying only pricing policies to reduce long-run residential electricity demand
may not be effective and that, from an environmental standpoint, there is relatively little po-
tential for the G7 countries to reduce residential electricity consumption, and consequently,
carbon emissions, using only taxation.

Our results also have implications for energy security, defined as sufficient, affordable,
and reliable energy. Energy security risks include the inability of an energy infrastructure
system to manage a growing load demand and physical security threats, such as extreme
weather events. The use of residential electricity is mainly for heating purposes because the
coefficient of the heating degree days was statistically significant. In contrast, the coefficient
of cooling degree days was not statistically significant. Recent projections indicate that
future temperatures will increase, resulting in hotter summers and warmer winters. This
situation is expected to decrease the electricity demand for heating while increasing the
electricity demand for cooling. Changes in energy demand will likely affect greenhouse gas
emissions, but the net effect will depend on the energy sources used to generate electricity,
including alternative energy.

In addition, income and population growth in G7 countries are expected to increase
energy demand and pressure current electricity systems. Currently, fossil fuels dominate
the energy infrastructure of G7 countries. An increase in the price of electricity had a
detrimental impact on its demand and affordability, particularly for quantiles with lower
electricity consumption (or countries). In contrast, a price increase did not significantly
affect the highest electricity consumers (see 75th and 90th quantiles). Consequently, this
could pose a challenge for energy justice because countries with the largest economies
consume the most electricity and vice versa. As price elasticity is less than one, the negative
coefficient suggests that price may be used to induce a transition to renewable electricity
sources, albeit modestly.

These issues underscore the critical need for robust and well-planned policies and
investments to enhance the security of electricity systems that provide power to homes and
other vital components of the economies. This requires making electricity systems more
resilient to the effects of extreme weather and more efficient and flexible by increasing the
share of solar and wind power, which is vital for achieving net-zero emissions.

As with most empirical research, this study had limitations. Given the scope of this
article, only the HDD and CDD temperature measurements were included. Future research
would ideally include more weather/climate-related variables, such as precipitation, rel-
ative humidity, and others, to comprehensively investigate climate change effects on the
residential sector power demand. In addition, a temperature threshold of 18.3 ◦C was
considered based on its prevalence in the scientific literature. Future research should inves-
tigate multiple temperature thresholds as part of their sensitivity analysis for examining
the heating and cooling effects of temperature on household power demand. In addition,
this study used real GDP as a proxy for income based on a review of the relevant literature
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and model fit. An alternative income variable, such as per capita income, may be more
appropriate for future research.

The methodology employed in this study also presented some limitations. The MM-
QR estimator is more restrictive than the traditional quantile regression: first, the MM-
QR estimator assumes that the model regressors are strictly exogenous, and second, the
estimator, although it accounts for individual fixed effects, does not simultaneously model
both individual fixed and time effects [21]. However, as noted by Machado and Silva [21],
the additional structure imposed by the estimator is useful in many applied settings. The
noteworthy point is that the MM-QR estimator provides an easy way to estimate regression
quantiles when using the traditional approach is difficult or impossible. Additionally, we
note that the methodological framework applied in this study could be applied to analyze
the relationship between temperature and residential electricity demand in countries other
than G7, especially in developing countries where electricity demand exhibits significant
cross-country heterogeneities [72].

However, future studies on this subject should seek to address these constraints.
Despite the limitations, the analysis enabled us to draw significant economic and energy
policy conclusions. In this regard, the government should encourage using electric batteries
to minimize greenhouse gas emissions and enhance air quality. On the other hand, the
European economy must continue to employ green growth strategies. Notwithstanding
the limitations mentioned above, this study allows us to reach critical conclusions about
economic, climate change, and energy policies.
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Appendix A

Table A1. Some selected empirical studies on the electricity demand and temperature (degree days) nexus.

Authors Objective Time Period
and Sample

Methodology Key Explanatory Variables
CHE * Key Findings

ET CE QE CD 1UR 2UR 1CO 2CO DD T Y P Pr

Yating et al.
(2019)

To investigate
the effects of

climate change
on electricity

demand among
Chinese

households

1980–1999
2080–2099

China

Panel data:
fixed

effects
X 7 7 7 7 7 7 X X X 7 X X

On cold days, an increase in
temperature of 1 ◦C lowers
electricity consumption by

2.8%; on warm days, an
increase in temperatures of 1
◦C increases electricity
consumption by 14.5%.

As income rises, the sensitivity
of households to extreme

weather conditions does not
change for hotter summer days,

but it does rise for colder
winter days.

Thornton et al.
(2016)

To examine the
influence of
temperature

plays on
electricity
demand

variability and
extremes in

Great Britain

1975–2013
Great Britain

Time
series:
trend

analysis

X 7 7 7 — — — 7 X X X X 7

Mean electricity demand
exhibits low-frequency

variability, linked primarily to
the influence of variable
socioeconomic factors.

However, they also show that
electricity demand and

temperature have a high
negative correlation (r= −0.90)

when the variability of
socioeconomic factors is

removed.
Seasonal variations in

electricity demand lead to an
increased correlation between

temperature and electricity
demand. Taking annual

temperature and demand
cycles out of the equation, we

get a correlation, r, of 0.60.
Temperature and demand are
closely linked in winter, with a

1% rise in demand for
electricity for every 1 ◦C

decrease in daily temperature.
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Table A1. Cont.

Authors Objective Time Period
and Sample

Methodology Key Explanatory Variables
CHE * Key Findings

ET CE QE CD 1UR 2UR 1CO 2CO DD T Y P Pr

Emodi et al.
(2018)

To investigate
the short- and

long-run effects
of temperature

variations due to
climate change

on energy
demand

1999–2014
Six Australian
states and one

territory

Time
series:
autore-

gressive
dis-

tributed
lag

(ARDL)

X 7 7 X — — — X X X X X X

Increasing temperature will
increase the summer peak

demand for electricity, whereas
the demand in the winter is

projected to rise. Additionally,
in some Australian states, there
was a significant relationship
between temperature-induced
electricity demand and income,

price, and population.

Aroonruengsawat
and

Auffhammer
(2011)

To analyze how
household

electricity usage
differs among

climate zones in
response to
temperature

2003–2006
California

Panel data:
fixed

effects
X 7 7 7 7 7 7 7 X X X X 7

Electricity demand rises
substantially across all climate

zones as temperatures rise

Pilli-Sihvola
et al. (2010)

To investigate
the impacts of a
warmer climate
on heating and

cooling demand
in five (northern,

central, and
southern)
European
countries

1985–2008
Finland,

Germany, the
Netherlands,
France, and

Spain

Time
series:

multivari-
ate

autore-
gression

X 7 7 X — — — X 7 X 7 7 X

In Central and Northern
Europe, the reduction in

heating due to climate change
predominates, and as a result,
electricity costs will decrease.
In Southern Europe, climate

change and the resulting
increase in cooling and

electricity demand exceeds the
decline in heating demand.

Consequently, costs also
increase.

Du et al. (2020)

To investigate
how increasing

income of
Chinese

residents affects
the climate

sensitivity of
electricity
demand

2005–2015
278 cities in

China

Panel data:
partially

linear
functional
coefficient

model

X 7 7 7 7 7 7 X 7 X 7 X 7

Due to climate change,
residential electricity usage is
more likely to increase in hot
weather than in cold weather.
Accounting for socioeconomic
factors, the marginal effect of

CDD on electricity
consumption first increases
with an increase in income.

However, when income
increases further, the marginal

increase curve turns flat.
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Table A1. Cont.

Authors Objective Time Period
and Sample

Methodology Key Explanatory Variables
CHE * Key Findings

ET CE QE CD 1UR 2UR 1CO 2CO DD T Y P Pr

Narayan et al.
(2007)

To analyze the
impact of

income and price
on electricity

demand in the
G7 countries

1978–2003
G7 countries

Panel data:
panel coin-
tegration

X 7 7 X 7 X 7 7 7 X 7 X 7

Results from the G7 countries
reveal that income and price

are critical factors in the
demand for electricity caused

by temperature.

Tol et al. (2012)

To explore the
impact of climate

change on
cross-country

energy use

1978–2002
A panel of 62

countries

Panel data:
corrected

least
squares
dummy
variable
(LSDVC)

X 7 7 7 7 7 7 X X X 7 X X

Electricity demand declines
with increasing temperatures

due to a reduction in the
demand for energy for heating,
although the rate of reduction

decreases as temperature
increases.

Temperature does not affect the
demand for cooling energy.

Li et al. (2018)

To estimate the
climatic impacts

on residential
energy

consumption in
China

2009–2014
30 provinces in

China

Panel data:
fixed

effects
X 7 7 7 7 7 7 X 7 7 7 7 X

A warmer summer would have
a more significant effect than a

colder winter, meaning an
increase in annual electricity

usage due to global warming.

Note: * CHE (cooling and heating effects); ET (estimation technique); CE (conditional mean estimator) QE (quantile estimator); CD (cross-sectional dependence); 1UR (first generation
unit root test); 2UR (second generation unit root test); 1CO (first generation cointegration test); 2CO (second generation cointegration test); DD (degree days -cooling and heating); T
(temperature); Y (income); P (population); and Pr (electricity price). Xmeans item was accounted for, 7 means variable was accounted for, and — means the item is not applicable.
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